
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990030-08-E 2001/04/20

Numerical Algorithms Library Specification
and Style Guide

Bruce Allen, Kent Blackburn, Jolien Creighton, Teviet Creighton, Sam
Finn, Albert Lazzarini and Alan Wiseman

Distribution of this draft:

LSC and LIGO

This is an internal working note of the
LIGO Laboratory and the

LIGO Scientific Collaboration.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145

Pasadena CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-7014

E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

RCS Id: lalspec.tex,v 1.10 2001/04/18 22:45:49 agw Exp — Processed with LATEX on 2001/04/20

LIGO-T990030

1 Table of Contents

Contents

1 Table of Contents 2

2 Introduction 3
2.1 The goal of the LAL software specification .3
2.2 The scope of the LAL specification .3
2.3 Applicability of LAL software . 4
2.4 How does the LAL fit into the LDAS? .4

3 LAL coding style 4
3.1 LAL namespace conventions .4

3.1.1 The rationale behind the namespace rules4
3.1.2 The namespace rules .4

3.2 Physical and numerical constants .6
3.3 Style for type declarations .7

4 LAL Data Types 7
4.1 Defining data types .7
4.2 ”Atomic” data types .8
4.3 Aggregate constructs of atomic data types .8

4.3.1 Vectors .8
4.3.2 Arrays .11
4.3.3 Sequences .11

4.3.3.1 The packing order of a VectorSequence or ArraySequence11
4.4 LAL structured data types .12

4.4.1 Time .12
4.4.1.1 Time stamps .12

4.4.2 Sequences in time .12
4.4.2.1 TimeSeries . 12

4.4.2.1.1 LALUnit data type13
4.4.2.2 SequenceOfTimeSeries (Not Implemented yet.) 14

4.4.2.2.1 The packing order ofSequenceOfTimeSeries . . 14
4.4.2.3 TimeVectorSeries . 15
4.4.2.4 TimeArraySeries . 15

4.4.3 Sequences in frequency .16
4.4.3.1 FrequencySeries . 16
4.4.3.2 SequenceOfFrequencySeries (Not implemented yet.) . 17
4.4.3.3 FrequencyVectorSeries 17
4.4.3.4 FrequencyArraySeries (Not yet implemented) 18

4.4.4 Series of n-tuples(Not implemented yet.) 19
4.4.5 TransferFunction . 19

4.4.5.1 Frequency domain(Not implemented yet.) 19

page 2 of 36

LIGO-T990030

4.4.5.2 Zero, poles and gain representation20
4.5 LALStatus .20

4.5.1 The LALstatusCode andstatusDescription fields 21
4.5.2 The LAL CVS Id string .21

5 LAL functions 22
5.1 The burning question .22
5.2 The rules for LAL functions .22

6 LAL code organization 26
6.1 The big picture: the LAL directory tree .26

6.1.1 Making LAL code modular .27
6.2 The finer picture: the format of LAL code .27

6.2.1 Header Files .27
6.2.2 Source Files .28
6.2.3 Component level tests .28

7 LAL code documentation 29
7.1 The requirements driving the documentation design29
7.2 LAL documentation rules .29
7.3 The organization of LAL documentation .30

7.3.1 Header file documentation .30
7.3.2 Module documentation .31
7.3.3 Component-level test documentation .32

8 Maintaining the LAL 32
8.1 Version control for the LAL .32
8.2 Numbering the LAL releases Numbering the LAL releases32
8.3 Validation of LAL code .33
8.4 Requesting changes in LAL .33

9 Development tools and software packages used with LAL 33
9.1 Compiling the LAL .33
9.2 Development tools: .34
9.3 Documentation tools: .34
9.4 Software packages .34

Appendix A: LAL Template Header File 35

Appendix B: LAL Template Source File 36

List of Tables

1 List of Applicable Documentation .5
2 LAL data types for algorithm software .9

page 3 of 36

LIGO-T990030

3 LAL data objects. .10
4 Reserved negative status codes .24

page 4 of 36

LIGO-T990030

2 Introduction

2.1 The goal of the LAL software specification

The LIGO Laboratory [LL] and the LIGO Scientific Collaboration [LSC] are developing the
LIGO/LSC Algorithm Library [LAL] for analyzing data from interferometric gravitational-wave
detectors. The LL and LSC wish to share this software with other projects and invite other (in-
ternational) groups to contribute to this library.The defining purpose of this document is to
establish a software specification that fosters widespread-use and collaborative-development
of a well-tested analysis library.The details in this specification flow naturally from this goal.

1. More programmers know C than C++; therefore, in order to maximize the number of users
and contributors, the LL Data Group decided to use ANSI standard C for the LAL. Similarly,
we don’t want contributors to have to climb multiple learning curves just to master the tools
necessary to write LAL code; therefore we specify a minimal list of development tools in
Section 9.

2. The output of one programmer’s routine is likely to be the input of another’s routine. To
make this exchange easy, we specify reusable data structures for input and output. (We also
require developers to use them whenever possible.) These are given in Section 4.

3. One programmer must be able to use, understand, test and debug another programmer’s
code; therefore we establish some coding conventions (Section 3), a uniform layout for the
source code (Sections 5 and 6), and the specifications for the documentation (Section 7). In
particular, we define the namespace conventions in Section 3, and we explain the details of
reporting errors in Section 5.

4. It is essential that users and developers know the pedigree of the routines; therefore we have
defined a version control system (CVS) for the library in Section 8.

5. Using a standard design for the software will (hopefully) make it easier to test routines by
comparing data analysis results from different groups.

6. Since this code project will grow and evolve, it impossible to foresee all the necessary code
requirements. Therefore, the LL and LSC will continue to jointly update and maintain this
specification. The rules for this procedure are given in Section 8.

7. In order to facilitate collaboration, the LSC Software Coordinator will ensure that the code
is publicly (and easily) available to users and developers.

2.2 The scope of the LAL specification

This document formally defines the LIGO/LSC Algorithm Library [LAL]. This is not a compre-
hensive document explaining how to write LAL functions, rather it lays out general rules for code
writing. Eventually, we may write a C++ specification for LAL; however, until we have such a
specification, code must be written in ANSI standard C.

page 5 of 36

LIGO-T990030

2.3 Applicability of LAL software

The LIGO Laboratory and the LSC will work to ensure that all developed hardware and software
systems support LAL. In turn,all participating groups will be required to perform scientific
analysis of LIGO data using LAL-compliant software. Although this requirement is quite strin-
gent, it is not intended to stifle exploratory development in less formal environments, nor is it
intended to interfere with detector diagnostic software being written for other purposes. However,
as an analysis moves toward the publication of scientific results, the need to validate the findings
requires that the software must also move toward the collaboration’s adopted software standard.

The requirement of using LAL compliant software for analysis will extend up to the LAL-
LDAS interface. In particular, the dynamically loaded shared object library functions that form the
search engines shall be LAL-compliant.

The LAL software shall be available in the public domain, subject only to rules in this docu-
ment.

2.4 How does the LAL fit into the LDAS?

LDAS is the analysis environment being developed by the LL and the LSC. It consists of a lay-
ered and highly modular architecture employing a steering language or scripting commands (e.g.
Tcl). The scripting language will execute compiled C++ code which will use MPI based parallel
computing to do the numerically intensive data analysis. [See http://www.ldas.ligo.caltech.edu and
Table 1 for detail information on LDAS.]

The current plan is to use procedural algorithms and functions (i.e., LAL routines written in
C) wrapped in C++ code to manipulate the data. These functions will be imported into the C++
code as a dynamically loaded (shared object) library. These dynamically loaded LAL functions
will actually perform the data analysis.

3 LAL coding style

3.1 LAL namespace conventions

3.1.1 The rationale behind the namespace rules

1. The naming convention should make it easier for someone (besides the author) to understand
the code.

2. The naming convention should help avoid internal (intra-LAL) name conflicts.

3. LAL will be used in conjunction with other libraries; therefore the naming convention should
help avoid conflicts with non-LAL software packages and system routines.

3.1.2 The namespace rules

1. Names combining multiple words must have subsequent words capitalized:theNewVari-
able , LALTheNewType. The names tend to be long enough as it is; therefore we do not

page 6 of 36

LIGO-T990030

Table 1: List of Applicable Documentation

Description Document ID
Data Format Specifications

LDAS White Paper LIGO-M970065
LDAS Design Requirements Document LIGO-T970159
LDAS Conceptual Design Document LIGO-T970160
LDAS Preliminary Design Document LIGO-T990001

LDAS System Software Specification for C, C++ and Java LIGO-T970211

Data Format Specifications
Specification of a Common Data Frame Format for

Interferometric Gravitational Wave Detectors LIGO-T971030
LIGO Lightweight Data Format Specification LIGO-T980091

LIGO Metadata, Event and Reduced Data Requirements LIGO-T980070
LIGO Metadata, Event and Reduced Data Requirements LIGO-T980070

LDAS Software Specifications
FrameAPI Baseline Requirements LIGO-T980011.

