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Abstract

Although the internal resonances of the test mass are beyond the Length Sensing and Control
(LSC) control bandwidth, any (unintended) magnetic coil drive currents at the test mass resonances
will be amplified by the high Q of the test mass. The transmissibility of applied force at the magnet
positions to displacement response of the front surface of the LIGO test mass is calculated via finite
element analysis. Based upon the transmissibility, the gain attentuation required in the length con-
trol system, in order to prevent driving the test mass motion at resonance beyond acceptable limits,
may be established.

Keywords:test mass, LSC

Revision 01: Added the first symmetric (drum head) frequency by analysis for the Pathfinder optic
for comparison with measurement.

Revision 02: Added section 4 on the integral overlap of the modes with a Gaussian beam (plus a
few minor corrections).

Revision 03: Changed the Gaussian beam parameter w from 35 mm to 45.6 mm, as appropriate for
the End Test Mass (ETM) and extended the calculations to cover the first 10 elastic modes.

1 END TEST MASS FINITE ELEMENT MODEL
The end test mass (ETM) finite element model is indicated in Figure 1. The optic is a 250 mm
diameter, 100 mm thick (at it’s maximum) fused silica cylinder with one face wedged at a 2
degree angle. The model is composed of 2160 linear solid brick elements and has the mass prop-
erties shown in Figure 1.

The four magnet positions are at a radial distance of 114.3 mm and at 45, 135, 225 and 315
degrees from the +X (horizontal) axis. The dynamic model does not include the beveled edge of

 Figure (1) Finite Element Model and Mass Properties (units are mm and kg)
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the optic, nor does it include the four dumbbell magnet standoff and magnet assemblies.

2 NATURAL MODES
The natural modes shapes, frequencies, modal mass and modal stiffness are indicated in Table 1.
The analysis indicates a non-axisymmetric pair of modes with astigmatic shape at 6.6 kHz and the
first symmetric (drum head) mode at 9.2 kHz.
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Table 1. ETM Calculated Modes

# Mode Shape Frequency
(Hz)

Modal Mass
(106 gm)

Modal Stiffness
(1016 N/m)

7 6595 2.53 0.44

8 6595  2.52 0.43

9 9206  3.43 1.15
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10 11217  5.15 2.56

11 11217 5.95 2.95

12 12056 2.20 1.26

13 12057 2.20 1.26

Table 1. ETM Calculated Modes

# Mode Shape Frequency
(Hz)

Modal Mass
(106 gm)

Modal Stiffness
(1016 N/m)
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For comparison, the frequencies and Qs measured1 on the pathfinder optic are indicated in Table
2. The pathfinder optic has the same dimensions as the LIGO ETM with the exception that the
wedge angle is 30’. The first measured mode is a drum-head mode at about 9.48 kHz (vs. 9.35
kHz by analysis).

1. S. Kawamura, J. Hazel, M. Barton, Large Optics Suspension Final Design (Mechanical System), LIGO-
T970158-06-D, section 4.4, Table 3,18 Sep 97.

14 12491 3.13 1.93

15 12493 3.25 2.00

16 14475 6.96 5.76

Table 1. ETM Calculated Modes

# Mode Shape Frequency
(Hz)

Modal Mass
(106 gm)

Modal Stiffness
(1016 N/m)
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Table 2: Measured resonance frequencies and Qs of the pathfinder test mass internal modes
(from S. Kawamura, et. al., LIGO-T970158-06-D)

Mode Resonance Frequency Q

Internal Mode 9.4764 kHz

22.4215 kHz

25.6323 kHz

29.4842 kHz

29.8662 kHz Immeasurable

38.7632 kHz

42.7583 kHz

47.3324 kHz

Magnet/Standoff Assembly 7.484 kHz 540

1.3 10
6×

4.6 10
5×

2.6 10
6×

1.1 10
6×

8.8 10
5×

4.8 10
6×

5.4 10
6×
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3 TRANSMISSIBILITY
In the frequency response analysis, the magnet/voice coil force is assumed to act in the direction
parallel to the test mass cylindrical axis despite the fact that the magnet’s axis is normal to the
wedged surface. The transmissibility (ratio of response displacement to driving force) is given for
coherently forcing at the four magnet positions (on the backface of the test mass) with response at
the five points (on the front face of the test mass) indicated in Figure 2.

