

A Cross-Correlation Technique to Search for Periodic Gravitational Waves

John T. Whelan john.whelan@astro.rit.edu

Center for Computational Relativity & Gravitation & School of Mathematical Sciences Rochester Institute of Technology

> RIT Physics Colloquium 2010 April 27 LIGO-G1000488-v1

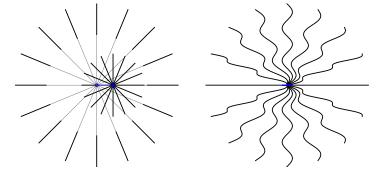
- Searches for Gravitational Waves
 - Crash Course in Gravitational Wave Physics
 - Gravitational-Wave Sources & Signals
 - Gravitational-Wave Observations & Detectors
- Cross-Correlation Method
 - Application to Stochastic Background
 - Application to Quasiperiodic Gravitational-Wave Signals
 - Tuning Search by Choice of Data Segments to Correlate
- 3 Applications and Outlook
 - Directed Search for Young Neutron Stars
 - Accreting Neutron Stars in Low-Mass X-Ray Binaries
 - Summary

Adapted from Amaldi talk LIGO-G0900536 by JTW, Chung, Krishnan, Melatos, Peralta

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method

- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate


Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Gravitational Waves GW Sources GW Detectors

Motivation

- In Newtonian gravity, force dep on distance btwn objects
- If massive object suddenly moved, grav field at a distance would change instantaneously
- In relativity, no signal can travel faster than light
 - \longrightarrow time-dep grav fields must propagate like light waves

Gravity as Geometry

• Minkowski Spacetime:

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}$$

$$= \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\text{tr}} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

General Spacetime:

$$ds^2 = egin{pmatrix} dx^0 \ dx^1 \ dx^2 \ dx^3 \end{pmatrix}^{
m tr} egin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \ g_{10} & g_{11} & g_{12} & g_{13} \ g_{20} & g_{21} & g_{22} & g_{23} \ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} egin{pmatrix} dx^0 \ dx^1 \ dx^2 \ dx^3 \end{pmatrix} = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Gravitational Wave as Metric Perturbation

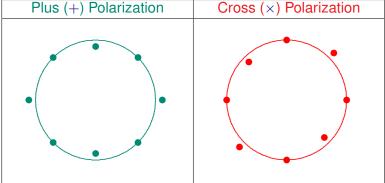
 For GW detection, spin-2 "graviton tensor" h_{μν} is difference btwn actual metric $g_{\mu\nu}$ & flat metric $\eta_{\mu\nu}$:

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$$

 $(h_{\mu\nu}$ "small" in weak-field regime, e.g. for GW detection)

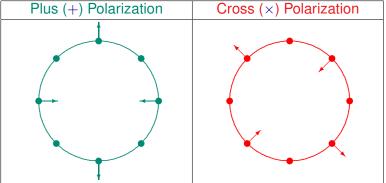
• E.g. Plane wave propagating in z direction

$$\{h_{\mu\nu}\} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i2\pi f(z-t)}$$

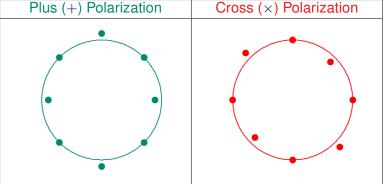

 h_{\perp} and h_{\times} are amplitudes of "plus" and "cross" pol states.

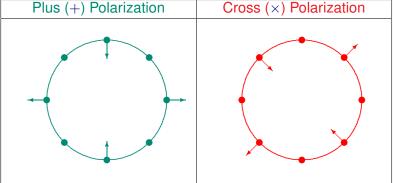
$$\overset{\leftrightarrow}{h} = \left[h_{+} \overset{\leftrightarrow}{e}_{+} + \overset{\leftarrow}{h}_{\times} \overset{\leftrightarrow}{e}_{\times} \right] e^{i2\pi f(\hat{k} \cdot \vec{r} - t)}$$

Effects of Gravitational Wave


Fluctuating geom changes distances btwn particles in free-fall:

Effects of Gravitational Wave


Fluctuating geom changes distances bywn particles in free-fall:


Fluctuating geom changes distances btwn particles in free-fall:

Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

Effects of Gravitational Wave

Fluctuating geom changes distances bywn particles in free-fall:

Plus (+) Polarization		
Cross (×) Polarization		

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors
- Cross-Correlation Method
 - Application to Stochastic Background
 - Application to Quasiperiodic Gravitational-Wave Signals
 - Tuning Search by Choice of Data Segments to Correlate
- Applications and Outlook
 - Directed Search for Young Neutron Stars
 - Accreting Neutron Stars in Low-Mass X-Ray Binaries
 - Summary

Gravitational Wave Generation

- Generated by moving/oscillating mass distribution
- Lowest multipole is quadrupole
- Classic example: orbiting binary system

(e.g., Binary Pulsar 1913+16

Observed energy loss agrees w/GW prediction)

GW Sources

Classification of GW Signals

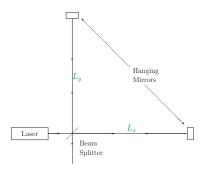
In LIGO band (10s-1000s of Hz), natural division of sources:

	modelled	unmodelled
long	Periodic Sources	Stochastic Background
long	(e.g., Rotating Neutron Star)	(Cosmological or Astrophysical)
short	Binary Coälescence	Bursts
SHOLL	(Black Holes, Neutron Stars)	(Supernova, BH Merger, etc.)

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method

- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate


Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Measuring GWs w/Laser Interferometry

Interferometry: Measure GW-induced distance changes Measure small change in

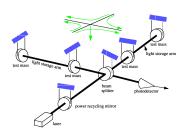
 $L_x - L_y = \sqrt{g_{11}L_0^2} - \sqrt{g_{22}L_0^2}$

$$L_{x}-L_{y} = \sqrt{\frac{g_{11}L_{0}^{2}-\sqrt{g_{22}L_{0}^{2}}}{\sqrt{(1+h_{11})L_{0}^{2}}-\sqrt{(1+h_{22})L_{0}^{2}}}}$$

$$\approx L_{0}\frac{h_{11}-h_{22}}{2} \sim L_{0}h_{+}$$

More gen,

$$(L_1 - L_2)/L_0 = \overset{\leftrightarrow}{h} : \overset{\leftrightarrow}{d}$$
 with "response tensor"


$$\stackrel{\leftrightarrow}{d} = \frac{\hat{n}_1 \otimes \hat{n}_1 - \hat{n}_2 \otimes \hat{n}_2}{2}$$

(also when $\hat{n}_1 \& \hat{n}_2$ not \perp)

Measuring GWs w/Laser Interferometry

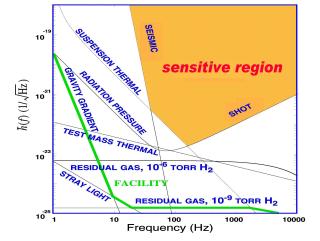
Interferometry: Measure GW-induced distance changesMeasure small change in

$$L_{x}-L_{y} = \sqrt{g_{11}L_{0}^{2}} - \sqrt{g_{22}L_{0}^{2}}$$

$$= \sqrt{(1+h_{11})L_{0}^{2}} - \sqrt{(1+h_{22})L_{0}^{2}}$$

$$\approx L_{0}\frac{h_{11}-h_{22}}{2} \sim L_{0}h_{+}$$

More gen,


$$(L_1 - L_2)/L_0 = \overset{\leftrightarrow}{h} : \overset{\leftrightarrow}{d}$$
 with "response tensor"

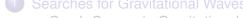
$$\overset{\leftrightarrow}{d} = \frac{\hat{n}_1 \otimes \hat{n}_1 - \hat{n}_2 \otimes \hat{n}_2}{2}$$

(also when $\hat{n}_1 \& \hat{n}_2$ not \perp)

Rogues' Gallery of Ground-Based Interferometers

LIGO Hanford (Wash.)

GEO-600 (Germany)



LIGO Livingston (La.)

Virgo (Italy)

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method

- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate

Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Noisy data from GW Detector:

$$x(t) = n(t) + h(t) = n(t) + \stackrel{\leftrightarrow}{h}(t) : \stackrel{\leftrightarrow}{d}$$

Correlate data btwn detectors (Fourier domain)

$$\langle \tilde{x}_1^*(f)\tilde{x}_2(f')\rangle = \langle \tilde{h}_1^*(f)\tilde{h}_2(f')\rangle = \overset{\leftrightarrow}{d}_1: \langle \overset{\leftrightarrow}{\tilde{h}}_1^*(f)\otimes \overset{\leftrightarrow}{\tilde{h}}_2(f')\rangle: \overset{\leftrightarrow}{d}_2$$

For stochastic backgrounds

$$\langle \tilde{h}_{1}^{*}(f)\tilde{h}_{2}(f')\rangle = \delta(f-f')\gamma_{12}(f)\frac{S_{\text{gw}}(f)}{2}$$