FrameAPI.tcl source code map – frameAPI.tcl on-line TclDoc
FrameAPI.tcl emergency procedures source

code map – frameEmProc.tcl non-line TclDoc
FrameAPI.tcl operator procedures source

code map – frameOpProcs.tcl on-line TclDoc
MetadataAPI Baseline Requirements LIGO-T980119

DataConditioningAPI Baseline Requirements LIGO-T990002

Non LIGO Documentation
Enough Rope to Shoot Yourself in the Foot:

Rules for C and C++ Programming Allen I.Holub, McGraw-Hill 1995

Links accessible via http://www.ldas.ligo.caltech.edu and
http://www.ldas.ligo.caltech.edu/LIGOweb/dcc/docs. Note that some of these documents are still
evolving.

page 7 of 36

LIGO-T990030

use the underscore between words in a name. [Macros are an exception to this rule. See
below.]

2. Variable names must begin with a lowercase letter, e.g.myVariable .

3. Function names must begin the prefixLAL. The remainder of the name should also start
with a capital letter, e.g.LALMyFunction() . The LAL prefix will help keep the LAL
namespace from conflicting with other library namespaces. As LAL grows, there is also
a risk of stepping on our own namespace; therefore don’t use nondescript function names,
such as ”LALCorrelate() ” or ” LALFilter() ”. Use more specific names, e.g. attach
the package name or the header-file name:LALInspiralFilter() . [Note: Requiring
theLAL prefix is a significant change from earlier versions (7 and earlier) of this document.
This required substantial modification of existing code, but it was necessary.]

4. Custom data structures (i.e. structures not specified in this document) must be given names
that try to avoid namespace conflicts. The name should start with an Uppercase letter, e.g.
LALREAL8MyDataType . We suggest using the prefixLAL to avoid collision with other
libraries; however this is not a requirement. Another way to avoid conflicts with other pack-
ages is to build the name around the Atomic datatype, e.g.REAL8MyPackageVector .
The discussion about non-descript function names applies here as well. Also, names without
theLAL prefix, can step on system names; therefore don’t use words like time, date, window,
etc.

5. Source-code file names (modules, headers and test programs) should also begin with a capital
letter, e.g.MyModule.c andMyHeader.h .

6. Acronyms in the name: When the convention calls for an acronym to start with lower case,
the entire acronym is written in lower case (e.g.INT4 gpsSeconds). When the conven-
tion calls for the acronym to start with an upper case letter, the entire acronym is capitalized
(e.g. tagLIGOTimeGPS). We should never see gPS or Gps.

7. Macros (#define) must be all UPPERCASE. Compound macro names will use under-
scores if clarity requires:THE NEXTMACRO. [This is only exception to the no-underscore
rule.]

8. Error codes (statusCode andstatusDescription) have a special name convention.
See Section 4.5.

9. Package names should be all lowercase.

3.2 Physical and numerical constants
Physical constants will be stored in the header fileLALConstants.h . This is being distributed
with the LAL library releases. All constants are declared according to the following style:

#define LAL_CONSTANTNAME_STANDARD value /* units or description */

Examples fromLALConstants.h :

page 8 of 36

LIGO-T990030

#define LAL_PI 3.141592653589793238462643382795029L /* pi */
#define LAL_RSUN_SI 6.960e08 /*solar radius, m */
#define LAL_SOLMASS_SI 1.9892e30 /* solar mass,kg */

All constants have the reserved prefixLAL . The constants have a suffix to denote the system
of units in which they are defined. If there are constants that should be there, but are not, contact
the LSC Software Coordinator.

3.3 Style for type declarations

One variable definition per type declaration is preferred; however a few closely related variables
can be declared on the same line. This allows ease of reading and maintenance. It allows each line
to have a single comment that pertains to the declaration:

TYPE variableName; /* helpful or useful comment */
INT4 length; /* number of elements */
INT4 vectorLength; /* length of each vector in sequence */
REAL4 *a,*b,*c; /* temporary pointer variables */

4 LAL Data Types

In order to facilitate sharing of data between LAL routines and passing data form LAL to non-LAL
library functions (e.g. the rest of LDAS) we define a number of generic data structures. You are
required to use these structures whenever possible in your code. We recognize that we can’t plan
for every contingency, so, if you find that there are structures that are not included, but would have
widespread use if they were available, please tell the LSC Software Coordinator.

4.1 Defining data types

Structures shall be defined according to the following template:

typedef struct
tag<Name>
{

...;

...;
}
<Name>;

Where<Name>is replaced by the struct’s name. The tag is optional. (Writing the typedef and
the tag-Name in column zero is a GNU convention, and not a LAL requirement; however, much of
the code in the library adheres to this convention.)

page 9 of 36

LIGO-T990030

4.2 ”Atomic” data types

To permit LAL code to be transported to various hardware platforms (e.g., 32, 64 or 128 bit ma-
chines), we will adopt the convention described in the LIGO-VIRGO frame specification. To each
C/C++ data type there will be assigned a CAPITALIZED LAL data type . These will be defined
in LALAtomicDatatypes.h . See Table 2. [The structuresCOMPLEX8andCOMPLEX16are
also included in our list of atomic data types.]

typedef struct tagCOMPLEX8Vector
{

UINT4 length;
COMPLEX8 *data;

}
COMPLEX8Vector;

typedef struct tagCOMPLEX16Vector
{

UINT4 length;
COMPLEX16 *data;

}
COMPLEX16Vector;

The important feature of these data types is that they are of specified length, e.g.UINT4 shall
be 4 bytes in length, period. This is enforced by the macros inLALAtomicDatatypes.h .

4.3 Aggregate constructs of atomic data types

This list is of aggregate constructs of atomic data types may be augmented in the future. These
definitions will be included inLALDatatypes.h . Indexing convention for multi-dimensional
arrays will follow the C convention of row-major ordering. Table 3 lists the objects defined below.

4.3.1 Vectors

A Vector is a one-dimensional object that corresponds to a collection of length = M data elements.

typedef struct
tag<datatype>Vector
{

UINT4 length; /* number of element in vector */
<datatype> *data; /* pointer to data of type <datatype> */

}
<datatype>Vector;

Here and elsewhere<datatype> can be any of the types in Table 3, footnote a. Structures
defined with a<...> prefix will be enumerated inLALDatatypes.h for each corresponding data
type that is needed. For example, the following vector data types will appear:CHARVector ,
INT2Vector , COMPLEX8Vector, etc. The need for explicit typing follows because C, unlike
C++, does not support template data type definitions. Alternative methods usingenum statements
are possible; however, these, unlike the “hard-wired” type casting described above provide ex-
tensibility at the cost of case checking (if statements) that need to be embedded in the resultant
code.

page 10 of 36

LIGO-T990030

Table 2: LAL data types for algorithm software
Data Class C/C++ Data Type Length (Bytes) Comments

CHAR char 1 Character (signed or unsigned
is machine dependent)

UCHAR unsigned char 1 Unsigned character
BOOLEAN unsigned char 1 Unsigned character

INT2 short or int 1 Signed integer
Range (−215, 215 − 1)

UINT2 unsigned short 2 Unsigned integer
or unsigned int

INT4 int 4 Signed integer
or long Range (−231, 231 − 1)

UINT4 unsigned int 4 Unsigned integer
or unsigned long

INT8 long 8 Signed integer
or longlong Range (−263, 263 − 1)

UINT8 unsigned long or 8 Unsigned integer
unsigned longlong

REAL4 float 4 IEEE-defined single precision
floating point number

REAL8 double 8 IEEE-defined double precision
floating point number

Composite Data Types (structures)
COMPLEX8 Pair of REAL4 8 Complex number, stored as pair

of floats (real,imaginary)
COMPLEX16 Pair of REAL8 16 Complex number, stored as pair

of doubles (real,imaginary)

page 11 of 36

LIGO-T990030

Table 3: LAL data objects.

