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Riassunto

La presente tesi di laurea è il risultato della partecipazione del candidato allo
sviluppo del sistema HAM-SAS per l’attenuazione del rumore sismico negli in-
terferometri di Advanced LIGO.

I due interferometri di LIGO sono ormai operativi e in continua presa dati dal
Novembre del 2005. I dati acquisiti sono integrati con quelli ottenuti dal progetto
Virgo nell’ambito di una cooperazione internazionale volta a massimizzare gli
sforzi per la rivelazione delle onde gravitazionali.

A partire dal 2011 sono previsti la dismessa di LIGO I e l’inizio dell’installazione
e messa in funzione di Advanced LIGO. L’obiettivo degli interferometri di nuova
generazione è una sensibilità dieci volte maggiore con lo scopo di estendere di un
fattore mille il volume di spazio coperto e di incrementare dello stesso ordine di
grandezza nella probabilità di rivelazione di eventi.

Per aumentare la sensibilità nella banda sotto 10 Hertz la principale fonte
di rumore che Advanced LIGO deve fronteggiare è il rumore sismico. In tale
prospettiva, il gruppo SAS (Seismic Attenuation Sistems) di LIGO ha sviluppato
un insieme di tecnologie sulle quali si basa il sistema HAM-SAS, progettato speci-
ficamente per l’isolamento sismico del banco ottico dell’output mode cleaner.

In HAM-SAS le gambe di quattro pendoli invertiti costituiscono lo stadio
di attenuazione dei gradi di libertà orizzontali (yaw e le due traslazioni sul pi-
ano). Quattro filtri GAS provvedono all’isolamento dei gradi di libertà verticali
(traslazione verticale e le inclinazioni) e sono contenuti all’interno di una strut-
tura rigida intermedia chiamata Spring Box che poggia sui pendoli invertiti. La
geometria è tale che i gradi di libertà orizzontali e quelli verticali risultano separati
e indipendenti. Ogni filtro GAS è accompagnato da un sensore di posizione LVDT
e da un attuatore elettromagnetico e così anche ogni gamba dei pendoli invertiti.
Otto stepper motors permettono il controllo di posizione statica del sistema.

Un prototipo di HAM-SAS è stato realizzato in Italia e quindi trasportato
presso il Massachusetts Institute of Technology negli Stati Uniti d’America per
essere testato entro la camera a vuoto Y-HAM dell’interferometro da 15 metri del
LIGO LASTI Laboratory.

La collaborazione del candidato al progetto è cominciata nel 2005 con lo stu-
dio di uno dei sottosistemi di HAM-SAS, le cosiddette “magic wands”, oggetto
della tesi di laurea di primo livello. Nell’Agosto del 2006 un maggiore è cominci-



ato con la partecipazione alle varie fasi di costruzione del sistema presso le officine
meccaniche della Galli e Morelli di Lucca. Il contributo alla costruzione in Italia
ha incluso: il design di alcuni elementi, il processo di produzione dell’acciaio
maraging per le lame dei filtri GAS, l’assemblaggio dell’intero sistema in tutte le
sue parti meccaniche inclusi sensori, attuatori elettromagnetici e stepper motors e
le caratterizzazioni preliminari dei pendoli invertiti e dei filtri GAS. Il sistema è
stato inoltre interamente sottoposto ai processi di trattamento per la compatibilità
con gli ambienti ad ultra alto vuoto dell’interferometro e in questa fase un contrib-
uto sono stati i test spettroscopici tramite FT-IR dei campioni ricavati dal sistema.
Durante l’assemblaggio definitivo in camera pulita, come spiegato nell’elaborato,
l’impegno è andato dal tuning dei filtri GAS, alla distribuzione precisa dei carichi
sui pendoli invertiti e alla messa a punto del sistema per la correzione del tilt
verticale.

All’MIT, a cominciare da Dicembre 2006, il candidato ha rappresentato il pro-
getto HAM-SAS per tutta la sua durata. Qui si è occupato assieme al gruppo
SAS di tutte le fasi dell’esperimento, dal setup dell’elettronica e della meccanica
al commissioning del sistema per raggiungere i requisiti di progetto, passando
per la creazione del sistema di acquisizione dati, i controlli, l’analisi dei dati e
l’interpretazione dei risultati.

I test a LASTI hanno mostrato che, grazie alla particolare geometria del sis-
tema, i gradi di libertà orizzontali e quelli verticali sono disaccoppiati e possono
essere trattati come indipendenti. E’ stato possibile identificare chiaramente i
modi del sistema e assumerli come base con cui costruire un set di sensori di
posizione virtuali e un set di attuatori virtuali a partire da quelli reali, rispetto
ai quali la funzione di trasferimento del sistema fosse diagonale. All’interno di
questo spazio modale il controllo del sistema è risultato notevolmente semplifi-
cato e maggiormente efficace. Abbiamo misurato accurate physical plants per
ogni grado di libertà e, sulla base di queste, disegnato specifiche tipologie di con-
trollo. Per i gradi di libertà orizzontali si sono utilizzati semplici loops di controllo
per il mantenimento della posizione statica e il damping delle risonanze. Per quelli
verticali in più a queste funzioni, i loops introducevano un effetto di antimolla e
abbassavano le frequenze di risonanza.

Il risultato complessivo è stato il raggiungimento dei requisiti di attenuazione
sismica di LIGO per il banco ottico entro i limiti di sensibilità dei sensori geofoni
utilizzati.

L’intero progetto, dalla produzione al commissioning, si è svolto secondo un
programma dai tempi contingentati che ha lasciato scarsa possibilità di completare
fino in fondo il setup meccanico previsto. L’accesso diretto al sistema è diventato
molto più raro una volta richiusa la camera HAM nell’interferometro e pompato il
vuoto. Alcuni dei sottosistemi (tra cui i contrappesi per il centro di percussione dei
pendoli e le “magic wands”) non sono potuti essere installati e diverse operazioni
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di ottimizzazione (come l’abbassamento delle frequenze dei filtri GAS verticali
e dei pendoli invertiti e l’ottimizzazione dei tilt) non sono potute essere comple-
tate. Inoltre l’ambiente di LASTI ha offerto una locazione sismicamente poco
favorevole se confrontata alle sedi degli osservatori per le quali HAM-SAS era
stato progettato. Nondimeno le performance ottenute dal prototipo di HAM-SAS
sono state positive e i risultati ottenuti molto incoraggianti e ci lasciano fiduciosi
della possibilità di poter essere ulteriormente migliorati e ampliati dai lavori an-
cora in corso.
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Chapter 1

Gravitational Waves Interferometric
Detectors

According to general relativity theory gravity can be expressed as a spacetime
curvature[1]. One of the theory predictions is that a changing mass distribution
can create ripples in space-time which propagate away from the source at the
speed of light. These freely propagating ripples in space-time are called gravita-
tional waves. Any attempts to directly detect gravitational waves have not been
successful yet. However, their indirect influence has been measured in the binary
neutron star system PSR1913+16 [2].

This system consist of two neutron stars orbiting each other. One of the neu-
tron stars is active and can be observed as a radio pulsar from earth. Since the
observed radio pulses are Doppler shifted by the orbital velocity, the orbital pe-
riod and its change over time can be determined precisely. If the system behaves
according to general relativity theory, it will loose energy through the emission of
gravitational waves. As a consequence the two neutron stars will decrease their
separation and, thus, orbiting around each other at a higher frequency. From the
observed orbital parameters one can first compute the amount of emitted gravita-
tional waves and then the inspiral rate. The calculated and the observed inspiral
rates agree within experimental errors (better than 1%).

1.1 Gravitational Waves
General Relativity predicts gravitational waves as freely propagating ‘ripples’ in
space-time [3]. Far away from the source one can use the weak field approx-
imation to express the curvature tensor gµν as a small perturbation hµν of the
Minkowski metric ηµν:

gµν = ηµν + hµν with
∣∣∣hµν∣∣∣ � 1 (1.1)
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Figure 1.1: Direction of space deformation for a gravitational wave propagating
along the z-axis, + polarization (a) and × polarization (b)

Using this ansaz to solve the Einstein field equations in vacuum yields a normal
wave equation. Using the transverse-traceless gauge its general solutions can be
written as

hµν = h+ (t − z/c) + h× (t − z/c) (1.2)

where z is the direction of propagation and h+ and h× are the two polarizations
(pronounced ‘plus’ and ‘cross’):

h+ (t − z/c) + h× (t − z/c) =


0 0 0 0
0 h+ h× 0
0 −h× h+ 0
0 0 0 0

 e (iωt−ikx) (1.3)

The above solution describes a quadrupole wave and has a particular physical
interpretation (see fig.1.1). Let’s assume two free masses are placed at positions
x1 and x2 (y = 0) and a gravitational wave with + polarization is propagating
along the z-axis, then the free masses will stay fixed at their coordinate positions,
but the space in between|and therefore the distance between x1 and x2 will expand
and shrink at the frequency of the gravitational wave. Similarly, along the y-
axis the separation of two points will decrease and increase with opposite sign.
The strength of a gravitational wave is then best expressed as a dimension-less
quantity, the strain h which measures the relative length change ∆L = L.

Denoting the quadrupole of the mass distribution of a source by Q, a dimen-
sional argument|together with the assumption that gravitational radiation couples
to the quadrupole moment only yields:

h ∼
GQ̈
c4r
∼

G
(
Enon-simm

kin /c2
)

c2r
(1.4)

with G the gravitational constant and Enon-simm
kin the non symmetrict part of the

kinetic energy. If one sets the non-symmetric kinetic energy equal to one solar
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mass
Enon-simm

kin /c2 ∼ M� (1.5)

and if one assumes the source is located at inter-galactic or cosmological distance,
respectively, one obtains a strain estimate of order

h . 10−21 Virgo cluster (1.6)

h . 10−23 Hubble distance. (1.7)

By using a detector with a baseline of 104 m the relative length changes become
of order:

∆L = hL . 10−19 m to10−17 m (1.8)

This is a rather optimistic estimate. Most sources will radiate significantly less
energy in gravitational waves.

Similarly, one can estimate the upper bound for the frequencies of gravita-
tional waves. A gravitational wave source can not be much smaller than its
Schwarzshild radius 2GM/c2, and cannot emit strongly at periods shorter than
the light travel time 4πGM/c3 around its circumference. This yields a maximum
frequency of

f ≤
c3

4πGM
∼ 104 Hz

M�
M

(1.9)

From the above equation one can see that the expected frequencies of emitted
gravitational waves is the highest for massive compact objects, such as neutron
stars or solar mass black holes.

Gravitational waves are quite different from electro-magnetic waves. Most
electro-magnetic waves originate from excited atoms and molecules, whereas ob-
servable gravitational waves are emitted by accelerated massive objects. Also,
electro-magnetic waves are easily scattered and absorbed by dust clouds between
the object and the observer, whereas gravitational waves will pass through them
almost unaffected. This gives rise to the expectation that the detection of grav-
itational waves will reveal a new and different view of the universe. In particu-
lar, it might lead to new insights in strong field gravity by observing black hole
signatures, large scale nuclear matter (neutron stars) and the inner processes of
supernova explosions. Of course, stepping into a new territory also carries the
possibility to encounter the unexpected and to discover new kinds of astrophysi-
cal objects.

1.2 Interferometric Detectors
An interferometer uses the interference of light beams typically to measure dis-
place ments. An incoming beam is split so that one component may be used as a
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CHAPTER �� THE DETECTION OF GRAVITATIONAL WAVES �

Laser

Detector

Beamsplitter

Figure ���� A Michelson interferometer�

����� Interferometeric Detectors

An interferometer uses the interference of light beams typically to measure displace�

ments� An incoming beam is split� so that one component may be used as a reference

while another part is used to probe the element under test� The change in interfer�

ence pattern results in a change in intensity of the output beam which is detected

by a photodiode� By using the wavelength of light as a metric� interferometers can

easily measure distances on the scales of nanometres and� with care� much more

sensitive measurements may be made� The light source used is a laser� a highly col�

limated� single frequency light� making possible very sensitive interference fringes�

Di	erent con�gurations can be used to measure angles� surfaces� or lengths�

The use of interferometers to detect gravity waves was originally investigated by

Forward and Weiss in the �����s���� ���� To use an interferometer to detect gravity

waves� two masses are set a distance apart� each resting undisturbed in inertial

space� When a gravity wave passes between the masses� the masses will be pushed

and pulled� By measuring the distance between these two masses very accurately�

the very small e	ect of the gravity waves may be detected� The simplest Michelson

interferometer is shown in �gure ���� The input beam is split at a beamsplitter�

sending one half of the light into each arm� Fortuitously� the quadrupole moment

Figure 1.2: Scheme of a basic Michelson interferometer.

reference while another part is used to probe the element under test The change
in interference pattern results in a change in intensity of the output beam which
is detected by a photodiode. By using the wavelength of light as a metric in-
terferometers can easily measure distances on the scales of nanometers and with
care much more sensitive measurements may be made. The light source used is
a laser, a highly collimated single frequency light making possible very sensitive
interference fringes.

In a Michelson interferometer the laser beam is split at the surface of the beam
splitter (BS) into two orthogonal directions. At the end of each arm a suspended
mirror reflects the beam back to the BS. The beams reflected from the arms re-
combine on the BS surface. A fraction of the recombined beam transmits through
the BS and the rest is reflected from it. The intensity of each recombined beam
is determined by the interferometer conditions and is detected by a photo detector
(PD) that gives the differential position signal from the apparatus.

A Michelson interferometer can detect gravitational waves from the tidal ac-
tion on the two end mirrors. The change of the metric between the two mirror
because of a gravitational wave causes a phase shift detectable by the interferom-
eter.

The optimal solution would be to build Michelson interferometers with arms
as long as 1/2 of the GW wavelength, which would require hundreds or thousands
of km. Folding the light path into an optical cavity (Fabry-Perot) is the solution
applied to solve the problem.