The resulting transmissibility functions are indicated in Figure 3. Note that for the 9th mode shape

(the 3rd elastic mode), the variation of the mode shape over the beam waist (w0 ~ 30 mm) is quite
small, as indicated by the modal coefficients for the response points in Figure 2:

There is approximately a variation of only 5% across the waist of the beam. As a consequence it is
not necessary to take the convolution of the Gaussian beam profile and the mode shape to deter-
mine the effect on the length.

As a check on the amplitude of response at resonance, the response can be calculated as follows:

The frequency response can be computed through the summation of modal responses:

 (1)

where,

 Figure (2) Response Points
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At a resonance frequency,ω0:

 (2)

or, approximately,

 (3)

The generalized forces (for unrestrained boundary conditions) are:

 (4)

where,

Similarly, the physical displacement is given by:

 (5)

or, the displacement at a response point, r, at resonance,ω0, is given as follows:

 (6)

 (7)
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 Figure (3) Transmissibility(The “points” are as designated in Figure 2)

for +X-axis points:

for +Y-axis points:

Point 1 Point 3 Point 2

Point 1 Point 5 Point 4
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If we denote the modal coefficients at each of the 4 magnet positions at the resonance,ω0, as
{ ϕ0e1,ϕ0e2,ϕ0e3,ϕ0e4} then the transmissibility at a response position,δr, for a unit force (at each
of the 4 magnet positions) is as follows:

 (8)

For r = center of the front face of the mirror and the first drum head mode (ω0 = ω9 = 9.2 kHz):

1

Consequently,

which agrees with the IDEAS frequency response calculation (Figure 3).

1. Obviously due to the symmetry about the vertical plane (the wedge is vertical),
ϕ0e1 = ϕ0e3 andϕ0e2 = ϕ0e4.

Tδr0
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+ + +( )
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2
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2Q
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4 MODE INTEGRAL OVERLAP WITH A GAUSSIAN
The cavity length change due to test mass modal motion is sensed by a Gaussian beam. The
sensed length change is a Gaussian intensity weighted average of the surface deflection due to the
mode. The Gaussian intensity distribution (normalized over the integral) is:

 (9)

where the beam waist, w = 45.6 mm (the beam size at the End Test Mass). The physical displace-
ment at a position is related to the modal displacement as follows (from Equation 5):

 (10)

where the “transmissibility” from coherent force excitation at the four magnet positions to the kth

modal amplitude is:

 (11)

and the transmissibility from coherent force excitation at the four magnet positions to displace-

ment at position r due to the kth mode is:

 (12)

The intensity weighted integral of motion due to the kth mode, over surface S, is given by:

 (13)

where the intensity distribution may be decentered by an alignment tolerance of ro = 1 mm:

 (14)

where i and j are unit vectors in the x and y coordinate directions.

The kth mode integral overlap transmissibility is then:

 (15)
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The maximum value of the transmissibility over all values ofθ is defined as:

 (16)

The integrals were performed in Matlab. The IDEAS finite element model (nodal positions, sur-
face node numbers) and mode shapes were imported into Matlab. A two-dimensional spline fit to
the non-uniform finite element nodal grid was used to calculate the mode shape on a finer grid
within central region of± 1.925 beam waists (i.e. the surface S). The results (and the input and
some of the intermediate values in the calculation) are given in Tables 3 and 4. The interpolated
central regions, S, of the mode shapes are displayed in Table 5.