Data Class LAL Names Comments

4.2 Atomic – See Table 2

4.3 Aggregates
Vectors <datatype>Vector Aggregates capture
Array <datatype>Array only numerical data

<datatype>Sequence for computation
Sequences <datatype>VectorSequence (e.g. bytes): no

<datatype>ArraySequence units or physical
information is
provided at
this level

4.4 Structured
Time LIGOTimeGPS struct identifying

GPS time. Physical units
or dimensions are
encapsulated in
the structure

<datatype>TimeSeries Example: time series,
<datatype>FrequencySeries spectra, etc.
<datatype>SequenceOfTimeSeries Example: two
<datatype>SequenceOfFrequencySeries polarizations of a

a gravitational wave
Series <datatype>TimeVectorSeries Example: time series

<datatype>FrequencyVectorSeries of a vector quantity
<datatype>TimeArraySeries Example: time series
<datatype>FrequencyArraySeries of a matrix quantity
<datatype>TableSeries Example: time series

for a group of objects
which are represented
by a table

<datatype>FTransferFunction List of (f, y.z) for H[f]
(y, z) corresponds to

Transfer (M,φ) or (Re,Im) of
Functions H[f]

<datatype>ZPGFilter Zero-Pole-Gain
representation forH[z]

Relevant section numbers are shown in table headings. Initially<datatype> will be taken by
default to be Only the from the following list:CHAR, UCHAR, REAL4, REAL8, COMPLEX8,
COMPLEX16, INT2 , INT4 , INT8 , UINT2 , UINT4 , UINT8 . Additional types may be added
when shown to be needed.

page 12 of 36

LIGO-T990030

4.3.2 Arrays

Array is adim = ndim (>1) object that corresponds to a collection oflength = ldim1*
ldim2*...*ldimNdim data elements of the same data type, taken from list in caption of Table
3.

typedef struct
tagINT2Array
{

UINT4Vector *dimLength;
INT2 *data;

}
INT2Array;

The discussion at the end of Section 4.3.1.

4.3.3 Sequences

A sequence (or a series) is a list oflength = N compound objects. The compound objects may
be either vectors or arrays. Note that a sequence of scalars is represented by the vector object in
Section 4.3.1 above. All elements of the sequence must have the same identical structure. All data
elements are of the same data type, taken from the caption of Table 3.

typedef struct
tag<datatype>VectorSequence
{

UINT4 length; /* number of vectors in the sequence */
UINT4 vectorLength; /* length of each vector in the sequence */
<datatype> *data; /* pointer to data of type <datatype> */

}
<datatype>VectorSequence;

typedef struct
tag<datatype>ArraySequence
{

UINT4 length; /* number of arrays in sequence */
UINT4 arrayDim; /* dimension of each array in sequence */
UINT4Vector *dimLength; /* length of each dimension of array */
<datatype> *data; /* pointer to data of type <datatype> */

}
<datatype>ArraySequence;

The discussion at the end of Section 4.3.1.

4.3.3.1 The packing order of a VectorSequence or ArraySequence
A vector sequencev stores a sequence ofM=v->length vectors{~v(0), ~v(1), . . . , ~v(M−1)}, where
each vector hasN=v->vectorLength components~v(j) = (v

(j)
0 , . . . , v

(j)
N−1). The components

page 13 of 36

LIGO-T990030

are stored in a flattened arrayv->data in such a way that one steps first over the components of
each vector, and then over the vectors in the sequence:

v

(0)
0
...

v
(0)
N−1

 ,

v

(1)
0
...

v
(1)
N−1

 , . . . ,

v

(M−1)
0

...
v

(M−1)
N−1

 =⇒

{
v

(0)
0 , . . . , v

(0)
N−1, v

(1)
0 , . . . , v

(1)
N−1, . . . , v

(M−1)
0 , . . . , v

(M−1)
N−1

}
. (1)

That is, the componentv(j)
i is stored inv->data[j ×N + i] .

In Section 4.4.2.2.1 we define a structure where the packing is in the other order.

4.4 LAL structured data types

This list of time structures will be augmented as the need arises. The definitions are inLAL-
Datatypes.h .

4.4.1 Time

4.4.1.1 Time stamps
There is a specific data structure to store GPS time. To indicate this, the time structure will

have “GPS” (or gps) in its name.

typedef struct
tagLIGOTimeGPS
{

INT4 gpsSeconds;
INT4 gpsNanoSeconds;

}
LIGOTimeGPS;

Multiple time stamps (e.g., for a vector of strains, each coming from an instrument in a different
geographical location) can be accommodated as a C array of type LIGOTimeGPS:

LIGOTimeGPS gpsTimeList[10]; /* a list of 10 LIGOTimeGPS structures */

4.4.2 Sequences in time

4.4.2.1 TimeSeries
The structureTimeSeries is used to represent a sequence of samples taken at uniformly

spaced intervals of time. ATimeSeries object has the following attributes:
• name of series
• epoch - time at which the earliest sample in the series was acquired
• deltaT - offset between samples (reciprocal of sample rate).(Time offset units will be

seconds.)
• units of values recorded in samples
• thedata is stored in a<datatype>Vector structure. This structure contains:
• the number of elements in the sequencedata->length

page 14 of 36

LIGO-T990030

• the data itself is indata->data[]

typedef struct
tag<datatype>TimeSeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* epoch of first series sample */
REAL8 deltaT; /* sample spacing in time */
REAL8 f0; /* base frequency, !=0 if

heterodyned series */
LALUnit sampleUnits; /* units for sampled quantity */
<datatype>Sequence *data; /* the data */

}
<datatype>TimeSeries;

4.4.2.1.1 Thename[] and LALUnit field in structured data types
Thename field will be an array at mostLALNameLength characters long.LALNameLength
will be set in LALDatatypes.h . Currently, the value is set to 64, although we could make
change it. In previous versions (7 and earlier) of this documentname was aCHAR*, and it didn’t
specify what form thename should take. This made it cumbersome to write generic routines that
freed the memory. [This method of handling thename is the same as much of the rest of LDAS.]

The underlying purpose of LAL is to write routines that take as input a LAL data structure and
give as output another LAL data structure. Many of the LAL structures carry a “unit” field, and
many LAL functions will generate output in which the units are different than the input (e.g. a
Fourier Transform will multiply the units by “seconds”). The output must give the correct units for
data. In order to facilitate this, LAL use the following Unit field:

enum
{

LALUnitIndexMeter,
LALUnitIndexKiloGram,
LALUnitIndexSecond,
LALUnitIndexAmpere,
LALUnitIndexKelvin,
LALUnitIndexStrain,
LALUnitIndexADCCount,
LALNumUnits

};

typedef struct
tagLALUnit
{

INT2 powerOfTen;
INT2 unitNumerator[LALNumUnits];
UINT2 unitDenominatorMinusOne[LALNumUnits];

}
LALUnit;

page 15 of 36

LIGO-T990030

4.4.2.2 SequenceOfTimeSeries (Not Implemented yet.)
The structureSequenceOfTimeSeries is used to represent a sequence of time series, each

of which starts at the same time, e.g. the two time-series representing the two polarizations of
gravitational wave. ASequenceOfTimeSeries object has the following attributes:
• name of series. See Section 4.4.2.1.1.
• time ofepoch - time at which the earliest sample in the series was acquired
• deltaT offset between samples (reciprocal of sample rate).(time offset units will be sec-

onds).(Time offset units will be seconds.)
• units of values recorded in samples. See Section 4.4.2.1.1.
• the data is stored in a<datatype>VectorSequence structure. This structure con-

tains:

– the length of the sequence (i.e. the number of series) is indata->length
– the number of elements in each time seriesdata->vectorLength
– the data it self indata->data[]

Note: The structureSequenceOfTimeSeries is similar to theTimeVectorSeries struc-
ture. The distinction is in the order of the packing in*data . See Sections 4.4.2.2.1.

typedef struct
tag<datatype>SequenceOfTimeSeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* epoch of first series sample */
REAL8 deltaT; /* sample spacing in time */
REAL8 f0; /* base frequency, !=0 if

heterodyned series */
LALUnit sampleUnits; /* units for sampled quantity */
<datatype>VectorSequence *data; /* the data */

}
<datatype>TimeSeries;

4.4.2.2.1 The packing order ofSequenceOfTimeSeries
As an example of how the packing goes, consider two time series s0[t] and s1[t]:

data->length = 2 ; /* number of series */
data->vectorLength = 1024 ; /* number of elements in each series */

data->data[0] = s0[0] ;
data->data[1] = s0[1] ;

...
data->data[1023] = s0[1023] ;

data->data[1024] = s1[0] ;
data->data[1025] = s1[1] ;

...
data->data[2047] = s1[1023] ;

page 16 of 36

LIGO-T990030

4.4.2.3 TimeVectorSeries
The structureTimeVectorSeries is used to represent a sequence of vectors taken at uni-

formly spaced intervals of time. ATimeVectorSeries object has the following attributes:
• name of series. See Section 4.4.2.1.1.
• epoch - time at which the earliest sample in the series was acquired;
• deltaT offset between samples (reciprocal of sample rate). (Time offset units will be sec-

onds.)
• units of values recorded in samples. See Section 4.4.2.1.1.
• the data is stored in a<datatype>VectorSequence structure. This structure con-

tains:
– The number of times when data is taken is indata->length . This the total num-

ber of vectors. All the elements of each vector are evaluated at the same time in this
structure.