The interferometric signal can be detected most sensitively by operating the
interferometer on a dark fringe, when the resulting intensity at the photodetector is
a minimum. Since power is conserved, and very little light power is lost in passing
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PR

SR

Figure ���� Power and signal recycling in a simple Michelson interferometer� Mirror
PR re�ects any exiting laser power back into the interferometer� while mirror SR
re�ects the output signal back into the system�

a Fabry�Perot cavity relies on having a partially transmitting optic� which restricts

the material used in the mirror to be transmissive and to have very low absorption�

In addition� systems using Fabry�Perot cavities have the additional di�culty that

the the cavities must be maintained on resonance� resulting in more complicated

control systems�

Power Recycling Signal Recycling and Other Con�gurations

The interferometric signal can be detected most sensitively by operating the inter�

ferometer on a dark fringe� when the resulting intensity at the photodetector is a

minimum� Since power is conserved� and very little light power is lost in passing

through the interferometer� most of the input laser power is re�ected from the in�

terferometer back towards the input laser� Since increasing laser power results in

better sensitivity 
section ������� rather than �waste� this re�ected power� a partially

transmitting mirror can be placed between the input laser and the beam splitter�

This allows the entire interferometer to form an optically resonant cavity� much like

the Fabry�Perot cavities discussed earlier� with a potentially large increase in power

in the interferometer� This is called power recycling� and is shown schematically by

the mirror labelled PR in �gure ����

Figure 1.3: Power and signal recycling in a simple Michelson interferometer. Mirror
PR reflects any exiting laser power back into the interferometer, while mirror SR
reflects the output signal back into the system.

through the interferometer, most of the input laser power is reflected from the
interferometer back towards the input laser. Since increasing laser power results
in better sensitivity rather than ’waste’ this reflected power, a partially transmitting
mirror can be placed between the input laser and the beam splitter. This allows
the entire interferometer to form an optically resonant cavity with a potentially
large increase in power in the interferometer. This is called power recycling and
is shown schematically by the mirror labeled PR in fig.1.3.

Based on this idea several interferometric detectors have been built in the
world: a 3 Km detector in Italy (VIRGO) [39], a 600 m in Germany (GEO600)
[40], a 300 m in Japan (TAMA) [41] and two twin 4 Km and a 2 Km in USA
(LIGO) [16]. Virgo e LIGO are fully active, LIGO at nominal sensitivity and
Virgo approaching it. All four observatories Virgo, LIGO and GEO are taking
data as an unified network since May 2007.

1.2.1 The LIGO Interferometers

The LIGO Project consists of two observatories, one in Hanford, Washington, and
the other in Livingston, Louisiana, 3000 Km far away from each other (fig.1.6)
[46]. The Virgo interferometer, Located in Cascina, Italy, has 3 km long arms,
while the smaller GEO in Hanover, Germany, has 800 m arms and no FP cavities.
The four interferometers operate together and share data to maximize the effort to
detect gravitational waves.

The two LIGO interferometers, with 4 Km long arms, operate in coincidence
to reject local noise sources. Gradual improvement of the different parts of the
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Initial LIGO Sensitivity Goal

Strain sensitivity 
< 3x10-23 1/Hz1/2

at 200 Hz
Displacement Noise

» Seismic motion
» Thermal Noise
» Radiation Pressure

Sensing Noise
» Photon Shot Noise
» Residual Gas

Facilities limits much lower

BIG CHALLENGE:
reduce all other (non-
fundamental, or technical) 
noise sources to insignificance

Figure 1.4: Initial LIGO strain sensitivity curve.

detector are planned in forthcoming years; in LIGO the currently considered up-
grades concern the laser (higher power), the mirror substrate, the mirror suspen-
sion (fused silica) and the seismic isolation system (this thesis is a contribution to
the new seismic isolation system development). The spectral sensitivity curve of
LIGO I is shown in fig.1.4 along with the contribution of the different sources of
noise.

The low frequency limit of the detector is set by the cut-off of the “seismic
wall”, located for LIGO I above 40 Hz. At higher frequencies the sensitivity
of the interferometer is limited from 40 to 120 Hz by the thermal noise of the
mirror suspension. Above 120 Hz the shot noise dominates. Figure 1.5 shows the
sensitivity improvement expected from LIGO II, whose start-up is scheduled for
2011. [42].

1.3 Seismic Noise

Seismic motion is an inevitable noise source for interferometers built on the Earth’s
crust. The signal of an interferometer caused by the continuous and random
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Figure 1.5: Advanced LIGO strain sensitivity curve.

ground motion is called seismic noise. The ground motion transmitted through
the mechanical connection between the ground and the test masses results in per-
turbations of the test masses separation.

Since the ground motion is of the order of 10−6 m at 1 Hz and the expected
GW signal is less than 10−18 m, we need attenuation factors of the order of 10−12.

As the amplitude of the horizontal ground motion in general is larger at lower
frequencies, the seismic motion will primarily limit the sensitivity of an interfer-
ometer in the low frequency band, usually below several tens of Hertz1.

A typical model for the power spectrum of the ground motion for above 100
mHz is given by

x = a/ f 2 [m/
√

Hz] (1.10)

where a is a constant dependent on the site and varies from 10−7 to 10−9. The
model assumes the motion to be isotropic in the vertical and horizontal directions.

The surface waves that originate the seismic ground motion are a composed
of Rayleigh waves (a mix of longitudinal and transversal waves that originate the
horizontal displacement) and Lowes waves (transverse waves that originate the
vertical motion). The ground can also have an angular mode of motion, with no
translation. There is no direct measurement of the power spectrum associated to
this kind of seismic motions, so a typical way to have an estimation is to consider

1Below 10 Hz the seismically induced variations of rock density produce fluctuations of the
Newtonian attraction to the test mass that bypass any seismic attenuation system (Newtonian
noise) and overwhelm any possible GW signal.
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Figure 1.6: The LIGO interferometers are located in Louisiana (LLO) and in Wash-
ington (LHO).

the only contributions given by the vertical component of Rayleigh waves:

θ =
2π f

c
S v. (1.11)

θ and S v are the angular power spectrum ([rad/
√

Hz]) and the vertical power spec-
trum ([m/

√
Hz]), c is the local speed of the seismic waves. This depends mainly

on the composition of the crust and it is also a function of the frequency. Lower
speeds correspond to larger amplitude of the ground tilt, then the lowest values
can be used to set an upper limit [22].

1.3.1 Passive Attenuation

Large amounts of isolation can be achieved by cascading passive isolators Passive
isolators are fundamentally anything with a resonance Mechanically it is typically
something heavy on something soft.

Consider the simple harmonic oscillator shown in fig.1.8 and compare the
motion of the input x0 with the motion of the output, x The restoring force on
the mass m is supplied by the spring with spring constant k. Thus the equation of
motion is

mẍ = −k (x (t) − x0 (t)) . (1.12)

This equation can be solved in the frequency domain by taking the Laplace trans-
form (with Laplace variable s = iω solving for the ratio of x to x0. Defining the
resonant frequency of the system as ω0 = k/m, the response of the isolated object
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Figure 1.7: Recent sensitivity curve of the main operating GW interferometrs: GEO,
LIGO (LLO and LHO), Virgo.

to input motion is
x(s)
x0(s)

=
1

(s/ω)2 + 1
. (1.13)

At low frequencies ω → 0 the expression approaches one and the output of the
system matches closely the input. However, important for isolation, at high fre-
quencies (ω � ω0), the response of the output is (ω0/ω)2. Thus, at frequencies an
order of magnitude or more above the resonant frequency of the stage a great deal
of isolation can be achieved.

In any real system there is some loss in the system whether this is due to
friction viscous damping or other mechanism. For the simple oscillator described
above some viscous damping may be introduced as a force proportional to the
relative velocity, Fv = −γ (ẋ − ẋ0). This represents for example the motion of this
oscillator in air. Then the transfer function from ground input to mass output is

x(s)
x0(s)

=
2η(s/ω0) + 1

(s/ω)2 + 2η(s/ω0) + 1
(1.14)

where the damping ratio η is given for this viscously damped case by η = γ/2mω0.
Particularly for systems with very little damping the system is often parametrized
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Figure 1.8: A one dimensional simple harmonic oscillator with spring constant k and
mass m The mass is constrained to move frictionlessly in one direction horizontal
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Figure 1.9: Response of a simple harmonic isolator with finite Q.

with the quality factor of the resonance, the Q rather than the damping ratio η,
where

Q =
1
2η
. (1.15)

The response of a system with Q ≈ 10is shown in fig.1.9 There are two important
characteristics of the magnitude of the frequency response in contrast to a system
with infinite Q. First, the height of the resonant peak at ω0 is roughly Q times
the low frequency response. Second, the response of the system is proportional
to (ω0/ω)2 above the resonant frequency up to about a frequency Qω0. Above
this point the system response falls only as 1/ω. These conclusions are drawn for
viscously damped systems. For low loss systems for any form of loss, the system
response will fall proportionally to 1/ω2 for frequencies a decade or more above
the resonant frequency.

Passive isolation has a number of advantages. A system is passive in that it
supplies no energy to the system and thus requires no energy source. Because
it adds no energy to the system, it is guaranteed to be stable. As it has fewer
components than an active system, it can be considered more mechanically and
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electrically reliable. Its performance is not sensor or actuator limited.
The required seismic attenuation is obtained using a chain of mechanical os-

cillators of resonant frequency lower than the frequency region of interest. In the
horizontal direction the simple pendulum is the most straightforward and effec-
tive solution: the suspension wire has a negligible mass and the attenuation factor
behaves like 1/ f 2 till the first violin mode of the wire (tens or hundreds of Hertz).
Thus, with reasonable pendulum lengths (tens of cm), good attenuation factors
can be easily achieved in the frequency band of interest (above 10 Hz) for the x
and y directions. A simple pendulum is even more effective for the yaw mode;
torsional frequencies of few tens of millihertz are easy to be obtained. A mass
suspended by a wire has also two independent degrees of freedom of tilt, the pitch
and the roll; low resonant frequencies (<0.5 Hz) and high attenuation factors for
these modes are obtained by attaching the wire as close as possible to the center
of mass of the individual filters.

The difficult part in achieving high isolation in all the 6 d.o.f.s is to gener-
ate good vertical attenuation. The vertical noise is, in principle, orthogonal to
the sensitivity of the interferometer. Actually the 0.1-1% of the vertical motion
is transferred to the horizontal direction at each attenuation stage by mechanical
imperfections, misalignments and, ultimately (at the 10−4 level), by the non par-
allelism of verticality (the Earth curvature effects) on locations kilometers apart.
The vertical attenuation then becomes practically as important as the others.

In the gravitational wave detectors, every test mass is suspended by a pendu-
lum to behave as a free particle in the sensitive direction of the interferometer. The
typical resonant frequency of the pendulum is 1 Hz. In such a case, at 100 Hz, the
lowest frequency of the GW detection band, the attenuation factor provided in the
pendulum is about 10−4. From the simple model of the seismic motion (eq.1.10),
neglecting the vertical to horizontal cross-couplings, and assuming a quiet site
a = 10−9, the motion of the test mass induced by the seismic motion reaches the
order of 10−13m/

√
Hz, corresponding to a strain h ∼ 10−16 to 10−15 depending n

the scale of the detector. This is far above the required level (typically at least
10−21 in strain), and the attenuation performance needs to be improved. This im-
provement can be easily achieved by connecting the mechanical filters in series. In
the high frequency approximation, the asymptotic trend of the attenuation factor
improves as 1/ωn where n is the number of the cascaded filters. Thence by adding
a few more stages above the mirror suspension, one can reahize the required at-
tenuation performance only by simply using the passive mechanics. An example
of this strategy are the stack system composed by layers of rubber springs and
heavy stainless steel blocks interposed between the mirror suspension system and
the ground in LIGO, TAMA300 and GEO600.

Another way to improve the isolation performance is to lower the resonant
frequency of the mechanics. By shifting lower the resonant frequencies, one can
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greatly improve the attenuation performance at higher frequency. Virgo utilized
this approach and realized extremely high attenuation performance starting at low
frequency (4 to 6 Hz) with the a low frequency isolation system coupled to a
multi-stage suspension system called Supper Attenuator (SA) [30].
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Chapter 2

HAM Seismic Attenuation System

The configuration of advanced LIGO is a power-recycled and signal-recycled
Michelson interferometer with Fabry-Perot cavities in the arms - i.e., initial LIGO,
plus signal recycling. The principal benefit of signal recycling is the ability to re-
duce the optical power in the substrates of the beamsplitter and arm input mirrors,
thus reducing thermal distortions due to absorption in the material. To illustrate
this advantage, the baseline design can be compared with a non-signalrecycled
version, using the same input laser power but with mirror reflectivities re-optimized.
The signal recycled design has a (single interferometer) NBI range of 200 Mpc,
with a beamsplitter power of 2.1 kW; the non-SR design has a NBI range of 180
Mpc, but with a beamsplitter power of 36 kW. Alternatively, if the beamsplitter
power is limited to 2.1 kW, the non-SR design would have a NBI range of about
140 Mpc.

An important new component in the design is an output mode cleaner. The
principal motivation to include this is to limit the power at the output port to a
manageable level, given the much higher power levels in the interferometer com-
pared to initial LIGO.

With an output mode cleaner all but the TEM00 component of the contrast
defect would be rejected by a factor of ∼1000, leaving of order 1 mW of carrier
power. The OMC will be mounted in-vacuum on a HAM isolation platform, and
will have a finesse of order 100 to give high transmission (>99 percent) for the
TEM00 mode and high rejection (>1000) of higher order modes.

2.1 Seismic Isolation for the OMC
Isolation of the LIGO II optics from ambient vibration is accomplished by the
seismic isolation systems which must provide the following functions:

• provide vibration isolated support for the payload(s)
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Figure 2.1: Basic layout of an advanced LIGO interferometer.

• provide a mechanical and functional interface for the suspensions

• provide adequate space and flexibility for mounting of components (suspen-
sions and auxiliary optics) and adequate space for access to components

• provide coarse positioning capability for the isolated supports/platforms

• provide external actuation suitable for use by the interferometer’s global
control system to maintain long-term positioning and alignment

• provide means for the transmission of power and signals from control elec-
tronics outside the vacuum chambers to the suspension systems and any
other payloads requiring monitoring and/or control

• provide counter-weights to balance the payloads

To meet the requiremts above, the LIGO SAS team designed HAM-SAS, a
single stage, passive attenuation unit based on the SAS technology [4]. It can sat-
isfy the Ad-LIGO seismic attenuation specifications and has built-in nanometric
precision positioning, tide-tracking and pointing instrumentation. Its sensors and
actuators are designed to allow easy upgrade to active attenuation. This upgrade
would require the installation of a set of accelerometers and control logic and
would add to the passive performance. Since in HAM-SAS the horizontal and
vertical degrees-of-freedom (d.o.f.) are mechanically separated and orthogonal,
active control loops would be simple and easy to maintain. Additionally HAM-
SAS would bring to LIGO earthquake protection for seismic excursions as large
as ±1cm.
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Figure 2.2: LIGO I chamber and seismic attenuation stacks.

HAM-SAS is designed to be implemented completely inside the present ultra
high vacuum HAM chambers, replacing the present LIGO seismic attenuation
stacks below the present optical benches. Consisting of a single attenuation layer,
and re-using the existing optical benches, it is presented as a low cost and less
complex alternative to the Ad-LIGO baseline with three-stage active attenuation
system [5, 6].

Also HAM-SAS is based on an technology akin to the multiple pendulum
suspensions that it supports, thus offering a coherent seismic attenuation system
to the mirror suspension.