 $S_{gw}(f)$ encodes spectrum; $\gamma_{12}(f)$ encodes geometry

Detection Statistic

Optimally filtered cross-correlation statistic

$$Y = \int df \, \tilde{x}_1^*(f) \, Q(f) \, \tilde{x}_2(f)$$

 Filter encodes expected spectrum & spatial distribution (isotropic, pointlike, spherical harmonics...)

$$Q(f) \propto \frac{\gamma_{12}^*(f)S_{gw}^{exp}(f)}{S_{n1}(f)S_{n2}(f)}$$

 "Radiometer" search for ptlike srcs incl targeting Sco X-1: known sky location, unknown frequency
 Ballmer, CQG 23, S179 (2006); LSC, PRD 76, 082003 (2007)

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method

- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate

Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Gravitational Waves from Quasiperiodic Sources

- Sco X-1 is Low-Mass X-Ray Binary: accreting neutron star in orbit w/companion
- Rotating NS w/deformation emits nearly sinusoidal signal

$$\stackrel{\leftrightarrow}{h}(t) = h_0 \left[\frac{1 + \cos^2 \iota}{2} \cos \Phi(\tau(t)) \stackrel{\leftrightarrow}{e}_+ + \cos \iota \sin \Phi(\tau(t)) \stackrel{\leftrightarrow}{e}_{\times} \right]$$

- $\Phi(\tau)$: phase evolution in rest frame;
- $\tau(t)$: Doppler mod from detector motion (& binary orbit)
- Features of signal model missing from stoch search:
 - Doppler shift @ each detector: correlations peaked @ different freqs
 - Long-term coherence:
 can correlate data @ different times

Cross-Correlation of Continuous GW Signals

Cross-correlation of signal w/intrinsic frequency f₀:

$$\langle \tilde{\mathbf{x}}_{I}^{*}(f_{I}) \, \tilde{\mathbf{x}}_{J}(f_{J}) \rangle = \tilde{\mathbf{h}}_{I}^{*}(f_{I}) \, \tilde{\mathbf{h}}_{J}(f_{J}) = h_{0}^{2} \, \tilde{\mathcal{G}}_{IJ} \, \delta_{\Delta T}(f_{0} - f_{I} - \delta f_{I}) \, \delta_{\Delta T}(f_{0} - f_{J} - \delta f_{J})$$

- $\tilde{h}_l(f)$ is Short Fourier Transform, duration ΔT
- $\delta_{\Delta T}(f-f') = \int_{-\Delta T/2}^{\Delta T/2} dt \, e^{i2\pi(f-f')t}$
- \tilde{h}_l & \tilde{h}_J can be same or different times or detectors
- δf_l is relevant Doppler shift
- For given set of params, can add products of all SFT pairs

$$Y = \sum_{l,l} Q_{lJ} \tilde{x}_l^* (f_0 - \delta f_l) \tilde{x}_J (f_0 - \delta f_J) \qquad Q_{lJ} \propto \frac{\tilde{\mathcal{G}}_{lJ}^*}{S_{n,l}(f_0) S_{n,J}(f_0)}$$

Dhurandhar, Krishnan, Mukhopadhyay & JTW PRD 77, 082001 (2008)

Doppler Modulation in Cross-Correlation Searches

- Max Doppler shift from Earth's rotation: $\frac{|\vec{v}_{\oplus rot}|}{c} \lesssim 1.5 \times 10^{-6}$ Doppler shift at 2000 Hz is $\lesssim 0.003$ Hz.
- Max Doppler shift from Earth's orbit: $\frac{|\vec{v}_{\oplus \text{orb}}|}{c} \lesssim 1.0 \times 10^{-4}$ Doppler shift at 2000 Hz is $\lesssim 0.2$ Hz.
- Stochastic searches use FTs of e.g., 120 s duration, so

$$\delta f \approx 0.0083 \,\mathrm{Hz}$$

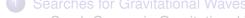
Cross-correlation between detectors uses same freq bin

Stochastic search combines fine bins into coarse bins of

$$\Delta f = 0.25 \,\mathrm{Hz}$$

Cross-corr power collected in single bin for most freqs

 Correlating detectors at different times, or with longer FTs means including Doppler effects