– The number of elements measure at each time is indata->vectorLength

– The actual data values are stored indata->data[] .

Note: The packing ofTimeVectorSeries is described in Section 4.3.3.1 [Compare Section
4.4.2.2.1].

typedef struct
tag<datatype>TimeVectorSeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* time of first elements in

vector series */
REAL8 deltaT; /* sample spacing in time --

same for all elements */
REAL8 f0; /* base frequency !=0 if

heterodyned series */
LALUnit sampleUnits; /* units of sampled quantities */
<datatype>VectorSequence *data; /* the data */

}
<datatype>TimeVectorSeries;

4.4.2.4 TimeArraySeries
The structureTimeArraySeries is used to represent a sequence of arrays taken at uni-

formly spaced intervals of time. ATimeArraySeries object has the following attributes:
• name of series. See Section 4.4.2.1.1.
• epoch - time at which the earliest sample in the series was acquired;
• deltaT - offset between samples (reciprocal of sample rate). (Time offset units will be sec-

onds.)
• units of values recorded in samples. See Section 4.4.2.1.1.
• the data is stored in a<datatype>ArraySequence structure. This structure contains:

– The number of time samples is stored indata->length This is the number of arrays.

– The dimension of each array is stored indata->arrayDim

page 17 of 36

LIGO-T990030

– The length of each dimension of the array indata->dimLength [Note: all the
values of each array are taken at same time.]

– The data is stored indata->data[]

Note: The packing ofTimeVectorSeries is described in Section 4.3.3.1 [Compare Section
4.4.2.2.1]

typedef struct
tag<datatype>TimeArraySeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* time of first elements in

vector series */
REAL8 deltaT; /* sample spacing in time --

same for all elements */
REAL8 f0; /* base frequency !=0 if

heterodyned series */
LALUnit sampleUnits; /* units of sampled quantities */
<datatype>ArraySequence *data; /* the data */

}
<datatype>TimeArraySeries;

4.4.3 Sequences in frequency

4.4.3.1 FrequencySeries
The structureFrequencySeries is used to represent result of a Fourier transformation on

aTimeSeries object. It may have both negative and positive frequency components, depending
on the value of the starting frequency parameter. AFrequencySeries object has the following
attributes:
• name of series. See Section 4.4.2.1.1.
• epoch - time at which the earliest sample in the [pre-transformed] data was acquired;
• deltaF offset between samples.(Frequency units will be in Hertz.)
• first frequency in series.
• The series spans the interval[f0,f0+deltaF,....,f0+(N-1)*deltaF]
• units of values recorded in samples. See Section 4.4.2.1.1.
• frequency vector sequence of data
• the data is stored in a<datatype>Vector structure. This structure contains:

– The number elements in the series is stored indata->length
– The data itself is indata->data[]

typedef struct
tag<datatype>FrequencySeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* time value of first array element */
REAL8 f0; /* first frequency in sample */
REAL8 deltaF; /* sample spacing in time */
LALUnit sampleUnits; /* units for sampled quantity */
<datatype>Sequence *data; /* the data */

}
<datatype>FrequencySeries;

page 18 of 36

LIGO-T990030

FrequencySeries can contain any of the following types of spectra:

• two-sided frequency series, real or complex (according to vector data type declaration)
• one-sided frequency series
• power-spectrum (one-sided real frequency series)

4.4.3.2 SequenceOfFrequencySeries (Not implemented yet.)
The structure SequenceOfFrequencySeries is used to represent result of a Fourier transforma-

tion on aSequenceOfTimeSeries object. It may have both negative and positive frequency
components, depending on the value of the starting frequency parameter. ASequenceOfFre-
quencySeries object has the following attributes:
• name of series. See Section 4.4.2.1.1.
• time of epoch - time at which the earliest sample in the [pre-transformed] data was acquired
• first frequency in series
• deltaF offset between samples.(Frequency units will be in Hertz.) The series spans the

interval[f0,f0+deltaF,....,f0+(N-1)*deltaF]
• units of values recorded in samples. See Section 4.4.2.1.1
• the data is stored in a<datatype>VectorSequence structure. This structure contains:

– the length of the sequence (i.e. the number of series) is indata->length
– the number of elements in each time seriesdata->vectorLength

Note: The structureSequenceOfFrequencySeries is similar to theFrequencyVec-
torSeries structure. The distinction is in the order of the packing in*data . See Section
4.4.2.2.1.

typedef struct
tag<datatype>SequenceOfFrequencySeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* epoch of first series sample */
REAL8 f0; /* first frequency in sample */
REAL8 deltaF; /* sample spacing in time */
LALUnit sampleUnits; /* units for sampled quantity */
<datatype>VectorSequence *data; /* the data */

}
<datatype>TimeSeries;

4.4.3.3 FrequencyVectorSeries
The structureFrequencyVectorSeries is used to represent result of a Fourier transfor-

mation on a TimeVectorSeries object. It may have both negative and positive frequency compo-
nents, depending on the value of the starting frequency parameter. AFrequencyVectorSeries
object has the following attributes:
• name of series. See Section 4.4.2.1.1.
• epoch - time at which the earliest sample in the [pre-transformed] data was acquired;
• first frequency in series.
• deltaF - offset between samples.(Frequency units will be in Hertz.) The series spans

the interval[f0,f0+deltaF,....,f0+(N-1)*deltaF]

page 19 of 36

LIGO-T990030

• units of values recorded in samples. See Section 4.4.2.1.1.
• the data is stored in a<datatype>VectorSequence structure. This structure contains:

– The number of elements measured at each frequency is indata->vectorLength .
– The number of frequencies where data is taken is indata->length .
– The actual data values are stored indata->data[]

Note: The structureSequenceOfFrequencySeries is similar to theFrequencyVec-
torSeries structure. The distinction is in the order of the packing in*data . See Section
4.4.2.2.1.

typedef struct
tag<datatype>SequenceOfFrequencySeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* epoch of first series sample */
REAL8 f0; /* first frequency in sample */
REAL8 deltaF; /* sample spacing in time */
LALUnit sampleUnits; /* units for sampled quantity */
<datatype>FrequencyVectorSeries *data; /* the data */

}
<datatype>TimeSeries;

4.4.3.4 FrequencyArraySeries (Not yet implemented)
The structure FrequencyArraySeries is used to represent result of a Fourier transformation on

a TimeArraySeries object. It may have both negative and positive frequency components,
depend- ing on the value of the starting frequency parameter. AFrequencyArraySeries
object has the following attributes:
• name of series. See Section 4.4.2.1.1.
• epoch - time at which the earliest sample in the [pre-transformed] data was acquired;
• first frequency in series.
• deltaF offset between samples.(Frequency units will be in Hertz.) The series spans the

interval[f0,f0+deltaF,....,f0+(N-1)*deltaF]
• units of values recorded in samples. See Section 4.4.2.1.1.
• the data is stored in a<datatype>ArraySequence structure. This structure contains:

– The number of frequency samples is stored indata->length
– The dimension of each array is stored indata->arrayDim
– The length of each dimension of the array indata->dimLength [Note all the values

in each array are evaluated at a single frequency.]
– The data is stored indata->data[]

typedef struct
tag<datatype>FrequencyArraySeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* epoch of first series sample */
REAL8 f0; /* first frequency in sample */
REAL8 deltaF; /* sample spacing in time */
LALUnit sampleUnits; /* units for sampled quantity */
<datatype>ArraySequence *data; /* the data */

}
<datatype>FrequencyArraySeries;

page 20 of 36

LIGO-T990030

4.4.4 Series of n-tuples (Not implemented yet.)

The structure TableSeries is used to represent ordered n-tuple data for which, for example, sam-
pling rate is not a fixed value. TableSeries would be used to represent calibration data taken at
logarithmically spaced frequency intervals. A TableSeries object has the following attributes:

• name of series. See Section 4.4.2.1.1.

• time of epoch - time at which the original data which were transformed were acquired;

• number of samples in object, N (Hidden in Vector structure)

• number of elements per sample - length of each element (Hidden in Vector structure)

• units of values recorded in samples. See Section 4.4.2.1.1.