Even though the specific design is adapted to the HAM vacuum chambers,
the SAS system was designed to satisfy the requirements of the optical benches
of the BSC chambers as well. HAM-SAS can be straightforwardly scaled up to
isolate the heavier BSC optical benches. The BSC chamber configuration would
require the suspension of the BSC optical bench from four wires, thus introducing
a bonus stage of horizontal attenuation. The BSC bench, located below the seismic
attenuation stage, actually poses much less problems than the HAM optical bench.

Unlike the baseline Ad-LIGO active system, HAM-SAS does not require in-
strumentation on the piers (HEPI, [9]). If future upgrades of Ad-LIGO were to
require additional seismic attenuation this space would remain available. The
HAM-SAS attenuation performance could be augmented with the addition of an
already designed external stage10, without introducing any additional in-vacuum
instrumentation.
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Figure 2.3: HAM-SAS Assembly

2.2 System Overview
HAM-SAS is composed of three parts:

• a set of four inverted pendula (IP) for horizontal attenuation supported by a
base plate;

• a set of four geometric anti spring (GAS) springs for vertical attenuation ,
housed in a rigid "spring’box";

• eight groups of nm resolution linear variable differential transformers (LVDT),
position sensors and non-contacting actuators for positioning and pointing
of the optical bench. Micropositioning springs ensure the static alignment
of the optical table to micrometric precision even in the case of power loss.

The existing optical bench is supported by a spring-box composed by two alu-
minum plates and the body of four GAS springs (figg. 2.3,2.4). The GAS springs
support the bench on a modified kinematical mount; each filter is provided with
coaxial LVDT position sensors and voice coil actuators, and parasitic, micromet-
rically tuned, springs to control vertical positioning and tilts (not visible in this
pictures). The spring box is mounted on IP legs that provide the horizontal iso-
lation and compliance. The movements of the spring-box are also controlled by
four groups of co-located LVDT position sensors, voice coil actuators and par-
asitic springs. The IP legs bolt on a rigid platform which rests on the existing
horizontal cross beam tubes. Part of the existing vacuum chamber envelope is
also shown in orange.
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Figure 2.4: Spring Box Assembly.

2.3 Vertical Stage
The vertical stage of HAM-SAS consist of the Spring Box. Inside of it four GAS
filters are held rigidly together to support the load of the optics table and to pro-
vide the vertical seismic isolation. The interface between the optical table and the
GAS filters ia made by an aluminum plate is an aluminum slab with four stainless
steel pins at the corners, each with a particular shape according to a scheme of
the distribution and positioning of the load known as quasi-kinematic mount. Two
opposite ones are simple cylinders with a flat bottom surface, the other two have
one conical hollow, the other a narrow V-slot. Each of the GAS filter culminates
in a threaded rod having a hardened ball bearing sphere embedded at the top. The
quasi-kinematic configuration is such that the table’s pins accommodate the fil-
ters’ spheres thus precisely positioning the table while avoiding to over-constrain
them . The contact point between the spheres and the surfaces let the table free to
tilt about the horizontal axis.

2.3.1 The GAS filter

The GAS filter (fig. 2.5) consists of a set of radially-arranged cantilever springs,
clamped at the base to a common frame ring and opposing each other via a central
disk or keystone. The blades are flat when manufactured and under load bend like
a fishing rod. We used modified Monolithic GAS (MGAS) filters [11]. As the
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Figure 2.5: HAM-SAS GAS Filter

MGAS the tips of the crown of blades are rigidly connected to the central disk
supporting the payload. Instead of being made by a large, single sheet of bent
maraging, we bolted the tips of the blades to a central "keystone". Being built of
different parts the spring is not, strictly speaking, "monolithic", but it shares all the
performance improvements of the monolithic spring. For simplicity, throughout
the text, we referred to them as GAS filters even if they would more properly be
referred to as MGAS. The modified configuration has several advantages:

•

• blades can be cut using much more efficiently the sheet of expensive marag-
ing metal.

• the number and width of blades can be changed arbitrarily (as long as 180o
symmetry is maintained) to match the required payload.

• the individual blades are perfectly flat and relatively small, thus their thick-
ness can be easily tuned to the desired value by simply grinding them to
thickness.

• for assembly the keystone is simply held at the center of the filter body with
a temporary holder disk, then blades can be bent and assembled in pairs,
avoiding the awkwardness of bending of, and keeping bent, all blades at the
same time.

• the keystone, being a separate mechanical part, can be precision machined
to directly host the LVDT and actuator coils, the threaded stud supporting
the bench and the magic wand tips.

26



10
−1

10
0

10
1

10
2

−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Figure 2.6: GAS filter transmissibility measured at Caltech in 2005 on a three blade,
3mm thick bench prototype [13]

They are made starting from 3.44mm thick maraging steel [12]. The choice of the
material is made to guarantee a high Young modulus, non-deformability and ther-
mal stability. The clamp radial positioning can be-adjusted to change the blades’
radial compression.

At frequencies lower than a critical value the GAS filter’s vertical transmissi-
bility1 from ground to the payload has the typical shape of a simple second order
filter transfer function (2.6). The amplitude plot is unitary at low frequencies, then
has a resonance peak then followed by a trend inversely proportional to the square
of the frequency. Above a critical frequency the amplitude stops decreasing and
plateaus. This high frequency saturation effect is due to the distributed mass of
the blades; the transmissibility of a compound pendulum has the same feature.

A typical GAS filter can achieve -60 dB of vertical attenuation in its simple
configuration, this performance can be improved to -80 with the application of a
device known as Magic Wand (see sec.2.3.5).

1In Linear Time Invariant systems, the so called transfer function H(s) relates the Laplace
transform of the input i(s) and the output o(s) of a system, i.e. o(s) = H(s)i(s) or o(s)/i(s) = H(s).
The transmissibility, a dimensionless transfer function where the input and the output are the
same type of dynamics variables (position, velocity, or acceleration), is therefore the appropriate
quantity to use when measuring the attenuation performance of a mechanical filter.
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Figure 2.7: GAS Springs Model

An effective low frequency transmissibility for the GAS filter is2

Hz(ω) =
ω2

0(1 + iφ) + βω2

ω2
0(1 + iφ) + ω2

, (2.1)

where ω2
0 is the angular frequency of the vertical resonance, φ the loss angle ac-

counting for the blades’ structural/hysteretic damping and β is a function of the
mass distribution of the blades.

A simple way to model the GAS filter is to represent the payload of mass m0

suspended by a vertical spring of elastic constant kz and rest length l0z and by two
horizontal springs opposing each other of constant kx and rest length l0x (fig.2.7).
The angle made by the horizontal springs is θ and it is zero at the equilibrium
point when the elongations of the springs are zeq and x0 for the vertical and the
horizontals respectively. The equation of motion for the system is then:

mz̈ = kz(zeq − z − l0z) − kx(lx − l0x) sin θ − mg (2.2)

where lx =

√
x2

0 + z2 is the length of the horizontal spring. Approximating sin θ
to z/x0 for small angles (2.2) reduces to

mz̈ = kz(zeq − z − l0z) − kx

(
1 −

l0x

x0

)
z − mg. (2.3)

2Since the GAS filter is designed to work under vacuum the viscous damping term has been
neglected
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At the first order the system behaves like a linear harmonic oscillator with
effective spring constant

ke f f = kz + kx −
kxl0x

x0
. (2.4)

The last term of (2.4) is referred as the Geometric Anti-Spring contribute because
it introduces a negative spring constant into the system. As consequence of it the
effective stiffness is reduced, and so the resonant frequency, by just compressing
the horizontal springs. The system’s response is then that of a second order low
pass filter with a very low resonance frequency of the order of 0.1 Hz. Compared
with and equivalent spring with the same frequency is much more compact and
with limited to only one direction.

2.3.2 Equilibrium point position to load dependence
According to this model, at the equilibrium point the vertical spring holds alone
the payload and we have that

zeq =
m0g
kz
+ l0z (2.5)

from which the equation of motion becomes

mz̈ = kz

(
m0g
kz
− z

)
− kxz − kxl0x

z√
x2

0 + z2
− mg. (2.6)

We can find how, in the small angle approximation, the position of the equilibrium
point changes in correspondence of a variation of the payload’s mass when m =
m0 + δm in the equation of motion (2.6) obtaining

δm = −
kz + kx

g
z +

kxl0x

g
z√

x2
0 + z2

. (2.7)

Defining the compression as
l0x − x0

l0x
(2.8)

we have that the position of equilibrium point changes for different values of com-
pression as in fig.2.8. As shown in the model, above a critical value of the com-
pression the system has three equilibrium points in correspondence of the same
payload, two are stable and one unstable and we say the system is bi-stable. This
implies that in case of very low frequency tuning of the GAS filter one has to
avoid that the dynamic range of the system does not include multiple equilibrium
points in order to avoid effects of bi-stability .
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Figure 2.8: Equilibrium Point displacement for a variation of the payload’s mass in
correspondence of several compressions. The compression ratio is defined as (l0x −

x0)/(l0x).

2.3.3 Resonant frequency to load variation

Linearizing (2.6) it is possible to define the effective spring constant of the system
correspondent to a change in the payload’s mass as the derivative of the total force
applied to it as evaluated at the equilibrium point:

ke f f (z) = −
(
∂ f
∂z

)
= kz + kx

(
1 −

l0xx2
0

(x2
0 + z2)3/2

)
(2.9)

where f is equal to the right side of 2.6. The plot on fig.2.9 shows the effect of the
bi-stability as negative solutions of the square of the resonant frequency when the
compression exceeds the critical value.

It is possible to extract the relation between resonant frequency and working
point position when m = δm + m0 is evaluated at the equilibrium point (fig.2.10)
obtaining:

ω =

√
ke f f

m
=


kz − kx

(
l0x x2

0

(x2
0+z2)3/2 − 1

)
m0 −

z
g

(
kx + kz −

kxl0x√
x2

0+z2

)


1/2

. (2.10)

Plot 2.10 shows the frequency as a function of the equilibrium point. The curves
corresponding to different compressions of the blades tend asymptotically to the
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Figure 2.9: Dependence of the squared resonant frequency to the variation of the
payload’s mass at the equilibrium point.

straight lines for values of the compression closer to the critical and also the min-
imum for each of them changes position.

2.3.4 Thermal Stability
Once the compression and the payload is fixed, the system can be regarded as a
soft linear spring which supports the payload. The thermal stability of the GAS
can be studied under this approximation, valid in a small range around the working
position. In the GAS at the equilibrium, the entire vertical force of the system
comes from the elasticity of the blade, and the working (equilibrium) position
is determined by a balance of the stiffness and the payload weight. From the
equation (2.4), the variation of the effective spring for a given perturbation of the
temperature ∆T is

∆ke f f = ∆kz +

(
1 −

l0x

x0

)
∆kx −

kx

x0
∆l0 +

kxl0x

x2
0

∆x0 (2.11)

in which we can separate the contribution of the physical expansion of the blades
and the frame ring from the change on the elasticity due to the temperature depen-
dence of the Young modulus E as in the following:

∆ke f f =

{[
kz +

(
1 −

l0x

x0

)
kx

]
δEblade −

kx

x0
l0x

(
δLblade − δL f rame

)}
∆T. (2.12)
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Figure 2.10: Resonant frequency to equilibrium position for several values of com-
pression. The minimum moves from the original position.

The geometrical contribution depends on the differential thermal expansion co-
efficient of the blade and the frame (filter body). Assuming the use of maraging
steel for the blade, and of aluminum for the frame, the difference of their expan-
sion coefficients will be of order of 10−6. By assuming 9.0% of compression and
substituting the parameters used in the plots above and the properties of maraging
steel, one obtains,

∆ke f f =

[
ke f f

(
δE
E

)
blade
−

kx

x0
l0x

(
δLblade − δl f rame

)]
∆T. (2.13)

In the case of HAM-SAS, the Young modulus for maraging steel relative change
for a Kelvin degree is about 3 × 10−4, the effective elastic constant of the four
filters in parallel for a mass of about 1 ton and a resonant frequency of 200 mHz
is 1.6 × 103N/m we obtain the following formula to estimate the variation of the
effective spring constant:

∆ke f f = −

[
(0.5)elasticity +

(
10−3

)
expansion

]
∆T [N/m]. (2.14)

From the previous we can estimate the change in mass necessary to keep at the
same height the working point of the GAS filter as:

∆m =
(
∆ke f f

ke f f

)
M∆T. (2.15)
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Figure 2.11: Rigid body representation of the GAS filter with a wand. For sake
of simplicity just one blade and one wand are sketched. Because of its distributed
mass, the low frequency blade’s dynamics can be approximated with a rigid body
with effective mass and moment of inertia rotating about an horizontal axis. A wand
with a counterweight connected as shown in the figure, provides a way of properly
tune the center of percussion and remove the transmissibility saturation.

The last formula turns out to be very useful to evaluate the environmental condi-
tion in which the actuators have sufficient authority to compensate for the temper-
ature variations
.

The GAS effect only reduces the elastic return forces, but cannot affect the
hysteresis forces. As the critical compression level is approached, the hysteresis
takes a progressively dominating role. From the static point of view, just prior to
bistability, hysteresis makes the oscillator indifferent. From the dynamical point
of view hysteresis can turn the 1/ f 2 GAS filter TF behavior into a less favorable
1/ f [33].

2.3.5 The Magic Wands

The term β in (2.1) that causes the attenuation GAS filter at high frequencies origi-
nates by the mass distribution in the blades and can be eliminated by the Center of
Percussion correction. The COP and its effect can be exemplified by a compound
pendulum constrained to move in the horizontal direction. When the suspension
point is forced to oscillate, in the high frequency limit, the pendulum body pivots
around a fixed point which is the COP. In the same way, if an impulsive force is
applied along the COP the suspension point remains fixed.

The device goes in parallel to the GAS springs. It consists essentially of a
wand hinged to the filter frame ring and the central keystone. Attached to one end
is a counterweight whose function is to move the wand’s COP out of the pivot.

