PYTHON GPIB PROGRAMING GUIDE
Installation Steps
Python
- Python 2.7 Windows installer

- http://www.python.org/download/
GPIB Software

-http://prologix.biz/resources.php

- NetFinder— Network configuration utility for Prologix GPIB-ETHERNET controller.

 NetFinder steps
 -Connect the GPIB, Network Switch, Power and Laptop

 -Run the netfinder.exe program

 -Press search to find the GPIB device

(Make sure that only ONE network connection is enabled - do not use both WIFI and a wired connection, otherwise you may confuse NetFinder and the GPIB wont be found)

-Record or assign a new IP if needed

Editing Python scripts
-Right click a Python file to edit it

-Select Edit with IDLE
-Find the lines:

 ipAddress = "192.168.1.2" # GPIB IP

 gpibAddress = int(16) # GPIB port
-Edit these as necessary (The default GPIB port is given in the instrument manual)

-Edit any options under the comment areas marked

#***

#EDIT SETTINGS HERE

#Edit these options carefully

#Undefined items may produce undefined or wrong

#results

#***

#***

#Edit these setting for your application

#***

-You can change, comment out, or remove select areas, but you must make sure the variables you remove or comment out are NOT called elsewhere
-Once all changes have been made, press the “F5” key to build/run your program.

If a GPIB device is to be used, it must be connected before the program is run.
HP8735 Specific information
8753ECalibResponse.py
-Enable calibration of either S11 or Response

-This presets the instrument before Calibration!

-Instrument data is not received for storage
8753EDataX.py

-Will NOT preset the instrument!

-Operator MUST setup the instrument for their measurement setup

-Reads trace data from the instrument
-Will NOT write new parameters to the instrument
-Data is saved in a name.txt file in the program containing folder

8753E.py
-WILL preset the instrument (Must comment out preset if calibration is needed beforehand: gpibObj.command("PRES;")

-Editable fields are under these headings
#***

#EDIT SETTINGS HERE

#Edit these options carefully

#Undefined items may produce undefined or wrong

#results

#***

#***

#Edit these setting for your application

#***
-Data is saved in a name.txt file in the program containing folder

-("OUTPFORM;") may be changed to OUTPDATA if needed

-Refer to the HP programming guide or the code for descriptions of these

- Both analysis arrays MUST be the same size when data is retrieved otherwise an error WILL result and unreliable data may be saved
analysisData2 = str(gpibObj.getData()) #store data

analysisData = str(gpibObj.getData()) #store data
They are automatically assumed to equal each other depending on the number of data points (this means analysisData2 = analysisData in SIZE not data)

-Having a Trace Length of 1601 WILL overflow the buffer and cause output file errors, always TEST before using such a trace length tracePoint ="801” should be the MAX you use

HP8560 Specific information
 8560E.py
-The markerFreq = "1.839MHZ" field MUST be within the range of the data being sampled see the centerFreq /freqSpan/startFreq/stopFreq
-Invalid Marker frequency will give invalid marker amplitude results.
-Valid frequency ranges are from 30HZ-2.9Ghz
-Any and ALL trace data changes MUST be
 updated before data is read from the instrument using the “TS;” command (TS is the trace update command)
-The System Read setup re-reads the user input from the instrument and can be used to confirm that all the proper data has been entered.
-User Measurement Setup is what the program sent to the instrument and should reflect the System Read data
-Averaging grater then 50 will cause buffer problems, use with caution avgeSpec = "14"
-Data is saved in a name.txt file in the program containing folder
-The center frequency and frequency spans are related, having a different value for freqSpan and the Start and Stop frequency will only change one of them

centerFreq = "" # MHZ KHZ or HZ fom 30HZ-2.9Ghz

freqSpan = "" #

startFreq = "631KHZ" # Dependent on Freq span

stopFreq = "2.19MHZ" # keep blank if using freqspan
-If freqSpan is left empty, the start and stop freq are assumed to be the numbers of use
if freqSpan != "": # use either span and center or start and stop points

 gpibObj.command("CF "+centerFreq+";"+"SP "+freqSpan+";TS;") # Freq span/center

 time.sleep(0.2)

else:

 gpibObj.command("FA "+startFreq+";"+"FB "+stopFreq+";TS;") # start/stop Freq

 time.sleep(0.2)
SR785 Specific information

FFTSR785E.py
· This executes FFT/Noise measurement
· See the FFT options using available instrument options

-
Data is saved in a name.txt file in the program containing folder
TFSR785.py
· This executes a transfer function
· See the TFS options using available instrument options

numOfPoints = int(n) n max =2048 on the sr785
 -
Data is saved in a name.txt file in the program containing folder
netGPIB.py specifics
Commands have a built in time delay, shortening the delay may cause socket errors with read/write
 def command(self,string):

 self.netSock.send(string+"\n")

 time.sleep(0.1)
The GPIB has built in eot data terminations (see instruction manual) Currently set to ASCII ‘B’ self.eotNum=struct.unpack('B',eot)[0]
 self.netSock.send("++eot_char"+str(self.eotNum)+"\n")

 self.netSock.send("++eot_enable 1\n")
The GPIB must be closed after the program ends
 def close(self):

 self.netSock.send("++loc eoi\n")

 self.netSock.close()
Query commands always return data; otherwise that data would be stuck in the GPIB buffer and would get read out during the next read
def query(self,string,buf=100,sleep=0):

 self.netSock.send(string+"\n")

 time.sleep(sleep)

 self.netSock.send("++read eoi\n") #Change to listening mode

 return self.getData(buf)
Errors?

Traceback (most recent call last):

File "C:\Documents and Settings\ligo\Desktop\Edward\sus-gpib\FFTSR785E.py", line 346, in <module>

 FI=freq.index('+1.0000000e+001')

ValueError: '+1.0000000e+001' is not in list

Possible Error in numberofPoints and number of avg

The values you are requesting are not part of the data recived

- You may need to specify a new range of data to encompass the data point you are tying to receive from the GPIB instrument

If nothing worked restart the python IDLE (reopen the file and press F5)
Traceback (most recent call last):

error: [Errno 10035] A non-blocking socket operation could not be completed immediately
Not giving the buffer enough time to receive data.

· check the manual to see if the buffer needs a specific time to get data from the instrument,

You may not be reading the buffer after a query request

- You MUST read the buffer after you query for data otherwise previous data could remain the next time you ask for new data from the GPIB.

-Try adding some more time to the sleep time
time.sleep(time) where time is in ms ex (0.2)
· Make sure that you are reading the buffer contents after requesting its data!

· Make sure you are requesting VALID data that is requestable from the GPIB/instrument, check the instrument/gpib manual for requestable data types and commands

How data is saved.

Data is saved in a text file “name.txt” inside the directory of the python program.

Most data is saved with a unique user entered serial number followed by the date and time “serial 27072010-172404.txt” where serial is the serial number,