• vector sequence table of data

typedef struct
tag<datatype>TableSeries
{

CHAR name[LALNameLength]; /* user assigned name */
LIGOTimeGPS epoch; /* time value of first array element */
LALUnits *sampleUnits; /* vector with units for sampled quantities */
<datatype>VectorSequence *data; /* the n-tuple data */

}
<datatype>TableSeries;

4.4.5 TransferFunction

4.4.5.1 Frequency domain (Not implemented yet.)
The structureFTransferFunction is used to representH[s]:

• name of transform. See Section 4.4.2.1.1.

• list of frequencies

• list of magnitude, phase, or

• list of real, imaginary

enum {XferMag, XferXY} XferType; /* R*exp[i*phi] vs. x+iy representation for Xfer */

typedef struct
tag<datatype>FTransferFunction
{

XferType XferRepresentation; /* Bode representation for real-imaginary */
CHAR name[LALNameLength]; /* user assigned name */
CHARVector *HNames; /* e.g., "f_Hz, H_mag, H_phi_radian\n" */
<datatype>VectorSeries *hData; /* the H[s] as 3-tuples */

}
<datatype>FTransferFunction;

page 21 of 36

LIGO-T990030

4.4.5.2 Zero, poles and gain representation
The structureZPGFilter is used to represent a transfer functions as a list of zeroes, poles,

and a gain.

• name of transform. See Section 4.4.2.1.1.

• gain, G (complex)

• poles, pk (complex)

• zeroes, zk (complex)

typedef struct
tagCOMPLEX8ZPGFilter
{

CHAR name[LALNameLength];
REAL8 deltaT;
COMPLEX8Vector *zeros;
COMPLEX8Vector *poles;
COMPLEX8 gain;

}
COMPLEX8ZPGFilter;

typedef struct
tagCOMPLEX16ZPGFilter
{

CHAR name[LALNameLength];
REAL8 deltaT;
COMPLEX16Vector *zeros;
COMPLEX16Vector *poles;
COMPLEX16 gain;

}
COMPLEX16ZPGFilter;

4.5 LALStatus

TheLALStatus structure is passed to a function to report success or failure.

typedef struct
tagLALStatus
{

INT4 statusCode;
const CHAR *statusDescription;
volatile const CHAR *Id;
const CHAR *function;
const CHAR *file;
INT4 line;
struct tagLALStatus *statusPtr;
INT4 level;

}
LALStatus;

page 22 of 36

LIGO-T990030

4.5.1 The LAL statusCode and statusDescription fields

The symbolic values must be provided in the header file, and they must be auto-extracted to appear
in the documentation. (statusCode = 0 for successful termination.)

/* the values and names of statusCode for a header file CLR.h */
/* <lalErrTable file="CLRHErrorTable"> */
#define CLRH_ENULL 1
#define CLRH_ESIZE 2
#define CLRH_ESZMM 4

#define CLRH_MSGENULL "Null pointer"
#define CLRH_MSGESIZE "Invalid input size"
#define CLRH_MSGESZMM "Size mismatch"
/* </lalErrTable> */

Furthermore, using the naming convention illustrated here is required. ThestatusCode ‘s
(error codes) must begin with the header file name (converted to upper case with a trailing H) and
are appended withE<name of error> (e.g. MYHEADERHEDIVZERO). The corresponding
statusDescripiton ’s (error messages) are the same except they are appended withMSGE<name
of error> (e.g. MYHEADERHMSGEDIVZERO). The text string in the message should be a
brief description of what went wrong.

Note: The leading comment line with the<lalErrTable file ... and the trailing com-
ment line with</lalErrTable> are necessary commands to extract this information – in tab-
ular form – to the documentation.

4.5.2 The LAL CVS Id string

In each source code file (.h and.c) the version control “Id” string will appear twice. [See, e.g.,
the example header file in Appendix A.] In the author-version block at the top of the file, the string
Id will be converted by the CVS to something like:
$Id: filename,v 1.1 2001/03/11 00:12:51 jolien Exp $
Also in each file we assign the Id string to string constant. This is done in all files with the macro
NRCSID() . When you first writeMyFile.c , you must make the assignment
NRCSID(MYFILEC, "Id");
The CVS will convert this to something like
NRCSID(MYFILEC, "$Id: MyFile.c,v 1.1 2001/03/11 00:12:51 jolien Exp
$");
Of course you should useMYFILEH in the.h files.

The CVS Id string contains the file name, revision number, date, author, state identifier [release,
alpha, etc.] and locker (if locked). Locker contains the loginID of the user (if any) who had locked
the code for the purpose of making revisions at the time the present version was exported. [The
only difference between requiring the CVS “Id” string and the CVS “Header” string is that the
Header string also gives the absolute path to the file.]

page 23 of 36

LIGO-T990030

5 LAL functions

5.1 The burning question

Do all the routines that I write really have to obey all the rules for LAL functions? Answer: If
your function is visible in the library, it must obey all the rules given below. However, many
of the requirements below pertain to the interface between LAL functions and the outside world.
Inside a given module you may use static functions (i.e. functions that are not visible in the
library) that don’t jump through all these hoops. Allowing this flexibility is not only friendly,
it is computationally sound. Many of the LAL function requirements are time consuming, e.g.
allocating the status structure every time you call a LAL function. If we required this to be done
every time a simple arithmetic function is called in a loop, the code would take forever to execute.
We could require that the arithmetic code be written in-line, and avoid the function call. However
this discourages programmers from writing modular code that is easy to maintain.

Don’t abuse this flexibility. This is not a license to write code that doesn’t conform to the
specification, and then dress it up in a wrapper that presents the correct appearance. The Software
Coordinator is watching!

5.2 The rules for LAL functions

The following are guidelines for writing analysis functions for LIGO data. The general style should
be consistent with the style specification LIGO-T970211. In cases where what is described below
differs from T970211, the present document takes precedence.

Functions written according to these guidelines will be simpler to verify, maintain and incorpo-
rate into general analysis systems. In the following guidelines, the prototypical analysis function
is referred to asLALFunction() .

1. LALFunction() is of type void and shall have a maximum of four arguments:

void
LALFunction(LALStatus *status,

LALFunctionOutStruct *output,
LALFunctionInStruct *input,
LALFunctionParamStruct *params

);

The first argument is a pointer to a status structure (See Section 4.5.). This argument is
required for all LAL functions, period. The remaining three arguments are optional.

The second and third arguments are pointers to an output structure and an input structure
respectively. Use the LAL datatypes whenever possible for these structures!

The fourth argument is a parameter structure which can be used to pass other types of data,
including re-entrant behavior information, to the function. Code developers are required to
use LAL data types (described above) where possible within the parameter structure.

page 24 of 36

LIGO-T990030

Explanation: This makes it easier to extend or to add extra functionality to procedures.
When additional arguments are needed they can be added as members of the input, output or
parameter structures without modifying any existing code that callsLALFunction() .

Admonition: There is a certain amount of ambiguity about what is an input, an output,
or a parameter for a function. When you modify a function, don’t cheat and try to slip
something into parameter block that is clearly an input or output. [The software coordinator
is watching!]

2. LALFunction() shall return control to the routine that called it.The status structure [Sec-
tion 4.5] is used to report the completion status of the function when it returns.

The statusCode must be checked – and the result acted upon – after returning from
each function call.

If LALFunction() completes successfully,statusCode should be set to zero. Upon
abnormal termination ofLALFunction() , statusCode must be assigned a non-zero
value. Values forstatusCode must be documented and assigned symbolic names inLAL-
Function.h . statusDescription is a pointer to a static character string also defined
in LALFunction.h . This string should provide a brief summary of the problem. A spe-
cific syntax and naming convention for thestatusCode and thestatusDescription
is given in Section 4.5. *Id is a static character string assigned inLALFunction() and
defined inLALFunction.h that contains CVS information. The fieldfunction con-
tains the name of the function where the error occurred.line contains the line number in
module where the error occurred. The fieldfile contains the name of the module where
the error occurred.

The status structure definition is recursive to permit the status to be returned from various
levels of nested function calls (i.e., functions called within functions, which are called within
functions,...).level keeps track of how many levels deep the problem actually occurred.

Table 4 shows the negative values for thestatusCode that have been reserved for some
generic failures:

Explanation: If functions always return, the program flow is controllable at the highest level.
The status code and description allows the top level to identify and resolve possible prob-
lems.

3. Direct calls tomalloc() , free() , calloc() andrealloc() are not allowed.

They are replaced by functionsLALMalloc() , LALFree() , LALCalloc() , LALRe-
alloc() . (See fileLALMalloc.h in the LAL distribution. The librarian discourages the
use ofLALRealloc()).

Explanation: These simplify tracking memory usage and memory leak identification.

4. Upon return from LALMalloc() (or the other memory allocation routines), the call-
ing function must check for aNULLreturn.