A reasonably accurate dynamical description of the system, which accounts
for the internal vibrational modes, can be obtained simply by considering the
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curved blades as an elastic structure. However the low frequency dynamics and
the transmissibility saturation of the GAS filter with the wand can be easily and
accurately described in the rigid body approximation (see figure 2.11). In this
regime, the blade is represented as a vertical spring of spring constant kz; its dis-
tributed mass is an effective rigid body with mass me f f , horizontal principal mo-
ment of inertia Ie f f , with center of mass at distance le f f from the wand’s pivot. The
wand is modeled as a hollow cylinder of lenght d, moment of inertia I and mass
m, with a point-like counterweight of mass µ at one end. The distances along the
wand from the pivot to the counterweight and to the wand’s tip are respectively
l and L. The payload can be simply modeled with a point-like mass M. Under
these assumptions, the Lagrangian for small oscillations of the system is

L =
1
2

Mż2 +
1
2
µ

(
l
L

ż −
L + l

L
ż0

)2

+ (2.16)

1
2

me f f

(
le f f

L
ż −

L − le f f

L
ż0

)2

+
Ie f f

2L2 (ż − ż0)2 +

1
2

m
(
2L − d

2L
ż +

d
2L

ż0

)2

+
I

2L2 (ż − ż0)2 −

1
2

k(z − z0)2

where z is the generalized coordinate orthogonal to the constraints necessary to
describe the system’s dynamics, and z0 is the coordinate of the suspension point.
The spring constant k is complex and can be rewritten as k = kz(1 + iφ) where
the term phi and k are both real and have been introduced ad hoc to account
for the structural damping, which is the dominant dissipation mechanism of the
blades. The gravitational potentials have not been included because they only fix
the equilibrium position of the system and do not affect the dynamical solution.

Computing the Euler-Lagrange equation and solving it in the frequency do-
main, we obtain the vertical transmissibility Hz(ω) of the mechanical system:

Hz(ω) =
z̃(ω)
z̃0(ω)

=
ω2

0 − Aω2

ω2
0 − Bω2

in which:

A =
d2

4L2 −
d

2L
+

Ie f f

mL2 +
I

mL2 −
me f f le f f

mL
+

me f f l2
e f f

mL2 +
µl2

mL2 +
µl
mL

B = 1 +
M
m
+

d2

4L2 −
d
L
+

Ie f f

mL2 +
I

mL2 +
me f f l2

e f f

mL2 +
µl2

mL2

ω2
0 =

kz (1 + iφ)
m
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Figure 2.12: "Magic Wand" designed for HAM-SAS. At presented they have not
been installed in the system yet. They can provide an additional order of magnitude
in vertical attenuation at 10 Hz.

From (2.17) it follows that, in the limit ω → ∞, H(w) → A/B and a plateau
appears in the transmissibility at high frequency. In principle it can be canceled
reducing A to zero by tuning the counterweight’s moment of inertia µl2. When
A , 0, because µl2 is either too small or too large, a complex conjugate zero
pair appears in the transfer function and we say the system is under- or over-
compensated respectively. Ideally neglecting the internal modes and setting the
system at the transition between under-compensation and overcompensation, a
well-tuned wand should be able to restore the theoretical 1/ω2 trend at the high
frequencies [14].

2.3.6 Vertical Modes of the System

The HAM-SAS’ vertical degrees of freedom can be simply modeled by a table
held by four vertical springs. Each of them represents a GAS filter with an equal
effective spring constant k1, k2, k3, k4 and has null rest lengths. Let the tern (z, θ, φ)
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represent the coordinates of the system, M the total mass of the table, Iθ and Iφ
the momentums of inertia of the table along the x axis and the y axis respectively,
and l the table’s half length. We can deduce the equation of motion from the
Lagrangian of the system L = T −U in which the kinetic and the potential energy
can be written as:

2T = Mż2 + Ixθ̇
2 + Iyφ̇

2 (2.17)

2U = k1z2
1 + k2z2

2 + k3z2
3 + k4z2

4. (2.18)

zi are the elongations of the springs and can be written in terms of the coordinate
of the system as:

z1 = z − lθ − lφ (2.19)
z2 = z + lθ − lφ (2.20)
z3 = z + lθ + lφ (2.21)
z4 = z − lθ + lφ. (2.22)

Solving the equations of Eulero-Lagrange for the system we can write:

[M] ẍ = Kx (2.23)

where x represents the vector of the coordinates, [M] represents the inertia and K
is the stiffness matrix of the system:

K =

 k1 + k2 + k3 + k4
l
2 (−k1 + k2 + k3 − k4) l

2 (−k1 + k2 + k3 + k4)
l
2 (−k1 + k2 + k3 − k4) l2(k1 + k2 + k3 + k4) l

2 (k1 − k2 + k3 − k4)
l
2 (−k1 + k2 + k3 + k4) l

2 (k1 − k2 + k3 − k4) l2(k1 + k2 + k3 + k4)

 .
(2.24)

Then the modes of the system correspond to the eigenvectors of K:

Kξ = λξ (2.25)

and the correspondent frequencies can be obtained from the relative eigenvalues:

ω0i =
λi

Mi
. (2.26)

In the simple case in which the four spring constants are equal to each other, we
obtain the following eigenfrequencies:

ωz =

(
4k
M

)1/2

; ωx =

(
2kl2

Ix

)1/2

; ωy =

(
2kl2

Iy

)1/2

. (2.27)

From (2.27) we can see that the two angular frequencies depend on the systm’s
momentums of inertia and the two modes are degenerate in case of symmetry.
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Figure 2.13: Dynamical model of the optics table.

Figure 2.14: Scheme of the tilt correcting springs added between the top plate and
the spring box.

2.3.7 Tilt stabilizing springs
In general the table will not rest horizontally because of torques originated by the
weight distributions and differences in the spring constants. Unlike the BSC case,
in the HAM chambers the load is located above the seismic attenuation stage and
the effective tilt rotation axis. This torque is in competition with the stabilizing
component of the GAS springs. The GAS springs, though, are tuned to be very
weak, therefore the destabilizing torque dominates and would result in an unstable
equilibrium. This problem was forgotten in the initial design and simulations,
and discovered during initial tests. To solve this problem a system of correcting
springs has been introduced in the design of HAM-SAS in order to add stiffness
on the angular DOFs. A vertical shaft was connected to the underside of the top
plate , attaching a cross of four springs connected to the four corners of the spring
box. The four springs hook to four wires and four tuning screws to reach the
spring box corners and allow fine tilt tuning.

The four tilt correcting springs work inevitably as a spring in parallel to the
GAS springs and add stiffness in the vertical degree of freedom as well. The
spring constant of this effective vertical parallel spring is

k(z)
tilt = 4

(
1 −

l0

x0

)
k (2.28)

where l0 is the springs’ rest length, x0 the spring elongation at the working point

37



Figure 2.15: Supporting system for the spring box.

and k their spring constant. k(z)
tilt can be made small keeping the working point

length close to the rest length. Although, since they work only if in tension, x0

cannot be reduced arbitrarily but has to be always greater than l0 in all the dynam-
ical range of the system.

2.4 Horizontal Stage

The horizontal stage of HAM-SAS is based on four inverted pendulums that sup-
port the spring box. Each of them is constituted by an aluminum hollow cylinder,
448 mm long, 50 mm diameter and walls 1 mm thick hinged to the base plate by a
maraging steel flex joint with diameter of 95 mm over the length of 50 mm3. The
support of the Spring Box is obtained by mean of a particular mechanical system
(fig.2.15). In correspondence of each attachment point the spring box is provided
with a small steel bridge that hangs from a flex joint made of a short maraging
steel wire 30 mm long and 3 mm diameter. The wire is held by the IP’s leg cap.
The bridge is mounted with 4 screws, two pushing and two pulling from the spring

3The angular elasticity of this flex joint was calculated to balance the inverted pendulum desta-
bilization stiffness (−Mgh) for a mass of 250 kg per leg (1 ton total) over the 491 mm effective IP
leg.
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Figure 2.16: Inverted Pendulum Model

box plate. This arrangement permits to tune the height of the attachment point of
the leg and thus to compensate for differences on the leg’s length and equally
distribute the load on them (see section 3.3.1 for the process of tuning).

2.4.1 Inverted Pendulums
The inverted pendulums (IP) are designed to provide the seismic isolation along
the horizontal directions. An IP is a compound pendulum hinged to the ground
by a flex joint in such a way that the center of mass is above the pivot. The
model represented in fig.2.16 illustrates how it works. M is the mass that has to
be isolated from the ground and it is connected to a rigid leg with momentum
of inertia I, mass m and length l by a flex joint which produces an elastic forces
represented by a complex spring constant κ = κ0(1 + iφ). where the imaginary
term is introduced to account for the structural damping. With these parameters
the equation of motion for the mass along the θ axis is then:

Iθ̈ = −κθ + Mgl sin θ (2.29)

which describes an harmonic oscillator with effective spring constant

κe f f = κ − Mgl. (2.30)

From (2.30) we can see that the gravitation term Mgl acts like an anti-spring and
reduces the overall stiffness and thus the resonant frequency.

The physics of the system is well described by the potential energy:

U =
1
2
κθ2 + Mgl(cos θ − 1) w

1
κe f f θ

2 + Mgl
θ4

4!+
O(θ6). (2.31)
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Figure 2.17: The reduced potential energy Upot/κ is plotted for different values of
the gravity elastic ratio Rge = Mgl/κ. For R � 1 the system is far from instability; or
R & 1 the system becomes bi-stable; for R � 1 there is no stable equilibrium point
and the system collapses.

In the small angle approximation and for κ > 0 the quadratic term of the potential
dominates and the system is a simple oscillator. By reducing the value of κ the
potential “flattens” around θ = 0 and this corresponds to small restoring forces
and small resonant frequency. When κe f f ≈ 0 the quartic term dominates at small
angles. When gravity begin dominate (κe f f . θ = 0 is no more a point of stable
equilibrium. U(θ) has two minima at

θ = ±

√
12
−κe f f

Mgl
. (2.32)

When κe f f � 0 the potential is always negative and the system is unstable.
Referring to the IP linear displacement x measured at its top (x = lθ) and to

the linear stiffness k = κ/l2, the equation of motion for the variable x and in case
of small displacements is:

Mẍ = −
(
k −

Mg
l

)
x + O(x3) = ke f f x + O(x3). (2.33)

When ke f f > 0, the system is an oscillator resonating at frequency:

f0 =
1

2π

√
k
M
−

g
l
. (2.34)
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In principle, by properly tuning the spring stiffness and the suspended load one
can obtain arbitrarily resonant frequency.

We can describe describe the dynamical behaviour of the IP in the freqeuncy
domain by the Lagrangian of the system:

L =
1
2

Mv2 +
1
2

Iθ̇2 +
1
2

mv2
cm −

1
2

kl2θ2 − mhzcm − Mgz (2.35)

from which we can obtain the transmissibility as following:

x̃(ω)
x̃0(ω)

=
A + Bω2

A −Cω2 (2.36)

A =

[
4ω2

0 − 1 −
2g
l
− 4M −

4M
m
−

4gM
ml

]
(2.37)

B =

[
1 − 4

I
ml2

]
(2.38)

C =

[
1 + 4

I
ml2 + 4

M
m

]
. (2.39)

It is clear from (2.36) that the inverted pendulum acts as a second order low pass
filter respect to the ground motion.

As for the GAS filter (see sec.2.3.5) the presence of the ω2 term in the nu-
merator of (2.36) brings to a plateau of the transmissibility at high frequencies
and then to a saturation in the isolation performance. The effect arises because
of the mismatch of the center of percussion with the hinging point. The way to
overcome the limitation consists then in adding a counterweight to bring the COP
at the ground level, that is to say canceling the term B in (2.36) [30].

The plateau level expected with the HAM SAS 200 g legs is calculated to be
at -80 dB. The implementation of the counterweight is expected to increase the
attenuation power by 20 dB with just 90% compensation of the COP effect, a very
simple balancing to obtain4.

2.4.2 Response to Ground Tilt
When the ground tilts by and angle Θ with respect to the vertical axis, it simply
introduces an additional external force −kθΘ to the system. If this contribution is
included by the equation of motion 2.36 we have:

x =
A + Bω2

A −Cω2 x0 +
kθ/l2

A −Cω2Θ (2.40)

where kθ/l2 is the equivalent spring constant for the translational motion x.
4For the HAM-SAS prototype a suitable counterweight was designed and built, but never put

in operation for lack of time.
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Figure 2.18: IP Transmissibility for different values of B/C.

2.4.3 Horizontal Normal Modes of the System
We can study the horizontal degrees of freedom with a simple model. The en-
semble spring box plus optics table is regarded as a rigid body on the horizontal
plane supported by four soft springs with constant k1, . . . , k4 and null rest lengths
(fig.2.20). According to this model the system has three normal modes: two trans-
lational along the horizontal plane and one rotational around the vertical axis. The
two translationals are degenerate in the ideal case, i.e. equivalent stiffness in the
four springs and perfect symmetry of the geometry.

The motion of the rigid mody is defined by a vector containing the positions
(x,y,φ) in a Cartesian system of coordinates. Considering the elementary displace-
ments, one obtains the stiffness matrix of the system as following:

K =

 −k1 − k2 − k3 − k4 0 −k2 + k4

0 −k1 − k2 − k3 − k4 −k1 + k3

−k2 + k4 −k1 + k3 -k1 − k2 − k3 − k4

 (2.41)

where the mass, the momentum of inertia and the radius of the rigid body are as-
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Figure 2.19: IP counterweight to compensate the COP effect.

sumed as unity for simplicity. The matrix is the identity for equal spring constants
and the symmetry is broken by their differences.

2.5 Sensors and actuators

In HAM-SAS the spring box only moves in the horizontal plane (x-y and yaw)
while the optical bench only moves in the remaining three degrees of freedom (z,
pitch and roll) with respect to the spring box. The 6 by 6 positioning and control
matrix then naturally and conveniently splits into two independent three degree-
of-freedom matrices. Sensors and actuators are co-located to roughly diagonalize
the controls within each of the three degree-of-freedom matrices.

Instrumentation for sensing and actuation is applied in groups of four, even
if each system has only three degrees-of-freedom. This arrangement was cho-
sen because of the rectangular symmetry of the vacuum chamber feed-throughs
and of the optical bench. Four instruments for three degrees of freedom form a
redundant system, one of the instruments can be ignored, or three diagonalized
virtual sensors can be synthesized from the four actual ones. The redundancy of
the sensor/actuators also makes that if one of the instruments fails, the SAS can
still operate normally, by simply changing the diagonalization matrix.

An LVDT [32] (Linear Variable Differential Transformer) is constituted by
three coaxial coils, two large ones wire in series, coiled in opposite direction,
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Figure 2.20: Dynamical model for the horizontal degrees of freedoom

which are mounted on a reference structure and act as receiver and a smaller coil,
which is the emitting coil, positioned between the larger two and fastened to the
moving mechanical component. The central emitting coil is driven by a sinu-
soidal signal with frequency between 10 kHz and 20 kHz. The coils are made in
Kapton-coated copper wire wound around a peek support. The clearance between
the large coils was sufficient to allow 10 mm movements in all directions. The
position measurement is obtained by measuring in a lock amplifier the amplitude
and sign of the voltage generated in the receiving coils by the little emitting coil.
Obviously the measured voltage depends on how the magnetic field of the two
coils overlap and the right choice of the geometry permits a 1 percent linearity
over a region of more than a few centimeters at low gain. At high gain the read-
out range is strongly reduced to improve the sensitivity to a nm. This resolution
exceeds the stability of the floor and is deemed sufficient to satisfy the Ad-LIGO
specs. Another important function of the LVDTs is to provide the position mem-
ory needed to bring the table back into the original alignment after interventions
on the optics.