The Gaussian weighted integral transmissibilities for the first 10 elastic modes are given in the last
column of Table 4. The first three pairs of asymmetrical elastic modes, at frequencies of 6.6 kHz,

11.2 kHz and 12.0 kHz, have transmissibilities 106 times smaller in amplitude than the first sym-

metric mode, which is 1.8 x 10-4 m/N and occurs at 9.2 kHz. However, one of the fourth pair of

asymmetric modes, at 12.5 kHz, has a transmissibility only 104 times smaller than the first sym-

metric mode at 9.2 kHz. The second symmetric mode, at 14.4 kHz has a transmissibility only 102

times smaller than the first symmetric mode.

maxθ T∆k
[ ] Tγ k

maxθ Γk θ( )[ ]=
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Table 3. Front Surface Center Transmissibility (modal damping,ζ = 3.8 x 10-7)

k
Frequency

(Hz)

Modal
Mass

(106 gm)

Mode Shape Amplitude at Magnet Positions
Modal

Transmissibility

Mode Shape
Amplitude

at the Center

Center
Displacement

Transmissibility
 (m/N)

7 6594.849 2.53 -698.538 733.692 694.294 -728.266 3.58e-10 -0.120560 -4.32e-11

8 6594.890 2.52 436.254 -457.122 -442.902 465.661 5.75e-10 -0.187854  -1.08e-10

9 9205.874 3.43 -510.861 -540.005 -510.860 -540.009 -2.41e-07 922.687 -2.22e-04

10 11217.100 5.15 39.646 -26.367  -22.611 8.219  -5.72e-11 -0.336951 1.93e-11

11 11217.130 5.95 -5.828 -4.295 35.452 27.278 -8.67e-11 -0.587398 5.09e-11

12 12056.430 2.20 801.994 17.076 -32.624 -827.427 -4.27e-09 -0.016855 7.20e-11

13 12056.620 2.20 -15.208 829.345 -802.873 32.452 4.56e-09 0.015887 7.24e-11

14 12490.970 3.13 -69.990 -84.481 68.818 5.467 -1.27e-11 0.059799 -7.59e-13

15 12492.620 3.25 -84.598 72.020 -85.613 70.793 -1.80e-09 8.661750 -1.56e-08

16 14474.630 6.96 -115.193 -92.859 -115.195 -92.858 -9.51e-09 305.1300 -2.90e-06

Tγ k ϕkr Tδr k
ϕke1

ϕke2
ϕke3

ϕke4
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Table 4. Gaussian Weighted Integral Transmissibility

k
Frequency

(Hz)

Value of the Integral with no Gaussian
Intensity Distribution offset

Maximum Value of the
Integral vs.θ

Gaussian Weighted
Integral Transmissibility

 (m/N)

7 6594.849 -0.091977 0.320534 1.15e-10

8 6594.890 -0.172029 0.366452 2.11e-10

9 9205.874 743.9369 743.8522 -1.79e-04

10 11217.100 -0.305398 0.645480 -3.69e-11

11 11217.130 -0.531788 0.895485 -7.77e-11

12 12056.430 -0.016235 0.024689 -1.05e-10

13 12056.620 0.025927 0.039541 1.80e-10

14 12490.970 0.049713 1.214570 -1.54e-11

15 12492.620 7.065459 8.259432 -1.49e-08

16 14474.630 285.8718 287.9970 -2.74e-06

Γk r o 0→( ) maxθ Γk θ( )[ ] maxθ T∆k
[ ]
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Table 5. Interpolated Mode Shapes for Z-displacement of the Front Surface Central Region (r < 1.92w)

k
Frequency

(Hz)
Surface Plot Contour Plot

7 6595

8 6595
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9 9206

Table 5. Interpolated Mode Shapes for Z-displacement of the Front Surface Central Region (r < 1.92w)

k
Frequency

(Hz)
Surface Plot Contour Plot
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10 11217

11 11217

Table 5. Interpolated Mode Shapes for Z-displacement of the Front Surface Central Region (r < 1.92w)

k
Frequency

(Hz)
Surface Plot Contour Plot
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12 12056.430

13 12056.620

Table 5. Interpolated Mode Shapes for Z-displacement of the Front Surface Central Region (r < 1.92w)

k
Frequency

(Hz)
Surface Plot Contour Plot
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14 12490.970

15 12492.620

Table 5. Interpolated Mode Shapes for Z-displacement of the Front Surface Central Region (r < 1.92w)

k
Frequency

(Hz)
Surface Plot Contour Plot
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16 14474.630

Table 5. Interpolated Mode Shapes for Z-displacement of the Front Surface Central Region (r < 1.92w)

k
Frequency

(Hz)
Surface Plot Contour Plot