Explanation: Non needed: it is simply good programming practice.

page 25 of 36

LIGO-T990030

Code Message Explanation
0 Nominal execution; the function re-

turned successfully.
-1 Recursive error The function aborted due to failure of

a subroutine.
-2 INITSTATUS : non-null

status pointer

The status structure passed to the func-
tion had a non-NULL statusPtr
field, which blocks the function from
calling subroutines (it is symptomatic
of something screwy going on in the
calling routine).

-4 ATTATCHSTATUSPTR:
memory allocation error

The function was unable to allocate a
statusPtr field to pass down to a
subroutine.

-8 DETATCHSTATUSPTR:
null status pointer

The statusPtr field could not be
deallocated at the end of all subroutine
calls; one of the subroutines must have
lost it or set it toNULL.

Table 4: Shows the negative values for thestatusCode that have been reserved for generic
failures.

5. LALFunction() should free all memory that it allocates, except for storage for variable
length output parameters. The memory must be freed, even when the termination is abnor-
mal!

This simple requirement is one of the one of the most difficult to implement in your code.

Explanation: This avoids memory leaks. Persistent intermediate storage and fixed length
output parameters should be allocated by the calling function.

6. Functions and procedures must refer to:

extern INT4 lalDebugLevel;

when deciding whether to print debugging information. ThelalDebugLevel feature has
been considerably enhanced from previous versions of this document. It allows very dis-
criminating choices in what information will be printed. For example,lalDebugLevel
=0 means no information will be printed.lalDebugLevel = 1 will print only print
serious error information,lalDebugLevel = 3 will print errors and warnings,lalDe-
bugLevel = 16 will print only memory allocation debugging information. See the doc-
umentation in the LAL release for the full functionality of this feature.

Explanation: allows calling program to make discriminating choices about diagnostic infor-
mation to understand unusual behavior. Allowing the programmer to select the debugging
information to printed is essential: if everything is printed, you can’t find what you are look-
ing for.

page 26 of 36

LIGO-T990030

Warning: do not test the value oflalDebugLevel within critical floating point loops. The
presence of an integer compare/branch instruction often interferes with efficient floating-
point execution.

7. The function should be in a.c file and come with a.h header file. Small sets of related
functions may be grouped together into a single (File.c , File.h) pair. See Sections
6.2.1 and 6.2.2 for the content and layout of the header and source files.

Explanation: this will make it easier to exchange useful functions.

8. File input/output using fopen(), fclose(), fprintf(), etc. is not allowed.

Custom file I/O functions will be provided. A function should close all files that it opens,
except for files that are explicitly passed to the calling function by a FILE pointer in the
output structure.

Explanation: file access may not be available (permissions, space) or appropriate on given
machines. The custom file I/O routines will deal with this.

9. Each function must come with a stand-alone test program, which can be linked toLAL-
Function() . See Section 6.2.3.

10. Allocation of significant amounts of memory should use the customLALmalloc() rather
than automatic stack variables.

Explanation: many machines and shells do not support large stacks. Typical stack sizes are
8 to 64 Mbytes. It is easy to blow the stack and this can be hard to identify with debuggers
and other tools.

11. Debugging/information/warning messages should be printed with a custom replacement for
printf() and fprintf(stderr,...).

This function will be provided and will take the same arguments as printf() and possibly
other arguments.

Explanation: this allows debugging/information/warning messages to be handled in different
ways, depending on the operating environment and conditions. For example, they might be
logged, sent immediately to the user, ignored, etc.

12. Developers should use LAL standard data structures whenever possible. See Section 4.

Explanation: It is easier to pass information between functions.

13. LALFunction() should be re-entrant.

In other words, it should not contain variables that save internal state information between
function invocations. If such state variables are needed, then they must be included in one
of the argument structures.

Explanation: Functions that are not re-entrant cannot be invoked by different routines with-
out special precautions.

page 27 of 36

LIGO-T990030

14. Aliasing (i.e., allowing two structures to point to or share the same memory address) is
expressly prohibited. An exception to this is the case where (mutually exclusive) memory
sharing is effectively supported by ANSI C (e.g., unions).

Explanation: It becomes difficult to keep track of whether memory is being pointed to and,
consequently, difficult to avoid memory leaks or “amnesia” (freeing memory being used).
Code maintenance becomes more difficult when aliasing is permitted.

15. LALFunction() should not raise or trap signals. [There are a few exceptions to this rule
that are under the strict control of the LAL Librarian.]

6 LAL code organization

This chapter explains the layout of the code within the LAL. First we give the large-scale structure:
the directory tree. Then we describe the finer structure: the required format and content of the
individual source files.

In Chapter 7, you will notice that the code and the documentation are inextricably entwined:
the hierarchy of the code elements (packages, headers, modules) determines the hierarchy of the
documentation (chapters, sections, subsections). Even at finer resolution this holds: the contents
of the individual source files also matches the content of the individual documentation pieces.

6.1 The big picture: the LAL directory tree

All LAL components (i.e. code, header files, Makefiles, configure scripts, documentation etc.),
will reside in a single directory (called lal/ in this discussion) and its subdirectories. The LSC
Software Coordinator and Software Librarian will maintain an official “master copy” of the LAL
source in the CVS repository. Loosely speaking, a “release” of the LAL consists of a tar-ball of
the master copy of this directory. User can download and install a release on their own machines.

Within this top level directory, their will be a subdirectory (lal/packages/) where the analysis
code will reside. Within this subdirectory, every LAL software component will have a named direc-
tory that contain all files associated with the package (e.g. lal/packages/inspiral). The development
of “packages” will be the primary way collaborators will contribute to the LAL.

A package subdirectory (e.g. lal/packages/mypackage) should have the source files, documen-
tation and Makefiles in the following subdirectories:

• lal/packages/mypackage/include : all the header files associated with this com-
ponent. Header files must conform to the format and style described in Section 6.2.1.

• lal/packages/mypackage/src : all the source files associated with the component.
They must conform to the format and style described in Section 6.2.2.

• lal/packages/mypackage/test : test scripts and all supporting files associated with
component-level tests. The tests must conform to the format and style described in Section
6.2.3.

page 28 of 36

LIGO-T990030

• lal/packages/mypackage/doc : There will be a LaTeX file in this directory capable
of assembling a “stand-alone” documentation for this package. There will also be LaTeX
file that forms a chapter in comprehensive manual for the entire LAL. Before auto-extraction
with laldoc, much of the text source for the documentation may reside in the code files. See
Section 7.

6.1.1 Making LAL code modular

In order to make LAL code easy to use, it should be modular; therefore, as a general rule, packages
should have (at most) a few headers in the /include directory, (at most) a few related modules should
include each header file, and only a few – closely related – functions should be in each module.

6.2 The finer picture: the format of LAL code

6.2.1 Header Files

Header files will conform to the format in Appendix A and contain the following information, in
the order presented.

1. An author and Id block. Note, the CVS will supply the file name and version number in the
Id string. This information must be auto-extracted for inclusion in the documentation.

2. Brief (one sentence) description of the functionality of the header file.

3. A comment block with a Synopsis and description of the functionality supported by this
header.

4. Protection against double inclusion.

5. Includes. This header may include other headers; if so, they go immediately after the double-
include protection. Includes should appear in the following order:

• Standard library includes;

• LDAS includes;

• LAL includes;

6. Assignment of Id string using NRCSID(). See Section 4.5.

7. Error codes and messages. These must be auto extracted for inclusion in the documentation.

8. Macros. But, note use of macros is discouraged.

9. Extern Constant Declarations. These are strongly discouraged.

10. Structures, enums, unions, typedefs, etc.

11. Extern Global Variables. These are strongly discouraged. Inform the Software Coordinator.

12. Functions Declarations (i.e., prototypes).

Note: no executable code appears in a header file.

page 29 of 36

LIGO-T990030

6.2.2 Source Files

Source files will conform to the style presented in Appendix B and contain the following informa-
tion in the order presented.

1. An author and Id block. Note, the CVS will supply the file name and version number in the
Id string. This information must be auto-extracted for inclusion in the documentation.

2. Extended comment block that forms the nucleus of the documentation for this module. (See
Section 7 for the specific outline.) If the text gets too long and the “code gets lost in the
documentation”, you must move the text elsewhere.

3. Includes. These should be guarded and appear in the following order:

• Standard library includes;

• LDAS includes;

• LAL includes.

4. Assignment of Id string using NRCSID(). See Section 4.5 for instructions.

5. The code. [The following order is prefered, but there may be exceptional circumstances.]

(a) Constants, structures (used only internally in this module)

(b) Type declarations (used only internally)

(c) Macros (discouraged, used only internally)

(d) Extern global variable declarations (Strongly discouraged)

(e) Global variables (Strongly discouraged)

(f) Static function declarations.