The horizontal direction dynamic actuators are specially designed, noncon-
tacting, “racetrack” voice coils (fig.2.21). The choice of wire diameter and of
materials (kapton and peek) is made so that the coils can in non condition, in-
cluded a railed power supply) over-heat and get damaged or, worse, damage the
vacuum. The geometry of the "racetrack’ and of the magnetic yoke are designed
to deliver constant force within better than a percent over a field of movements of
10 mm in diameter in the horizontal plane. They deliver force sufficient to deal
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Figure 2.21: Horizontal coil actuator and LVDT.

with tidal movements and thermal excursions of 10 K with less than a mW of
maximum power dissipation. They are capable of positioning the table within the
resolution of the LVDT position sensors.

The vertical direction dynamic actuators have similar performance, but more
traditional design, non-contacting voice coils.

Micrometrically and remotely controlled stepper motors are used to null the
static current of the dynamic actuators. This solution has multiple advantages. It
maintains alignment within a few microns even in the event of complete power
loss, it makes in-vacuum power consumption practically negligible, and, by re-
ducing the force requirements on the actuators to mN levels, it minimizes their
actuation noise.

2.6 Spring Box Stiffeners

Early simulations of the HAM SAS spring box showed that the spring box has
undesirable low frequency resonances [10]. A study was carried out to find easy
solutions to stiffen the table and mitigate the possible problem (fig.2.22).

It was noted how some modes had relatively large relative movements between
the IP support points of the spring box and the GAS support points of the optical
table. Two kinds of stiffeners, C-shaped mounted at the periphery of the spring
box, where they can be installed easily, one thicker and one thinner. The result
was that in both cases (with and without C-stiffener) some frequencies actually
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Figure 2.22: Simulations of the internal modes of the spring box brought to the
introduction of later stiffenere into the structure.

decrease because of the added mass (7 and 9) and some increase (8 and 10). The
simulations show apparently not great advantages from their implementation but
these element were anyway included into the system during the construction.

46



Chapter 3

Mechanical Setup and System
Characterization

The two main subsystems of HAM-SAS are the GAS filters and the Inverted Pen-
dulums. As discussed in the previous chapter, the firsts are responsible for the
vertical degrees of freedom, the seconds control the horizontal ones. The overall
performance of the system depends equally on the performance of each of the two
parts, and on their mutual interactions. During the mechanical setup, we each of
them in its optimal configuration and then integrated the whole system. We as-
sembled the GAS filters with the appropriate compression of the blades, tuned and
equalized their resonant frequencies and working points. For the inverted pendu-
lums we measured the spring constant of the flex joints and found the optimal
load for the best horizontal seismic attenuation performance. We then installed
the spring box with the GAS filters on the IPs, taking care of equally distributing
the load on each leg. The mechanical setup tuning continued with the system in-
stalled inside the HAM chamber at LASTI with the leveling of the optics table,
the stabilization of the tilts and the final tunings..

3.1 GAS Filter Tuning

The GAS filters are tuned to the lowest possible frequency while preventing them
from becoming bi-stable. As shown in 2.10, the resonant frequency of a stable fil-
ter has approximately a quadratic dependence on the height of the blades’ tip and
there is a point in which, fixed the compression, the frequency gets a minimum.
This is the vertical working point of the GAS filter. Then the radial compression
is varied to look for the minimum frequency achievable. This is the critical com-
pression. The process of tuning consists in finding the critical compression with a
certain margin of stability and the appropriate mass to set the filter at the working
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Frequency [mHz] Height [mm] Mass [Kg]
A 191 276.2
B 180 275.42
C 192 276.34
D 183 276.5

Table 3.1: GAS filter bench tuning.

point with the lowest frequency. The four filters must also be equalized. Figure
3.1 and table 3.1 show the results.

3.2 Tilt Correcting Springs
After the optics table had been installed on HAM-SAS, the mechanical setup con-
tinued with the solution of the tilt stability problem.

As explained in sec.2.3.7, a tilt stabilization rod and auxiliary springs were
included between the optical bench and the spring box to stabilize the tilt modes
of the optics table. We have made a simplified calculation of the tilt-correction
springs stiffness k required for the HAM-SAS optics table to float and make the tilt
unconditionally stable considering the GAS springs as normal vertical springs1.

In the small angle approximation we can write the destabilizing torque due to
the optics table load as

τload = θg
∑

i

mizi ' θ × 5466 Nm (3.1)

where θ is the angle between the table plane and the horizontal plane and mi and
zi are the mass and the height of the i-th mass element respect to the top edge of
the springs, including the optics table. Zi is calculated starting from the plane of
the spherical joints on which the tilt movement hinges, just over the GAS spring
keystones. Load moment calculations have been carried out with the Solid Work
model of the system (fig.3.3).

A compensating torque is introduced by the GAS and it is approximately equal
to

τGAS = 2kGAS θl2 ' θ × 464 Nm (3.2)

where

l2 =
√

Dx2 + Dy2, kGAS =
16π2 f 2

0

MLOAD
. (3.3)

1In a complete simulation the GAS should be considered as nonlinear spring to take into con-
sideration the whole effect
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Figure 3.1: GAS filters Frequency vs Height experimental curves.
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Figure 3.2: The plot shows the fit with an exponential decay for the oscillation am-
plitude of the GAS filter A of HAM-SAS tuned at 245 Hz. The result is a quality
factor of about 42. It was believed to be quite an high value,after that measurement
the compression was increased to reduce the frequency.

We have assumed a resonance frequency f0 = 0.2 Hz. This stabilization force
is negligible, and will tend to zero as the GAS resonance frequency is tuned to-
wards zero. The force applied by the tilt-stabilizing springs is F = kx with x = θh
. The tilt stabilizing torque that it provides is proportional to h, the height of the
tilt stabilization rod. The effect of the tilt-stabilizing springs can be written as

τ = 2kθh2 ' kθ × 0.151Nm (3.4)

where h = 0.275 m is the distance between the plane of tilt-correction springs and
the assembly hinging point and k is the stiffness of the used springs.

In order to have a stable equilibrium position we need to have

τ + τGAS = τLOAD. (3.5)

Substituting in the expression we get

k ' 33100N/m. (3.6)

Assuming an ideal zero GAS resonance frequency (τGAS = 0) we get a slightly
higher required stiffness

k ' 36150N/m. (3.7)

Note that four springs are mounted in a cross configuration. By symmetry
two springs can always be considered orthogonal to any considered tilt, while the
other two can be considered along the tilt. Therefore the effective stiffness in the
tilt stabilization is twice the stiffness of a single spring, as long as the springs are
under some tension.
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Element
Mass 
(Pounds)

Mass 
(Kg)

Z 
(Inches) Z (m)

Vertical 
Moment 
(kg m)

Dominant 
Material

Density 
(kg)

Volume 
(m^3)

Bouyant 
Mass 
(Kg)

Optical Table 841.00 378.45 0.00 0.00 0.00 Aluminium 2700.00 0.1402 0.1682
0.00 0.00 0.0000

H1 Geophone 25.00 11.25 4.00 0.10 1.14 Mixed 0.0030 0.0036
H2 Geophone 25.00 11.25 4.00 0.10 1.14 Mixed 0.0030 0.0036
H3 Geophone 25.00 11.25 4.00 0.10 1.14 Mixed 0.0030 0.0036
V1 Geophone 25.00 11.25 5.00 0.13 1.43 Mixed 0.0031 0.0037
V2 Geophone 25.00 11.25 5.00 0.13 1.43 Mixed 0.0031 0.0037
V3 Geophone 25.00 11.25 5.00 0.13 1.43 Mixed 0.0031 0.0037

0.00 0.00 0.0000
Triple_Suspended 9.00 32.52 0.83 7.43 Aluminium 2200.00 0.0041 0.0049
Triple_Non_Suspended 36.00 15.28 0.39 13.97 Aluminium 2700.00 0.0133 0.0160

0.0000
Raised_Mass (Leg Element #1) 610.00 274.50 18.50 0.47 128.99 Stainless 8000.00 0.0343 0.0412
Mass_Riser 22.00 7.75 0.20 4.33 Stainless 8000.00 0.0028 0.0033
Leg Element #3 233.50 105.08 1.35 0.03 3.60 Stainless 8000.00 0.0131 0.0158
Clamp Risers 13.64 0.00 0.00 Stainless 8000.00 0.0017 0.0020
Counterweight 45.45 0.00 0.00 Stainless 8000.00 0.0057 0.0068
Optics Table Adaption Plate 112.00 0.00 0.00 Aluminium 2700.00 0.0415 0.0498

TOTAL 1063.62 166.04 0.2748 0.3298

Worst Case Table
Mass Element Susp. Type Susp. Mass Sus. Height Non Susp. Mass Non Susp. Mass Height Total Mass Mass Moment
MC1 MC Triple 9 0.826 36 0.388 45 21.402
MC2 MC Triple 9 0.826 36 0.388 45 21.402
MMT3 RM Triple 38.3 0.796 40.4 0.537 78.7 52.1816
RM MC Triple 9 0.826 36 0.388 45 21.402
Totals 65.3 213.7 116.3876

HAM SAS Initial
BSC Leg Element 1 277 0.4699 277 130.1623
LOS Cage 22 0.19685 22 4.3307
Total 0.66675 299 134.493

HAM SAS Triple
BSC Leg Element 1 277 0.4699 277 130.1623
LOS Cage 22 0.19685 22 4.3307
MC Triple MC Triple 9 0.826 36 0.388 45 21.402
Total 344 155.895

Figure 3.3: Mass Properties of the HAM Table Load. One shows the effective
bouyant mass of the load on the GAS springs. The effective bouyant mass of the
system is 0.32 kg. The second shows vertical moments in the worst case scenario for
Advanced LIGO (i.e. HAM 2 with a stable signal recycling geometry).

The effect of the angular stiffness of the GAS springs was not considered
in this initial calculation because the GAS springs support the optical table via
spheres in groves that nominally do not transmit torque. This effect was then
calculated and added and resulted being non negligible 2.

2The real problem came because when ordering the correction springs, we accidentally dropped
a factor of ten from the calculation above and ordered softer springs. When we started the tuning
we had available several sets of springs between 6,600 N/m (each) and 23,000 N/m. This mistake,
composed with an unfortunate loose screw in the assembly of the tilt stabilization rod caused a lot
of confusion.
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Figure 2:     3.0 mm wire spring stiffness measurement 

Figure 3:     2.5 mm wire spring stiffness measurement 
Figure 3.4: 2.5 mm wire spring stiffness measurement

To calculate the stiffness of a generic helical spring we can use the relation

k =
Gd4

nD3 (3.8)

where d is the wire diameter, D is the average spring diameter, n is the winding
number and G is a constant proportional to the material shear modulus. G was
determined experimentally from a measurement of a spring.

Figures 3.4 and 3.5 show respectively the stiffness measurements for a spring,
with d = 2.5 mm, n = 20.75 windings and for a spring with d = 3 mm and n = 18
windings. The average winding diameter was D = 16.8 mm for both springs.
From the two measurements we get

G ' 1.26 · 1010 N/m2 (3.9)

In order to stabilize the table we initially used springs with d = 3.5 mm, n = 12
windings and D = 16.8 mm (k = 6600 N/m) which are clearly insufficient accord-
ing to the calculation above and the bench was unstable. We then installed springs
with d = 3.5 mm, n=8 windings, D = 16.8 mm (k = 10000 N/m), which was still
insufficient to unconditionally stabilize the table. We had, in order

• springs with d = 4 mm and n=12 windings, D = 16.8 mm (k = 11300 N/m)
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Figure 2:     3.0 mm wire spring stiffness measurement 

Figure 3:     2.5 mm wire spring stiffness measurement 

Figure 3.5: 3 mm wire spring stiffness measurement

• springs with d = 4 mm and n = 8 windings, D = 16.8 mm (k = 17000 N/m)

• springs with d = 4 mm and 6 windings, D = 16.8 mm (k = 23000 N/m).

Each of these is insufficient to guarantee unconditionate stability, but some inter-
mittent stability was observedwith the high spring value. The stability was due
to the angular stiffness of the GAS filters neglected in the calculations, while the
intermittent character of the stability was due to the loose tilt stabilization bar to
which the stabilization springs are connected. This trivial problem cause us to
consider several possible causes of angular stability (or instability), discussed be-
low. Only after wasting several days of time we found the source of the problem
and fixed it by tightening the retaining screw. The system then became angularly
stable, as expected. The reasoning has some importance and is reported below.

By this time we had remade the stiffness calculations and we knew that even
the stiffest springs available were not sufficient. We conjectured correctly that the
missing angular stiffness was contributed by the GAS springs angular stiffness,
but the reason why we encountered only some angular stability at all might be in
the friction in the spherical joints that couples in part of the GAS angular stiffness.
We but also considered the fact that the GAS springs are not linear and become
stiffer as they stray away from the equilibrium point. This contribution turned out
to be non relevant.
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Simulations made with linear springs showed that if the spherical joints are
eliminated, the table is perfectly stable with softer tilt correction springs, but if
spherical joints are introduced, the table becomes angularly unstable3.

Sufficient friction of the spherical joints, coupled to a relatively stiff angular
stiffness of the GAS filter assembly, would produce stability, but only as long as
the sphere of the joint sticks to it siege. We thought possible that stick and slip in
the joint this gave us the intermittent stability.

In order to answer the question, we went back to the lab and measured the
torsional rigidity of GAS springs. We mounted a rigid lightweight carbon fiber
shaft to a two blade GAS spring keystone. The blade is a close relative to the
HAM-SAS’(a two blade version, in which we could measure independently the
stiffness along and across the blades, but 10% narrower and a few percents thinner
than the blades in HAM-SAS). The torque is applied at 600 mm from the keystone
with a string, a pulley, and approximately 156 g masses. The torsional angle was
measured on photos comparing the angle between the shaft and a ruler marks on
the wall in the background. The measurement was made first along the blades,
and then repeated transversally.