Computational Costs and Frequency Resolution

- If freq, sky pos etc known, can do most sensitive fully coherent search (correlate all data)
- If some params unknown, have to search over them
- Long coherent observation → fine resolution in freq etc
 → need too many templates → computationally impossible

e.g.
$$N_{\text{tmplts}} \sim \frac{1}{\Delta f} \frac{1}{\Delta \dot{f}} \frac{1}{\Delta \text{sky}} \sim T \cdot T^2 \cdot (fT)^2$$

 Most CW searches semi-coherent: deliberately limit coherent integration time & param space resolution to keep number of templates manageable

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method

- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate

Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Tuning the Cross-Correlation Search

- Computational considerations limit coherent time, i.e., possible time lag between correlated segments
- Detectable signal goes like

$$h_0 \propto N_{\rm pairs}^{-1/4} T_{\rm sft}^{-1/2}$$

 $(T_{\rm sft}$ is duration of fourier transformed data segment)

• If all data used, $N_{\rm pairs} \sim N_{\rm sft}^2$, so

$$h_0 \propto (N_{\rm sft} T_{\rm sft})^{-1/2}$$

like coherent search of duration $N_{sft}T_{sft}$

ullet If only simultaneous SFTs correlated, $N_{
m pairs} \sim N_{
m sft}$, so

$$h_0 \propto N_{\rm sft}^{-1/4} T_{\rm sft}^{-1/2}$$

like semi-coherent search w/ $N_{\rm sft}$ coherent segs of $T_{\rm sft}$ each

Can "tune" sensitivity vs comp time by choosing SFT pairs

Synchronous Cross-Correlation Search

	$X_1(t_0)$	$X_2(t_0)$	$X_1(t_1)$	$X_2(t_1)$	$X_1(t_2)$	$X_2(t_2)$	$X_1(t_3)$	$X_2(t_3)$
$x_1(t_0)$	N	Υ	N	N	N	N	N	N
$x_2(t_0)$	Υ	N	N	N	N	N	N	N
$x_1(t_1)$	N	N	N	Υ	N	N	N	N
$x_2(t_1)$	N	N	Υ	N	N	N	N	N
$x_1(t_2)$	N	N	N	N	N	Υ	N	N
$x_2(t_2)$	N	N	N	N	Υ	N	N	N
$x_1(t_3)$	N	N	N	N	N	N	N	Υ
$x_2(t_3)$	N	N	Ν	N	Ν	N	Υ	N

[&]quot;Stochastic-style": correlate data @ same time, diff detectors

Fully Coherent Search

	$x_1(t_0)$	$x_2(t_0)$	$x_1(t_1)$	$x_2(t_1)$	$x_1(t_2)$	$x_2(t_2)$	$x_1(t_3)$	$x_2(t_3)$
$x_1(t_0)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_2(t_0)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_1(t_1)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_2(t_1)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_1(t_2)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_2(t_2)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_1(t_3)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
$x_2(t_3)$	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ

Combine all SFT pairs; as with standard \mathcal{F} -statistic, quadratic combination of all SFTs

	$x_1(t_0)$	$x_2(t_0)$	$x_1(t_1)$	$x_2(t_1)$	$x_1(t_2)$	$x_2(t_2)$	$x_1(t_3)$	$x_2(t_3)$
$x_1(t_0)$	Υ	N	N	N	N	N	N	N
$\overline{x_2(t_0)}$	N	Υ	N	N	N	N	N	N
$X_1(t_1)$	N	N	Υ	N	N	N	N	N
$x_2(t_1)$	N	N	N	Y	N	N	N	N
$X_1(t_2)$	N	N	N	N	Υ	N	N	N
$X_2(t_2)$	N	N	N	N	N	Υ	N	N
$X_1(t_3)$	N	N	N	N	N	N	Υ	N
$x_2(t_3)$	N	N	Ν	N	N	N	N	Υ

Only consider "diagonal" auto-correlations

Quasiperiodic GW Signals
Choice of SFT Pairs for Correlation

Semi Coherent Search

	$X_1(t_0)$	$x_2(t_0)$	$X_1(t_1)$	$X_2(t_1)$	$X_1(t_2)$	$X_2(t_2)$	$X_1(t_3)$	$X_2(t_3)$
$x_1(t_0)$	Υ	Υ	Υ	Υ	N	N	N	N
$x_2(t_0)$	Υ	Υ	Υ	Υ	N	N	N	N
$X_1(t_1)$	Υ	Υ	Υ	Υ	N	N	N	N
$x_2(t_1)$	Υ	Υ	Υ	Υ	N	N	N	N
$x_1(t_2)$	N	N	N	N	Υ	Υ	Υ	Υ
$x_2(t_2)$	N	N	N	N	Υ	Υ	Υ	Υ
$x_1(t_3)$	N	N	N	N	Υ	Υ	Υ	Υ
$x_2(t_3)$	N	N	Ν	N	Υ	Υ	Υ	Υ