(g) The functions that make up the guts of this module. (Remember, to auto-extract the
prototypes for inclusion in the documentation.)

6.2.3 Component level tests

Along with each header file there should be an executable that tests every function prototyped in
the header file. These executables should extensively (if not exhaustively) test the error condition
that can be thrown by a function. The program should report success or failure for all the tests and
exit cleanly.

As these executables will not form part of the dynamically loaded library of functions, there
is a bit more flexibility in how they are written. For example unix shell scripts that run an exe-
cutable multiple times with different command line options are allowed. Also keep in mind, these
executables should serve as example code on how to use the functions.

As a general rule, a test suite should involve tests from at least three categories:

• Mainline tests, which demonstrate that the routine correctly acts on commonly encountered
input data;

page 30 of 36

LIGO-T990030

• Inside-edge tests, which demonstrate that the routine correctly acts on input data that are
barely legitimate;

• Outside-edge tests, which demonstrate that the routine correctly acts on input data that are
barely illegitimate.

In the case of illegitimate data, “success” of the test involves correctly reporting the failure and
returning the appropriate error conditions.

7 LAL code documentation

Along with any code submission to the LAL library, developers will need to supply documentation.
Keep in mind, the documentation, like the code, is a deliverable, and the software coordinator will
carefully review the documentation to ensure that it adheres to these specifications.

Why don’t we use the LDAS documentation template for LAL code? Most of the LDAS
software is written in C++, and therefore the documentation is naturally built around “classes”.
LAL code is written in C, thus the LDAS model doesn’t apply. None the less, our system does
mimic the LDAS model as closely as possible by building the LAL documentation around header
files and the modules and functions that include them.

7.1 The requirements driving the documentation design

The defining goals of the LAL specification (widespread-use and collaborative-development of the
code) lead to a clear requirement for the documentation: The documentation should not only help
the author maintain his or her code, but it should be clear enough that any developer can read it and
figure out how the code works. If you find yourself saying, “The easiest way for me to maintain
my code is ...”, you have missed the point.

The fact that others will need to find their way through the documentation leads naturally to
a sensible requirement: The documentation must have a uniform presentation. This might be
cumbersome in the case of simple functions and restrictive in other cases, but it is still necessary.

The documentation must be accurate. Therefore we have a custom-built documentation tool
(laldoc) that allows authors to extract code fragments, comments and extended LaTeX source from
the code files and import them directly into the documentation.

7.2 LAL documentation rules

The following rules follow naturally from the requirements above:

1. Documentation will be written in LaTeX. Reason: (1) The equation-writing capability of
LaTeX. (2) It is easy to translate LaTeX to pdf, so the document can be read on the web.
(3) Most of the LAL programmers know LaTeX, thus they won’t need to learn another
typesetting language.

2. The author and CVS Id block in the code must be auto-extracted from the code and automat-
ically included in the documentation. Reason: Obvious. It should be clear what version of
the code the documentation pertains to.

page 31 of 36

LIGO-T990030

3. Error codes and error descriptions must be auto-extracted from the header files and automat-
ically included in the documentation. Reason: Obvious. There should be no doubt the error
information in the documentation is exactly what is in the code. There is a simple tool within
laldoc for doing the extraction.

4. Function prototypes must be auto-extracted and included in the documentation.

5. All functions must be entered into the LaTeX document index with an /index command.
Reason: If somebody runs across a function in the code, they should be able to find the
documentation by looking it up in the index. The LAL prefix on function names should be
omitted when putting them in the index.

6. All non-LAL data structures must be entered into the LaTeX document index with an /index
command. Reason: Same as functions.

7. Do not let the code get lost in the documentation. Using laldoc allows one to put the source of
the documentation in the source code files; however the text of the documentation can easily
grow to be longer than the code itself. If the comment block containing the documentation
starts to swamp the code, move some documentation, e.g. put the documentation at the end
of the file and use the LaTeX command /input to build the document.

7.3 The organization of LAL documentation

The organization of the documentation follows the organization of the code. The hierarchy of
the code elements determines the hierarchy of the documentation elements. The documentation
for each package will form a chapter. The documentation for each header file within the package
will form a section of the package chapter. The documentation for each module that includes that
header file will form a subsection of the header section. Similarly, the test modules associated
with each header file will also form a subsection of the header section. The documentation of the
individual code pieces also closely follows from the code architecture. This design makes it easy
to build the documentation with laldoc. The References will come at the end of each package
chapter. [This method of organizing documentation around headers and functions is similar to the
way books on C organize the documentation of the standard libraries.]

The fact that packages form chapters also means that they independently form reasonably self-
contained documents. This is convenient since packages are the “unit-size” of most of the devel-
opment efforts.

[Note: Previous versions did not distinguish between documentation for, headers, modules, and
test executables. The current presentation has been considerably rearranged; however all material
required in previous versions is still required in this version.]

7.3.1 Header file documentation

The documentation for each header file within a package include/-directory will form a LaTeX
section within the package chapter. All header documentation will have a uniform format and
include the following information in this order.

page 32 of 36

LIGO-T990030

1. Short description: Each header section will begin with a short (one sentence) description of
the header.

2. Synopsis: A somewhat more extensive explanation of the purpose of the header file. Keep
in mind, some detailed information may be better left to the documentation of the individual
modules and functions that use this header.

3. Error codes and messages: The error codes and messages must be auto-extracted and in-
cluded in the documentation in a LaTeX table. [laldoc has a simple way of doing this.]
Additional explanation of the errors can go after the table. In particular, explain what mea-
sures are taken to handle errors.

4. Structures: If you must define a new structures for the input, output, or parameter block for
your routine, you must document them here. Note: these structures must be entered in the
LaTeX index with an /index command. TheLAL prefix on data-structure names should be
omitted when putting them in the index.

5. Author-Id block: This should appear as a footnote at the bottom of the last page.

7.3.2 Module documentation

The documentation for each module that includes a given header file will form a LaTeX subsection
within the header-file section. The documentation for a module will have a uniform format and
include the following information in this order.

1. Short description: Each module subsection will begin with a short (one sentence) description
of the module.

2. Prototypes: The prototypes for all the functions in this module must appear here. Note:
these functions must be entered in the LaTeX index with an /index command. TheLAL
prefix should be omitted when putting them in the index.

3. Description: Explain how to use the functions. Give detailed information about the argu-
ments. Explain any run-time options that may be invoked. Remember that any non-LAL
structures used as arguments should be documented in the header-file section.

4. Algorithm: Explanation of the algorithm.

5. Uses: A list of all the routines that this module uses.

6. Notes: Additional discussion can go here.

7. Validation Information: This section is a placeholder for formal results of validation testing.
In the mean-time please put information about timing and accuracy here.

8. Validation Information: This section is a placeholder for formal results of validation testing.
In the mean-time please put information about timing and accuracy here.

page 33 of 36

LIGO-T990030

7.3.3 Component-level test documentation

The documentation of the test programs will form a subsection of the header file section. The
documentation for the programs will have a uniform format and include the following information
in this order.

1. Short description: Each test program subsection will begin with a short (one sentence) de-
scription of the module, e.g.SampleTest.c is an executable that tests all functions spec-
ified in the headerSampleHeader.h .

2. Usage: Show and explain the command line syntax

3. Description: Explain in detail what tests are done and how they work.

4. Exit Codes: A LaTeX table containing the exit codes. We strongly suggest that you extract
these from the source in the same way error codes are extracted.

5. Uses: A list of all the routines that this module uses.

6. Notes:

7. Author-Id block: This should appear as a footnote at the bottom of the last page.

8 Maintaining the LAL

8.1 Version control for the LAL

The LL and LSC will jointly maintain both the LAL software and the LAL specification. The
source code and documentation – and this document – will be kept in a CVS repository. When a
package is submitted to the library its directory tree will be entered in the CVS repository. The
revision history of the files will be available on the web. The LSC Software Coordinator and
Software Librarian will over see the day-to-operations of the repository. They will also see that the
most up-to-date versions of all code files are publicly –and easily – available on the web.

8.2 Numbering the LAL releases Numbering the LAL releases

In addition to making the individual code pieces available, the LSC Software Coordinator and
Software Librarian will periodically issue a “release” of the entire library. The numbering scheme
for releases of LAL code will be two numbers separated by a decimal point (.), e.g. LAL Release
“X.Y”.Individual software components in the library shall also be identified by version number.
The version specification for the software libraries shall also be in the form “X.Y”. These num-
bers will be supplied automatically by the CVS. Here X = version number. This is incremented
whenever major changes are introduced. If X is incremented, Y is reset to 0. Here Y = revision
number. This is incremented whenever one or more of the following changes are made: (i) soft-
ware error fixes; (ii) enhancements in existing functionality; (iii) modifications for which X is not
incremented.

page 34 of 36

LIGO-T990030

8.3 Validation of LAL code

Verifying that the individual components (functions) work will primarily be the responsibility of
the code developers. This is the purpose of the test routines described in Section 6.2.3.