We found a longitudinal angular elastic constant for a pair of GAS blades
equal to

kl
θ = (53 ± 5) Nm/rad (3.10)

kt
θ = (72 ± 5) Nm/rad. (3.11)

A GAS filter has four pairs of blades spaced at 45 degrees, therefore the angular
elastic constant of a filter is

kθ = 2(53 + 72) = (394 ± 10) Nm/rad (3.12)

that is for the whole spring box it would be kθ = (1572 ± 40)Nm/rad. These num-
bers have to include a factor of 1.25 accounting for the different blade thickness
(2.22 mm thick in the bench prototype, 2.39 mm in HAM-SAS) and 1.16 for the
blades width (80 instead of 69 mm). We also had to account for the number of
blades in the filters. Then we have for the LASTI case:

k̃θ = (2280 ± 40) Nm/rad. (3.13)

This torque represents roughly 40% of the torque necessary to stabilize the optics
table tilt. The second possible source of stability may be that in GAS springs the

3In the simulation the system is described with two bodies, the optics table and a massive base,
and four springs with a diagonal stiffness matrix (108, 108, kGAS ) that connects the two bodies.
The motion of the base respect to a generic inertial frame (ground) is not constrained.
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resonant frequency is function of the distance x from the spring optimal working
point (see fig.3.1):

f = a + bx2. (3.14)

We can write the elastic constant of an oscillator as k = c f 2, equating we get:

k = c2
1 + 2c1c2x2 + c2

2x4. (3.15)

Then the potential energy of a GAS spring would lead also to higher than quadratic
terms

UGAS = kGAS x2 = c2
1x2 + 2c1c2x4 + c2

2x6 (3.16)

which may contribute to the stability. That will not eliminate the need for the
stabilization bar.

3.3 IP setup
The IPs are made of four allow aluminum tubes 0.491 mm long and 1 mm thick.
They are supported by 8 mm thick maraging steel flex joints through an apposite
holding cup. This flex joint (working under compression) provides the mechani-
cal angular stiffness of the IP mechanism. A thin, negligible stiffness, flex joint,
working under tension, connects the head of each IP leg to the spring box. The IP
setup required: the equalization of the load on each leg; the measurement of the
resonant frequencies of the horizontal translational modes of the spring box and
the correspondent load curve; the choice of the center of percussion correcting
counterweight.

3.3.1 Load equalization on legs
Even though the parts involved in the IPs are machined to a high precision the
UHV baking processing inevitably introduces some warping, we found the spring
box to be more warped than the height tolerancies of the four legs. A new ad-
justable support system was then introduced to solve that problem.

The way we measured the individual leg load was measuring the frequency
of the lowest rigid body mode of the legs. This corresponds to the “banana”
mode of the main flex joint and leg’s body together with the upper and lower
flex joint deforming in an "S" shape. Because it works in tension, the small flex
joint acquires a transversal stiffness Mg/l (where m is the applied load and l is
the 30 mm joint length), which load applied on the leg (see fig.3.6). The varying
transversal stiffness affects the leg’s resonance frequency. Therefore we can make
sure that the load is equalized on the four legs by simply making sure that the four
legs have the same resonant frequency. The frequency measurement is performed
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Figure 3.6: IP Leg First Banana Mode

leg 1st frequency
0 221
1 218
2 220
3 218

Table 3.2: Legs first banana mode frequency.

as shown in fig.3.7. A magnet was attached at some point on the leg (i.e. the
support upper cup, see.fig3.7) and a coil cut from by a small commercial voice
speaker was held in front of it from the spring box frame. The measurement was
made analyzing the spectrum of the eddy currents on the coils after hitting the leg.
A cushy amplifier and low pass filter as well. Under the load of the spring box,
the legs were equalized to the frequencies showed in tab.3.2.

3.3.2 IP Load Curve

The IP load curve represents an important characterization of the IP. It shows
the dependence of the resonant frequency on the mass of the load and permits to
estimate the optimal load in order to have the lowest resonant frequency before
the IP becomes unstable. It is very important to lower the IP resonant frequency
because the attenuation low frequency performance depends on it nd because the
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Figure 3.7: Scheme of the IP cup support for the the Spring Box and of the sensor
used for the measurement of the frequency.

noxious resonance quality factor also decreases with the square of the resonant
frequency. The measurement gives also an estimation of the spring constant of
the flex joints.

We measured the curve at the constructor’s site, before the overall baking pro-
cess of the system, obtaining the data shown in fig.3.9. An eddy current sensor
referred to the base plate was attached to the spring box bottom plate (similar to
that in fig.3.7). The spring box was excited by pushing it toward one of the di-
rections between two legs. As explained in sec.2.4.3 - the system tends to have
two translational degenerate modes in condition of symmetry between the mo-
mentums of inertia along the plane and one rotational mode around the vertical
axis. Also the two translational modes can be degenerate as long as the four flex
joints are cylindrical and mounted perfectly parallel to each other.

Fitting the data with the following function

f0 =
1

2π

√
kθ
l2 −

(
m
2 + M

)
g
l

M
(3.17)

where M is the load mass, m = 1.5 Kg is the leg mass of the four legs including
its heads and l = 0.491 is the IP length, we found kθ = 5373 ± 25. The critical
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Figure 3.8: PSDs of the four IP legs after the optimization of the load distribuition.
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Figure 3.9: IP load curve fit.

mass of about 1100 Kg was found calculating the intersection of the fit at zero
frequency

3.3.3 IP Counterweight
The IP conuterweight, designed to bring the theoretical attenuation preformance
from 80 dB to 100 dB, were not mounted on the HAM SAS for lack of time.

A mechanical (non numeric) simulation was used for a rough estimation of
the counterweight mass and gave a counterweight of ∼150 g.

A specialized sliding table, built to precisely measure the necessary counter-
weight was bult and never used, for lack of time.

3.4 Optics Table Leveling
Once that the optics table was floating upon the GAS springs it is important to
ensure it is horizontal.

The first step of the leveling was done with a simple bubble level and adjusting
the weights distribution on top of the table. A finer adjustment was made using
an optical level and a combination of small mass positioning and the vertical ac-
tuators. Four vertical rulers, previously inter-calibrated, were installed on the four
corners of the table and the optical level referred to the plumb line. From the
MEDM control interface of the ADC (see sec.4.1) the coil actuators were singu-
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larly individually with DC currents until the same height was on the rulers from
the optical level. With the table leveled, the LVDT voltages were acquired as ref-
erence point and the values taken into account as offsets to be subtracted out of
the four vertical position signals. Zero vertical voltage or four equal voltages in
the four LVDTs is then assumed to signal horizontality of the table.
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Chapter 4

Experimental Setup

The particular prototype of HAM-SAS, object of this thesis, was specifically de-
signed to support the optics tables of the output mode cleaner of Enhanced LIGO
even though the design of the system is almost the same for all the HAM cham-
bers of the Advanced LIGO interferometers. The tests performed at LASTI were
aimed to reproduce those conditions. A triple pendulum, one of the main elements
of the Advanced LIGO optics suspensions, was installed on the table (fig.4.2) and
several weights were arranged to simulate the same mass distribution and height
of the center of mass. Six Mark Products L4-C geophone sensors were placed to
monitor the six degrees of freedom of the table and, from outside the chamber, an
optical lever monitored the triple. Guralp CMG-T40 seismometers measured the
seismic motion of the ground.

4.1 LIGO Control and Data System (CDS)

The HAM-SAS control and data systems (CDS) are designed according to the
LIGO CDS standard, based on the EPICS system1. In the front end computer
EPICS provides a platform for the execution of the control and monitor programs.
The code is written in C by a Matlab Simulink interface in which sensors, ac-
tuators and channels have a graphical representation and the controls are imple-
mented in the topology of the connections among the elements (figure.4.10 shows

1EPICS is a set of Open Source software tools and applications, written by the Los Alamos
and Argonne National laboratories, which provide a software infrastructure for use in building
distributed control systems to operate devices such as Particle Accelerators, Large Experiments
and major Telescopes. Such distributed control systems typically comprise tens or even hundreds
of computers, networked together to allow communication between them and to provide control
and feedback of the various parts of the device from a central control room, or even remotely over
the internet.
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Figure 4.1: Optics table installed on HAM-SAS inside the LASTI HAM vacuum
chamber.

the scheme of the Simulink code we wrote for HAM-SAS). The MEDM software
then provides a graphical command interface (fig.4.3).

4.2 Sensors setup
In the HAM-SAS tests several kind of sensors are involved: LVDTs, L4C geo-
phones, Guralp seismometers, QPDs. The LVDTs are position sensors while geo-
phones and Guralps are velocity sensors. They are all relative sensors, which
means that they measure the position (or velocity) from the relative displacement
of a test mass from their reference frame. The general principle is illustrated in
figure fig.4.5. The sensor frame and the test mass form an harmonic oscillator.
The frame follows the system whose position x0 is the one that has to be mea-
sured. In a way that changes depending on the particular kind considered, the
sensor measures the relative position (x − x0) of the mass to the frame. From the
equation of motion of the test mass

mẍ = −k(x − x0), (4.1)

neglecting for simplicity any dissipation mechanism, we can obtain the frequency
response between the relative displacement and the reference frame:

x0

x − x0
=
ω2

0 − ω
2

ω2 . (4.2)

The function in (4.2) depends on the resonant frequency of the system and gives
the calibration of the sensor. Multiplying it by the output signal we obtain the
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Figure 4.2: Triple pendulum and sketch of a representing model. The triple pendu-
lum is the last stage of the seismic isolation. Its role is to filter the high (>10Hz)
frequencies noise using three stages of passive isolation in the horizontal directions
and two stages of isolation in the vertical one [43].

position of the reference2.

4.2.1 LVDTs

As already mentioned, eight LVDTs are used for position control in HAM-SAS.
Linear Variable Differential Transformers (LVDTs) are displacement sensors con-
stituted by a primary and secondary windings. The primary winding is fed with
an audio frequency (usually in the range 10-20 kHz) sinusoidal signal. The sec-
ondary winding is composed by two coils wound in opposite directions. When the
primary winding is displaced of an amount ∆x, a current with the same frequency
of the primary signal and modulated in amplitude proportionally to ∆x is induced
in the secondary winding. A mixer is then required to demodulate the secondary
signal and produce a DC output proportional to ∆x.

A VME LVDT driver board will be used in HAM-SAS control. The LVDT
board specifications are:

2In the same way all HAM-SAS, together with its LVDTs, could be considered as a big seis-
mometer.
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Figure 4.3: HAM-SAS MEDM interface.

• 8 independent channels, first channel set as master in master-slave trigger
configurations;

• One single-ended output per channel for signal monitoring;

• One single-ended input, for external oscillator operation;

• One single-ended output, for board synchronization;

• Master-slave/asynchronous operation selectable through onboard jumpers;

• External/internal oscillator operation selectable through onboard jumpers;

• ± 22Vpp primary output voltage;

• ±15V - ±18 V Supply operating voltage;

• 3 24-pin connectors for LVDT primary winding excitations, LVDT sec-
ondary winding readbacks, ADC.

The circuit, shown in fig.4.7, is based on the Analog Devices Universal LVDT
Signal Conditioner AD698 chip. The component features are:

• Tunable Internal oscillator from 20 Hz to 20 kHz

• Double channel demodulator: two synchronous demodulator channels are
used are used to detect primary and secondary amplitude. The component
divides the output of the secondary by the amplitude of the primary and
multiplies by a scale factor in order to improve temperature performance
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Figure 4.5: Scheme of a relative position sensor.

and stability. In this way a typical offset drift of 5 ppm/◦C and a typical gain
drift of 20 ppm/◦C are reached;

• Tunable low pass filter for each demodulator;

• Amplifying stage at the output.

A phase compensation network is used to add a phase lead or lag to one of the
modulator channels in order to compensate for the LVDT primary to secondary
phase shift. A low noise instrumentation amplifier, INA217, is used for LVDT
secondary readbacks differential input. Specifically designed for audio signal am-
plification, this component has a voltage noise of 1.4 nV/

√
Hz at 1 kHz and a

THD of 0.004% at 1kHz for a 100 gain factor. The gain can be adjusted through
an external potentiometer. A wide-band fully differential amplifier, THS4131, is
used for primary winding excitation output.

Several measurements have been done in order characterize the performance
of the three versions of the board. An experimental setup, composed by a 50
µm resolution Line Tool micropositioner fixed on an optical table and rigidly
connected to the LVDT primary winding, has been used. Several custom made
Horizontal LVDT prototypes have been realized in order to determine the opti-
mal ratio between the radii of primary and secondary windings. LVDT spectral
density noise measurements (figure 18) has been done after centering the LVDT
primary coil to get zero signal output. Several independent measurements have
been performed to cover different frequency ranges. Calibration measurements
have shown a low level of nonlinearity (less than 1% of the range). Residual
displacement noise of 2 nm/

√
Hz @ 10 Hz has been measured for both LVDTs.

Crosstalks of 1% between the horizontal and longitudinal and between horizontal
and vertical degrees of freedom have been obtained. The results obtained in an
optimized configuration are summarized in the following table:
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Figure 4.6: Horizontal LVDT scheme. (269) and (243) represent the supports for
the secondary coil (244) hanging from the springs box. The primary coil (245) is
supported by (246) to the base.
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Figure 4.7: LVDT driver board master channel
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Horizonta LVDT Vertica LVDT
Nonlinearity 0.88% 0.26%
Sensitivity 6.49 V/mm 7.85 V/mm

Range 20 mm 20 m/
√

Hz
Displacement Noise 2 nm/

√
Hz 10 Hz 2 nm/

√
Hz 10 Hz

HAM-SAS contains two sets of four LVDTs for the controls and an additional
set for monitoring (witness). Each of the control LVDT is co-located with a co-
axial voice-coil actuator. Four LVDTs, located inside the GAS filters, measure the
vertical positions of four points of the optics table with respect to the spring box.
Four, located in correspondence of the inverted pendulum leg, measure the hori-
zontal displacement of the spring box. The last four are witness LVDTs mounted
underneath the top plate supporting the optics table and measure directly the dis-
placement of the table respect to the base.

To set up the sensors, we first adjusted the inner offset and gain in the external
driver boards in order to adapt the linearity region to the dynamical range of the
system. (figure4.3 show the map of the LVDTs in the system. A first calibration
of the horizontal LVDTs had been tried when the system was still out of the HAM
chamber. Keeping the optics table mechanically locked in the vertical directions
with the apposite stops, we moved the base of the LVDT supporting the primary
coil. The procedure turned out to be not practical and the measurements were not
clear. Then we repeated the measurement when HAM-SAS was inside the HAM
chamber and all the controls active.

The absolute calibration of LVDTs depends on the construction features and
on the readout electronics but for equal sensors and electronics the relative cal-
ibration is expected to be about the same. To make the actual calibration, we
made this initial assumption and applied the geometrical control strategy3 in or-
der to control the static position of the table along the beam direction, monitored
by LVDTs H2 and H4, the only ones accessible by hand. Controls in the other
two degrees of freedom also insured that the table remained close to its nominal
positions while moving it along the beam. We used the controls to set the table to
several positions along x with the controls, measured with a caliber the displace-
ment, reading at the same time the correspondent outputs from the ADC. The
results of the calibration are shown in figg.4.8,4.9 and summarized in tab.4.2.1.
Since it was impossible to get the LVDT H1 and H3 on the sides, we assumed for
them the average calibration of H2 and H4.