Coherently combine within epochs

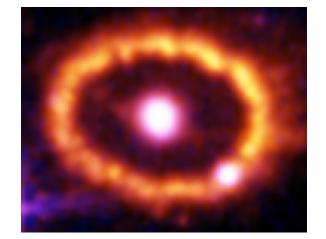
Lag-Limited Cross-Correlation Search

	$X_1(t_0)$	$X_2(t_0)$	$X_1(t_1)$	$X_2(t_1)$	$X_1(t_2)$	$X_2(t_2)$	$X_1(t_3)$	$X_2(t_3)$
$x_1(t_0)$	Υ	Υ	Υ	Υ	N	N	N	N
$x_2(t_0)$	Υ	Υ	Υ	Υ	N	N	N	N
$x_1(t_1)$	Υ	Υ	Υ	Υ	Υ	Υ	N	N
$x_2(t_1)$	Υ	Υ	Υ	Y	Υ	Υ	N	N
$x_1(t_2)$	N	N	Υ	Y	Υ	Υ	Υ	Υ
$x_2(t_2)$	N	N	Υ	Y	Υ	Υ	Υ	Υ
$x_1(t_3)$	N	N	N	N	Υ	Υ	Υ	Υ
$x_2(t_3)$	N	N	Ν	N	Υ	Υ	Υ	Υ

[&]quot;Sliding" semi-coherent search

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method


- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate

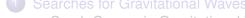
Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Supernova 1987A Remnant

Credit: NASA/ESA, P. Challis, R. Kirshner (Harvard-Smithsonian Center for Astrophysics) and B. Sugerman (STScI)

Searching for Young Neutron Stars


- Young (≤ 100 yr) NSs should be spinning rapidly LIGO/Virgo band 50 Hz $\lesssim f_{\rm GW} \lesssim 1500$ Hz
- Look in likely sky locations for NSs not seen as pulsars: SN1987A should have one; galactic ctr could have $\mathcal{O}(1)$
- Spinning down rapidly; inefficient to search over $f, \dot{f}, \ddot{f}, \dots$ Phase model: GW spindown $\propto f^5$; EM spindown $\propto f^{\approx 3}$

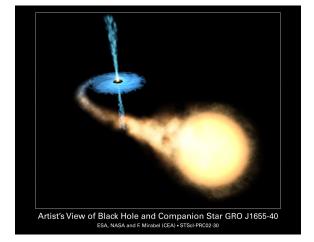
$$\frac{df}{d\tau} = Q_{\text{GW}} \left(\frac{f}{f_{\text{ref}}}\right)^5 + Q_{\text{EM}} \left(\frac{f}{f_{\text{ref}}}\right)^n$$

Search over f_0 , Q_{GW} , Q_{FM} , n

PhD thesis by Christine Chung (Uni Melbourne)

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method


- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate

Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Low-Mass X-Ray Binary

Compact object accreting mass from companion star

Searching for Neutron Stars in LMXBs

- LMXB: BH/NS/WD accreting mass from companion star
- Accretion spinup may be balanced by GW spindown [Bildsten *ApJL* **501**, L89 (1998)] \rightarrow no *f*
- Scorpius X-1: 1.4M_☉ NS w/0.4M_☉ companion unknown params are f_0 , $a \sin i$, orbital phase
- LSC searches for Sco X-1:
 - Coherent search w/6 hr of S2 data PRD 76, 082001 (2007)
 - Directed stochastic cross-corr ("radiometer") search w/simultaneous S4 H1 & L1 data *PRD* **76**, 082003 (2007)
- Can use improved cross-corr method to search including wider range of correlated segments

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Gravitational-Wave Observations & Detectors

Cross-Correlation Method

- Application to Stochastic Background
- Application to Quasiperiodic Gravitational-Wave Signals
- Tuning Search by Choice of Data Segments to Correlate

Applications and Outlook

- Directed Search for Young Neutron Stars
- Accreting Neutron Stars in Low-Mass X-Ray Binaries
- Summary

Cross-correlation method adapted to periodic GWs

- Tuning max time-lag between cross-correlated data allows tradeoff of sensitivity for computing time
- Can search for young NSs (e.g., SN1987A) (search over f_0 & braking model params)
- Can search for LMXBs (e.g., Sco X-1) (search over f_0 & binary orbit params)