The LSC Software Coordinator, the LSC data analysis subgroup chairs and the LL personnel
will organize integrated tests of the analysis pipeline through “mock data challenges”. These tests
will be conducted to “validate” the code.

8.4 Requesting changes in LAL

The LSC will maintain a web page for submitting bug reports and releasing the code. Currently,
this can be found at http://www.lsc-group.phys.uwm.edu/lal/.

While in the development phase, updating the code and documentation will be largely be the
responsibility of the individual code writers. However, as we transition to “production mode”, the
procedure for updating code will need to be more formal. [During the early stages a-c will apply.
In the more formal stage a-e apply.]

a. All modified code will be verified (and validated in a pipeline test if necessary). All affected
documentation will be revised to show changes.

b. Once available, a new release will be distributed.

c. A history of revisions shall be maintained and made available to users.

d. Change requests will be reviewed jointly by LL and LSC on a regular basis.

e. Those changes which are selected for incorporation shall be assigned for implementation to
respective groups.

9 Development tools and software packages used with LAL

To keep life simple for the users and developers, we limit the required packages to a few well
chosen items. This minimizes the number of learning curves that developers need to be climb
before they can start coding, and it limits the number of packages that users need to install before
they can use the LAL functions.

9.1 Compiling the LAL

In keeping with the goal of “broad use” we will try to maintain portability of the LAL, e.g. it
currently installs several platforms with several different compilers. This portability may be hard
to maintain in the future, but, as minimum, we will work to insure the LAL compiles and installs
on

• linux [Redhat 6.0 or later] on Intel hardware with a gcc compiler;

• Solaris 7 on SUN hardware with a gcc compiler.

page 35 of 36

LIGO-T990030

9.2 Development tools:

• GNU CVS: version 1.10 or greater. [Primarily, this will be used by the LSC Software Li-
brarian and Coordinator; other developers shouldn’t need this.]

• GNU Autoconf [Primarily, this will be used by the LSC Software Librarian and Coordinator;
other developers shouldn’t need this.]

• GNU m4: version 1.4 or greater. [Primarily’ this will be used by the LSC Software Librarian
and Coordinator; other developers

• GNU make: version 3.72 or greater.

9.3 Documentation tools:

• LaTeX

• Custom made automatic documentation tool: laldoc.

• PDF (generated by any means).

9.4 Software packages

Currently, FFTW is the only software package required for LAL installation. All others are op-
tional. Let’s keep it that way.

• FFTW (Required) [FFTW is the current choice for an fft engine; however we have not burned
any bridges that would preclude changing to a different package if something better comes
along.]

• MPI (Optional)

• Frames (Optional)

• (C)LAPACK (Optional, not implemented yet.)

• Not Numerical Recipes.

page 36 of 36

LIGO-T990030

Appendix A: LAL Template Header File
/*[Author-Id block must be auto extracted] <lalVerbatim file="LALTemplateHV">

* Author: Hacker, A. Good
* $Id: lalspec.tex,v 1.10 2001/04/18 22:45:49 agw Exp $

*** [Note: CVS will always supply file name in the Id.] </lalVerbatim> ****/

/* A brief (one sentence) description of what this header is for. */

/* Synopsis and (longer) Description goes here */

#ifndef _LALTEMPLATE_H /* Protect against double-inclusion */

#define _LALTEMPLATE_H /* Note the naming convention */

#include "LALStdlib.h" /* Include any other headers */

#ifdef __cplusplus /* Protect against C++ name mangling */
extern "C" {
#endif

/* You must use the NRCSID macro to define the RCS ID string */
NRCSID(LALTEMPLATEH,"$Id: lalspec.tex,v 1.10 2001/04/18 22:45:49 agw Exp $")

/* Define error codes and messages. These must be auto-extracted
* for inclusion in the documentation
********************************** <lalErrTable file="LALTemplateHError"> */

#define LALTEMPLATEH_EONE 1
#define LALTEMPLATEH_ETWO 2

#define LALTEMPLATEH_MSGEONE "An error condition"
#define LALTEMPLATEH_MSGETWO "Another error condition"

/********************************** </lalErrTable> */

/* Define other global constants or macros (discouraged) */

/* Define new structures and types. (Use LAL types when possible) */

/* Include external global variables */

/* Declare global function prototypes */

void
LALTemplate(LALStatus *stat);

#ifdef __cplusplus
} /* Close C++ protection */
#endif
#endif /* Close double-include protection */

page 37 of 36

LIGO-T990030

Appendix B: LAL Template Source File
/* [Author-Id block must be auto extracted] <lalVerbatim file="LALTemplateCV">

* Author: Hacker, A. Good
* $Id: lalspec.tex,v 1.10 2001/04/18 22:45:49 agw Exp $

** [Note: CVS will always supply file name in the Id.] </lalVerbatim> **/

/* The following comments can (should) form the nucleus of the
* documentation. However, if the discussion becomes too long
* and the "code gets lost in the documentation", you MUST move the text
* elsewhere. The easiest thing to do is to put it at the end of
* this module file and \input{} into the documentation here where it is
* needed.

*/
/* -- */
/* A brief description of what the functions in this module do. */

/* \input{} the file with the extracted function prototypes. */

/* Description (Describe how to use the functions in this module) */

/* Algorithm */

/* Uses (what other functions does this module call) */

/* Notes (other comments about the code) */
/* -- */

#include "LALStdlib.h" /* include headers.order: std, LDAS, LAL */
#include "LALTemplate.h" /* include LAL header for this module */

/* You must use the NRCSID macro to define the CVS ID string */
NRCSID(LALTEMPLATEH,"$Id: lalspec.tex,v 1.10 2001/04/18 22:45:49 agw Exp $")

/* Now comes the code:
[The following order is prefered, but there may be exceptional
circumstances.]

1. Constants, enumerated types, structures (used only internally)
2. Type declarations (used only internally)
3. Macros.(discouraged)
4. Extern global variable declarations. (Strongly discouraged!)
5. Static global variables. (Strongly discouraged!)
6. Static function declarations:
7. The functions that make up the guts of this module.

(Remember to auto-extract the prototypes for inclusion in the
documentation.)

*/

page 38 of 36

	Table of Contents
	Introduction
	The goal of the LAL software specification
	The scope of the LAL specification
	Applicability of LAL software
	How does the LAL fit into the LDAS?

	LAL coding style
	LAL namespace conventions
	The rationale behind the namespace rules
	The namespace rules

	Physical and numerical constants
	Style for type declarations

	LAL Data Types
	Defining data types
	"Atomic" data types
	Aggregate constructs of atomic data types
	Vectors
	Arrays
	Sequences
	The packing order of a VectorSequence or ArraySequence

	LAL structured data types
	Time
	Time stamps

	Sequences in time
	TimeSeries
	LALUnit data type

	SequenceOfTimeSeries PD1OT1ptmptmmmnn(Not Implemented yet.)
	The packing order of SequenceOfTimeSeries

	TimeVectorSeries
	TimeArraySeries

	Sequences in frequency
	FrequencySeries
	SequenceOfFrequencySeries PD1OT1ptmptmmmnn(Not implemented yet.)
	FrequencyVectorSeries
	FrequencyArraySeries PD1OT1ptmptmmmnn(Not yet implemented)

	Series of n-tuples PD1OT1ptmptmmmnn(Not implemented yet.)
	TransferFunction
	Frequency domain PD1OT1ptmptmmmnn(Not implemented yet.)
	Zero, poles and gain representation

	 LALStatus
	The LAL statusCode and statusDescription fields
	The LAL CVS Id string

	LAL functions
	The burning question
	The rules for LAL functions

	LAL code organization
	The big picture: the LAL directory tree
	Making LAL code modular

	The finer picture: the format of LAL code
	Header Files
	Source Files
	Component level tests

	LAL code documentation
	The requirements driving the documentation design
	LAL documentation rules
	The organization of LAL documentation
	Header file documentation
	Module documentation
	Component-level test documentation

	Maintaining the LAL
	Version control for the LAL
	Numbering the LAL releases Numbering the LAL releases
	Validation of LAL code
	Requesting changes in LAL

	Development tools and software packages used with LAL
	Compiling the LAL
	Development tools:
	Documentation tools:
	Software packages