The vertical LVDTs have been calibrated with the system inside the chamber.

3In the geometrical control strategy the table position is controlled along the main geometrical
axis x, y and z aligned with the optics table using the sensing and driving matrices of tab.5.1
Thanks to the fact that LVDT and actuator are co-axial the driving matrix is simply the transpose
of the sensing matrix. This was the reason underlying the choice in the design of the system.

69



LVDT Slope Uncertainty Calibration Uncertainty
[#] [Counts/um] [Counts/um] [um/Counts] [um/Counts]
V1 -4.7281 0.0498 -0.2115 0.0022
V2 4.9162 0.0559 0.2034 0.0023
V3 -4.6772 0.032 -0.2138 0.0015
V4 -5.4043 0.0552 -0.185 0.0019
H1 -6.1255 – -0.16325 –
H2 6.8898 0.0785 -0.14514 0.0017
H3 -6.1255 – 0.16325 –
H4 -5.5135 0.0628 0.18137 0.0021

The vertical LVDT is mounted with two sets of three screws in push-pull mode, to
set the electrical zero of the LVDTs at the mechanical working point of the GAS
filters. With the optics table and the spring box mechanically locked in all the
directions, the support of the LVDT secondary coil was released or pushed by a
definite number of turns of its holding screws. From the pitch step we measured
the displacements and, at the same time, the readouts from the ADC.

Unfortunately there was no direct way to calibrate the witness LVDTs. They
can only be cross calibrated from the control LVDT readout for various position
settings.

4.2.2 Geophones
Six geophones are placed on the optics table. As shown in fig.4.1, three of them,
the horizontal, are aligned parallel to the table’s plane, in a pinwheel configura-
tion and the other three, the vertical, are orthogonal to the plane, arranged in a
triangular configuration. The configuration is such that they can be sensitive to
all the degrees of freedom. The calibration was was made measuring the distance
between 245 and 246 with a caliber for several given static position of the spring
box..

The geophones are relative velocity sensors to monitor its six degree of free-
dom. The test mass inside is a magnet connected to the sensor’s frame by a
spring and its velocity is monitored by the eddy current induced on a coil coaxial
mounted on the frame. In order to pass from velocity to position a calibration
filter has to be applied to the signal. Every filter is designed on the frequency do-
main and then implemented them on MEDM which does the transformation into
the time domain. In the frequency domain, the position can be obtained from the
velocity simply by dividing for ω correspondent to the introduction of a pole at
zero frequency. The actual calibration we implemented is described in table 4.2.2:
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Poles Zeroes Gain
0.50 (3) 0.2847±i*1.0625 0.0129

Table 4.1: Calibration transfer function of the geophones in the zpk format. The three
poles at 50 mHz have to be considered like they were poles at zero. The reason for the
shift is to avoid the saturation that would happen because of the DC component of the
signal present in the geophones. Basically the calibration divides by the frequency
to obtain from a velocity a signal proportional to the changing position. Then the
double pole at zero frequency and the complex zero at about 1 Hz transform the
relative displacement of the test mass into absolute position of the reference.

With the geophones calibrated to measure the positions, we can decouple the
signals to obtain the coordinates of the system along the six degrees of freedom.
Be g = (h1, h2, h3, v1, v2, v3) and r = (x, y, z, , θy, θz) the vectors with the single sig-
nals from the geophones and the coordinates of the system respectively. Referring
to the mapping of the sensors in fig.4.11 we have that:

h1

h2

h3

v1

v2
v3


=



0 1 0 0 0 H(x)
1

1 0 0 0 0 −H(y)
2

0 -1 0 0 0 −H(x)
3

0 0 1 V (y)
1 −V (x)

1 0
0 0 1 V (y)

2 −V (x)
2 0

0 0 1 V (y)
3 −V (x)

3 0





x
y
z
θx

θy
θz


. (4.3)

Inverting the matrix in (4.3) and substituting the coordinates of the sensors we
find the decoupling matrix.

4.2.3 Tilt coupling
The horizontal geophones response depends also on the tilt motion of the optics
table. As a matter of fact, they measure as horizontal displacement part of what
is actually tilt of the optics table. This can be clearly understood if in the model
of fig.4.5 we consider also a rotation of the plane with the geophone as shown
in fig.4.12. The overall frequency response include an additional term due to the
coupling between of the tilt into the horizontal sensors:

x0

x − x0
=

(
ω2

0 − ω
2

ω2

)
horizontal

+

(
g
ω2

θ

x − x0

)
tilt coupling

. (4.4)

The term becomes more important at low frequency where it easily dominates
over the real horizontal motion. Having an independent measure of the tilt, this
effect could be taken into account and subtracted out.
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4.2.4 Optical Lever

An optical lever provides for an independent measurement of yaw and one of the
tilt modes of the optics table. A diode laser, positioned on top of a pier just out-
side the HAM chamber, emits a beam that enters the chamber through a glass
porthole and hits the mirror in the middle of the bottom mass of the triple pen-
dulum. The triple pendulum is frozen with respect to the optical bench for this
measurement. The reflected beam reaches a QPD (Quadruple Photo-Detector)
sensor placed right next of the laser source. A QPD is made of a four quad-
rant photodiode in which each quadrant gives a voltage proportional to the hitting
power. In particular the signal depends on the area of the quadrant hit by the beam
spot (fig.4.13).

The optical lever is set up with the table mechanically locked in all the de-
grees of freedom. In that condition the beam spot’s center is made coincide with
the center of the QPD, equalizing the signal from the quadrants by changing the
alignment of the QPD. From the vector with the four signals, the pitch and yaw
angles can be obtained by the following decoupling matrix:

(
θy
θz

)
=

2
l

(
1 1 -1 -1
1 -1 1 -1

) 
Q1

Q2

Q3

Q4

 . (4.5)

in which l ' 1.2 m is the arm lever starting from the middle of the table to the QPD
sensor. The output voltage to position calibration is obtained by micrometrically
moving the quadrant photodiode.

4.2.5 Seismometer

Three Guralps seismometers are placed around the HAM chamber as shown in
fig.4.14. They are velocity sensors that means that in order to obtain a signal
proportional to the position of the ground, they have to have a calibration function
similar to that implemented on the geophones. Table 4.2.5 contains the details of
the calibration function.

Each of them provides for three output signals correspondent to three or-
thogonal directions, two horizontal and one vertical called respectively North-
South(NS), East-West (EW), Vertical (V). Six of the nine signals are used to mea-
sure the motion of the ground around the HAM chamber along the six degrees of
freedom.
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Poles Zeros Gain
0 (3) −23.56 · 10−3 ± i23.56 -0.314
159 -50

Table 4.2: Calibration transfer function of the Guralps in the zpk format. As for
the geophones, the calibration divides by the frequency to obtain, from a velocity, a
signal proportional to the position. Then the double pole at zero frequency and the
complex zero at about 23 mHz transform the relative displacement of the test mass
into absolute position of the reference. The poles at 159 HZ and the zero at 50 are
specified by the constructor.

We used the following decoupling matrix for signal of the Guralps4.



x
y
z
θx

θy
θz


=



0 0 1/3 0 0 1/3 0 0 1/3
0 1/2 0 0 0 0 0 1/2 0

1/3 0 0 1/3 0 0 1/3 0 0
0 0 0 1/ly 0 0 -1/ly 0 0

1/lx 0 0 -1/lx 0 0 0 0 0
0 1/lx 0 0 0 0 0 -1/lx 0





V1
NS1
EW1
V2

NS2
EW2
V3

NS3
EW3


.

(4.6)

4The fifth column is null because the channel NS of G2 was broken
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Figure 4.8: H2 LVDT calibration results. The fit gives a coefficient of 0.18 µm/count
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Figure 4.9: H2 LVDT calibration results. The fit gives a coefficient of 0.14 µm/count
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Figure 4.11: Mapping of the geophones on the table

Figure 4.12: Model to explain the tilt to horizontal coupling in the horizontal geo-
phones on the optics table.

Figure 4.13: QPD sensor. The signal from each quadrant is proportional to the area
covered by the beam spot (red). The coordinates of the beam spot’s center are given
by the differences between the output signals.
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Figure 4.14: Guralp seismometers placements around the HAM chamber.

77



78



Chapter 5

HAM-SAS control

5.1 Optics Table Control

The optics table is a 6 degree of freedom mechanical system: 6 independent sen-
sors are required to fully determine its position and 6 independent actuators to
move it. Each sensor is, in principle, sensitive to movements in all the 6 normal
modes (which in the following will be often referred to as x, y, θz, z, θx, θy, al-
though they do not correspond necessarily to pure translations and rotations). In
the same way, each actuator will generate movements of the optics table involv-
ing a mix of the 6 modes. The basic idea of the HAM-SAS controls is to treat
as separate the horizontal from the vertical DOFs and to diagonalize the sensing
and control actions: the aim is to pass from the sensors/actuators space, to a space
where each normal mode is independently sensed and acted upon. Mathemati-
cally, this means to realize a coordinate transformation for each group of degrees
of freedom such that the equations of motions get the form:

ẍi + ω
2
i xi = qi (5.1)

where xi (for i = 1; 2; 3) is a normal mode coordinate, ωi/2π is the resonant
frequency of the i − th mode and qi is the generalized force corresponding to the
coordinate xi [44, 30]. Experimentally this means to find 3 linear combinations of
the sensor outputs, defined virtual sensors, each sensitive to a single normal mode
and, correspondingly, 3 linear combinations of the excitation coil currents (virtual
actuators) which excite each mode separately. In control theory terminology, this
means to break down a multiple in-multiple out (MIMO) system into many single
in-single out (SISO) systems. The control of a SISO system is much easier: every
mode is controlled by an independent feedback loop, simplyfing greately the loop
design and the seismic requirements.

79



5.2 Diagonalization
The GAS filters support the optics table in such a way that the relative movement
of the suspension points respect to the spring box is mostly limited to the vertical
direction. This significantly reduces the coupling between the horizontal DOFs of
the table (x, y and roll) and the verticals (z, pitch, yaw) and allows to treat them
separately into two stages. Let us consider only one stage, i.e. the horizontal.

Be u(s) the vector containing the Laplace transform of the positions of the
four LVDT sensors, and v(s) the vector with the transforms of the forces exerted
by the actuators. We have that

u = H v (5.2)

where H is a 4×4 matrix in which the generic element hi j represents the transfer
function between the actuator j and the sensor i. Again, neglecting the vertical to
the horizontal couplings, each of these transfer functions can be written as a linear
combination of three oscillators, one for each of the normal modes of the system:

hi j(s) =
ui(s)
v j(s)

=

3∑
k=0

a(i j)
k

ω2
0k

s2 + ω2
0k + iω2

0kφk
(5.3)

where a(i j)
k is the coupling coefficient for the k-th mode, ω0k the mode’s resonant

frequency. Thus for hi j(iω) we can expect the shape resulting from three overim-
posed harmonic oscillator functions to look like the graph in fig.5.1.

We have that u ∈ U, sensors space, and v ∈ V , actuators space. It is possible
to pass to two basis for U and for V such that the transfer function matrix H
becomes diagonal. With this choice of basis each sensor is a modal sensors being
sensitive to only one of the normal modes of the system. In the same way each
actuator becomes a modal actuator wich is able to act only on one mode. In the
new coordinates

x = H̃q (5.4)

h̃i j(s) =
xi(s)
q j(s)

= bk hi j(s) δi jk (5.5)

Be S and D the basis change matrices for U and V respectively and call them
sensing matrix and driving matrix. We have

x = Su (5.6)
v = Dq (5.7)

Su = H̃D−1v (5.8)

which makes
H = S−1H̃D−1 (5.9)
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Figure 5.1: Typical real sensor to actuator transfer function.

Figure 5.2: Diagonalization scheme

5.2.1 Measuring the sensing matrix

Being u = S−1x we know that the column vectors of S−1 represent the relative
sensitivy of the real sensors to each single mode. The only matrix we can measure
directly is H but following a particular procedure we can reduce it to a matrix
physically equivalent to S−1. We choose one of the real actuators, say v1, and use
it to excite the system. We then measure all the quantities hi1(ωk) in correspon-
dence of the three resonant frequencies of the three modes of interest. Taking the
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imaginary part of these numbers we can build the matrix

M =


= [h11(ω1)] · · · = [h11(ω3)]

...
...

= [h31(ω1)] · · · = [h31(ω3)]

 (5.10)

and it can be shown that S−1 and M are equivalent and differ only for a scale factor
that multiplies each column.

In fact, let us define S−1 = {σi j} and D−1 = {∆i j}. From 5.9 and 5.5 we can
write

hi j(s) =
3∑

k=1

σikh̃kk∆k j. (5.11)

At the resonance ωk

h̃kk(iωk) ≈ =[h̃kk(iωk)] = −bkQk (5.12)

hi j(iωk) = −σikbkQk∆k j (5.13)

and this means that

M =


−σ11 b1 Q1 ∆11 · · · −σ13 b3 Q3 ∆31

...
...

−σ31 b1 Q1 ∆11 · · · −σ33 b3 Q3 ∆31

 = [
α1 σ

(1), α2 σ
(2), α3 σ

(3)
]
.

(5.14)
S−1 and M are equivalent because the α factors only change the length of the
eigenvectors but not their relative angles. Physically those factors only set the
global sensitivity of the sensors to each mode but does not change the relative
sensitivity among the sensors to one mode.

The same consideration holds if instead of v1 we had chosen an other actu-
ator to evaluate the matrix. As long as the system is linear, no matter how we
excite a mode, we can get different α values but the ratios between the conversion
coefficients in each column of M rest the same.

5.2.2 Measuring the driving matrix
Now, having determined the modal sensors, we can measure the driving matrix
from their relation with the real actuators

x = H̃D−1 v = N v (5.15)

by simply measuring the ratios

xi(iω)
v j(iω)

= ni j (5.16)
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1/4 1/4 1/4 1/4
1/2 0 −1/2 0
0 1/2 0 −1/2
0 0 0 0




1/4 1/2 0 0
1/4 0 1/2 0
1/4 −1/2 0 0
1/4 0 −1/2 0


Vertical Sensing Vertical Driving


0 1/2 0 1/2

1/2 0 1/2 0
1/4 −1/4 −1/4 1/4
0 0 0 0




0 1/2 1/4 0
1/2 0 −1/4 0
0 1/2 −1/4 0

1/2 0 1/4 0


Horizontal Sensing Horizontal Driving

Table 5.1: Geometrical diagonalization matrices

at a fixed frequency. Even though N(s) is frequency dependent all the dependence
is in H̃. S since H it is a diagonal matrix, N and D−1 are equivalent. The only
specification is that the test frequency at which the measurement is made must be
lower than all the resonant frequencies in order to neglect the imaginary part of
ni j and have only real numbers to build the matrix.

5.2.3 Experimental diagonalization
Experimentally the diagonalization of sensors and actuators is a an iterative pro-
cess. The two procedure can be reiterated many times until the virtual sensors are
well decoupled and sensitive to the normal modes of the system. On each iter-
ation the virtual sensors are assumed to be real and the new sensing and driving
matrices obatained have to be multiplied to the left of old ones.

For each of the stages we started the diagonalization from the geometrical
sensing and driving matrices. This immediately reduced the redundancy of the
sensors and actuators. The assumption was that the symmetry of the system
would make the modes of either a pure translation or a rotation, with little mixing
between the two. That is to say the system is already not too far from being di-
agonal. For the vertical DOFs we started with two main axis along the diagonals
of the table and the third one along the vertical direction. For the horizontals, we
considered two translational modes along x and y and a rotational mode around
the vertical axis. The corrispondent starting matrices are shown in tab 5.1.

For each stage, either horizontal or vertical, we measured the transfer functions
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−0.12 0.32 1 0.33

1 0.44 −0.42 0.15
−0.27 1 0.30 −1

0 0 0 0




0.04 1 −0.20 0
0.46 0.74 0.94 0

1 −0.04 0.15 0
0.57 0.21 −1 0


Vertical Sensing Vertical Driving


−1 0.81 −0.15 0.07

0.76 1 0.32 0.52
−0.37 −0.30 −1 1

0 0 0 0



−1 0.83 −0.41 0

0.50 0.92 0.14 0
−0.63 0.76 −1 0
0.13 1 0.73 0


Horizontal Sensing Horizontal Driving

Table 5.2: Measured sensing and driving matrices.

between one virtual actuator and all the virtual sensors of the same stage of DOFs.
We extracted the imaginary parts in correspondence of the peaks for each sensor
and with these written S−1. Then we inverted it to obtain S and transformed to a
4×4 matrix filling the last column and row with zeros. Finally we multiplied this
to the left of the geometric sensing matrix obtaining a new one. The procedure
was repeated for each actuator and the obtained matrices were averaged using the
norm of the columns as weight. Figure 5.2.3 and 5.2.3 show the transfer functions
for the excitation of the Y an Z geometrical virtual actuators respectively.

The inverse of the driving matrix was obtained exciting each geometric virtual
actuator one at a time at a fixed low frequency and measuring the transfer coeffi-
cients1 between the virtual sensors given by the new sensing matrix. Then it was
inverted, converted to a 4×4 matrix filling the last column and row with zeros and
then multiplied by the driving matrix.

Since the stepper motors can change the forces on the system and consequently
the modes, we repeated the measurements of the sensing matrices if they were
used to move the table.

The amplitude chosen for the excitations determined the signal to noise ratio
and the quality of the measurements. The measured matrices are shown in fig.5.2.

The most troublesome to measure was the vertical driving matrix. The trans-
fer coefficients have been always characterized by not negligible imaginary parts

1The transfer coefficient is the value of a transfer function at a given point.
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Figure 5.3: Magnitude and imaginary part of the transfer function between the geo-
metrical horizontal DOFs and the geometrical virtual actuator Y. In the peaks of the
imaginary parts we get the frequencies of the horizontal modes: 38 mHz; 60 mHz;
75 mHz.
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Figure 5.4: Magnitude and imaginary part of the transfer function between the geo-
metrical vertical DOFs and the virtual geometrical actuator Z. The frequency of the
modes are: 146 mHz; 198 mHz; 250 mHz.
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 0.81 1 0.50
−1 0.60 −0.60
−0.98 0.04 1


 0.65 1 0.07

1 −0.98 0.20
0.30 −0.10 −1


Vertical Modes Horizontal Modes

Table 5.3: Inverse of the measured sensing matrices. The columns define the eigen-
modes of the system. For the vertical the frequencies are: 146 mHz, 198 mHz,
250 mHz respectively. For the horizontal they are: 38 mHz, 60 mHz, 75 mHz.

even if they were measured at frequencies much lower than the resonances. The
reason is probably in a certain amount of coupling with the horizontal DOFs in-
troduced by exciting the table in the range of frequencies where the horizontal
resonances occur. This supposed coupling did not produced the same problem
in the measurement of the horizontal driving matrix probably because the vertical
resonances are all well above the horizontal ones.. When the imaginary parts were
about the same as the real, the simple transpose of the sensing matrix turned out
to be more effective than the measured driving matrix to control the modes. The
reason for this is that the vertical actuators are perfectly aligned with the vertical
LVDTs and, for construction reasons, they must have almost the same calibration
current-force among each other. The problem was probably limited only to the
measurements.

Figure 5.8,5.9 shows the comparison between the LVDT spectra as obtained
by the real sensors, the geometric virtual sensors and the diagonalized sensors.

5.2.4 Identifying the normal modes
From section 5.2.1 it follows that the columns of the inverse of the measured
sensing matrix S−1 represent the eigenmodes of the system in the basis of the
space in which the matrix is measured. From the space of the geometrical virtual
sensors the columns represent the shape of the modes projected on the x, y and θz
conventional axis chosen for HAM-SAS.

Table 5.3 contains the vertical and horizontal inverse of the sensing matrices
with the eigenmodes as column vectors in the geometric basis representation. The
calibration of the LVDT sensors and the inclusion of the arm lengths in the ge-
ometrical matrices are essential for the modes to be interpreted in that basis. In
particular, in the horizontal matrix the first row has to be intended as meters along
x, the second as meters along y and the third as radiants around z. In the vertical
matrix, the first row represent meters of transaltion along z, the second is that we
called θx although it corresponds to a rotation around the diagonal with LVDT sen-
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sors V1 and V3, the third is θy ands correspond to the opposite diagonal, between
V2 and V4. A more realistic comparison between the geometrical projections of
the modes could be done looking at the energies stored in each of them, which can
be estimated from the products of the square of the amplitudes for the mass of the
system in the case of the translation components, and for the moments of inertia
for the rotations: Mx2, My2 Izθ

2
z , Mz2, Ixθ

2
x, Iyθ

2
y .

In the vertical matrix, the ratio between the third and the second rows rep-
resents the direction of the eigenaxis in the horizontal plane measured from the
first diagonal. Thus we have that the first mode roughly corresponds to a rotation
around the actual y axis plus a translation along z. The second is mostly a vertical
translation plus a rotation around the first diagonal. The third is a vertical trans-
lation plus a rotation around an axis which is closer to the first diagonal than to
the second. These asymmetries can be explained with a transversal stress applied
mostly on the GAS filter number 1 (which is forced to work crookedly) by an
error in assembly2.

The horizontal matrix was closer to expectations than the the vertical. The
third column contains a mode which is almost a pure rotation around z. The
second is mostly a translation at about 45 degrees between the x and y axis. The
first is a mix of a translation along an axis somewhere between x and y and a
rotation around the vertical axis.

5.2.5 Actuators calibration

The geometric diagonalization of the driving matrix eliminates force combina-
tions that could drive modes known as saddle or pringles modes, as long as the
actuators have the same force calibration. Geometrically the image of the vertical
matrix Dv is a 3-dim space orthogonal to the actuation vector wv = (1,−1, 1,−1),
while for the horizontal matrix Dh the analogous vector is wh = (1,−1,−1, 1)
(which would drive the saddle mode of the optical table). If it is not, then the
actuators apply different forces for the same current. Thus the scalar product be-
tween the pringle vector and the columns of the driving matrix gives information
about the actuators’ calibration.

From 5.2 we have from the vertical driving matrix:

Dv
(1) · wv = 0.67

Dv
(2) · wv = 0.00 (5.17)

Dv
(3) · wv = 0.00

2Testing this hypothesis would require disassembly and reassembly of the system, which could
not be performed for lack of time.
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and from the horizontal:

Dh
(1) · wh = 0.00

Dh
(2) · wh = 0.00 (5.18)

Dh
(3) · wh = 0.00

in which the vectors have been first normalized. These numbers confirm the prob-
lems encountered with the vertical driving matrix already discussed in section
(5.2.3)3. In the case of the horizontal actuators, the products are null, that means
the calibrations of the actuators are the same.

5.2.6 System Transfer Function
Once we diagonalized the DOFs, we measured the transfer function between every
virtual sensor and its correspondent virtual actuator. The results are shown in
fig.5.13,5.14. They represent a very important characterization of the system,
essential to design the control loops and to evaluate the attenuation performance
of the system.

5.3 Control Strategy
HAM-SAS was designed as a basically passive system. The role of the controls
is as minimal as possible. They are mostly intended to assist the mechanical filter
to be in the optimal conditions to give its best performance. However, when the
mechanics is not optimized, controls can also be used to compensate and over-
come the tuning limitations. The main functions of controls are to position the
optics table in order to be at the optical working point of the filters; to damp the
resonances associates with the normal modes of the system; to reduce the effective
stiffness of the eigenmodes and thus the frequencies of the modes.

5.3.1 Control topology
Once we diagonalized the system’s transfer function, the control strategy reduces
to that of a SISO system and, starting from the physical plant responses, individual
control loops can be designed for every DOF.

In HAM-SAS the LVDT position sensors are used. The scheme in fig.5.5
illustrates the controls topology for one degree of freedom: x0 is the position of the
ground (input) and x that of the optics table (output), xoff an offset that determines

3The problem may originate from the fact that at least one of the vertical LVDT-actuator units
is warped, and therefore the geometrical diagonalization is not a completely orthogonal one.
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Figure 5.5: Control loop scheme for relative position sensor.

the desired working point of the optical table in the x direction.; G represents the
system and C the compensator. Assuming xoff constant, the closed loop transfer
function in the s-space is then

x(s)
x0(s)

=
G(s) (1 +C(s))
1 +G(s)C(s)

(5.19)

in which G(s) is the physical plant response of the system and C(s) the compen-
sator’s transfer function.

The controls perform the following functions:

• static control

• resonance damping

• softening of the resonance frequency (EMAS)

5.3.2 Static Position Control (DC)
The purpose of a static position control is to keep the system on an assigned po-
sition xo f f within a defined time scale. xo f f can be possibly be null, in that case
it would be x = x0. A compensator which add a signal proportional to the time
average of the relative position over a defined amount of time would do it [45].
The solution is an integrator:

C(x) =
α

s
(5.20)

in which α sets the gain and has the dimension of a frequency. Taking account of
xo f f into 5.19 we have

x(s)
x0(s)

=
G(s) (1 +C(s))
1 +G(s)C(s)

+
xo f f (s)

1 +G(s)C(s
. (5.21)

An offset xo f f can be modeled as a step function:

xo f f =

{
0 if t < 0
x̃o f f if t ≥ 0 (5.22)
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Since this control loop works at ultra low frequency, in that band we can consider
G(s) ' 1 and from (5.21) we have:

x(s) − x0(s) =
x̃o f f

s + α
. (5.23)

The time evolution of the position is then obtained from the Laplace inverse:

x(t) − x0(t) = L−1
[

x̃o f f

s + α

]
= x̃off e−αt. (5.24)

We have that α defines the time constant of the process (τ = 1/α) and the loop
bandwidth. The unity gain is obtained solving

|G(s)C(s)| '
∣∣∣∣∣αs

∣∣∣∣∣ = 1 (5.25)

which places the unitary gain at:

fu.g =
α

2π
. (5.26)

Since the open loop transfer function G(s)C(s) has a phase smaller than -180
degrees above the resonance of G(s), the Nyquist criterion then requires fu.g to be
lower than the resonance of the system G(s) in order for the system to be stable.

5.3.3 Velocity Control (Viscous Damping)
A velocity control is used to apply viscous damping to the resonant oscillations
of the system. A force proportional to the relative velocity (ẋ − ẋ0) is realized by
means of a derivative compensator of the form

C(s) = γs (5.27)

is applied into the loop. In particular the quality factor of the system can be
reduced by γ since we have that:

Q =
ω0m
γ
. (5.28)

5.3.4 Stiffness Control (EMAS)
The Electro-Magnetic Anti-Spring strategy (EMAS) was already developed as
part of the SAS technology but was applied for the first time extensively and
by mean of a digital feedback control system in HAM SAS. At the basis of the

91



Figure 5.6: Electromagnetic Anti-Spring (EMAS) control loop. A pure gain, fre-
quency indipendent, is fedback into the system to reduce the stiffness.

strategy is the introduction into the system actuation of a positive feedback signal
made of a pure gain, flat at all frequencies, which is equivalent to a spring with
repulsive stiffness and competes with the mechanical spring constant to lower the
overall stiffness of the mode. The control loop topology is shown in fig.5.6. The
transfer function at closed loop is:

x(s)
x0(s)

=
G(s) (1 − k)
1 − kG(s)

. (5.29)

Assuming a simple pendulum physical plant response

G(s) =
ω2

0

ω2
0 − ω

2
(5.30)

the closed loop transfer function becomes

Gc.l(s) =
ω2

0 (1 − k)

ω2
0 (1 − k) − ω2

(5.31)

which is equivalent to a system with resonant frequency

ω
′

0 = ω0

√
1 − k (5.32)

that is to a system with a reduced stifness.
In order to measure the new physical plant response including the effect of the

EMAS we followed the scheme in fig.5.7. Table has always to be at the working
point height, thus a position control must be included in parallel to the anti-spring.
Ideally, the precise way to measure the new plant G

′

would be exciting right after
the integrator and then it would be G

′

= out/A. Since EPICS allows only a limited
number of test points, one has to find the best location into the system’s map to
measure the transfer function. According to the front end code and to the available
test points the closest thing to G

′

that we could measure was A/exc. This ratio well
approximates G

′

for low gain of the integrator but still they differ for the DC value.
The result of one of this kind of measurement for the z emas is shown in fig.5.12.
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Figure 5.7: Scheme of the control configuration for the measurement of the physical
plant as modified by the introduction of the EMAS. The precise measurement would
be given exciting after the integrator and measuring the ratio out/A. Since the test
points are only in some fixed locations according to the the front end code, the best
possible measurement is made exciting right before the physical plant G from the
ratio A/exc. This ratio well approximates G’ except for the DC value.
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Figure 5.8: Modal vertical LVDT power spectra. The upper plot shows the signals
from the virtual sensors after the diagonalization. Each sensors senses much more
only one of the three resonances. Still, mostly on the first two resonances a little of
coupling persists. The lower plot shows the spectra from the virtual sensors before
the diagonalization, when they were aligned to the geometrical directions. The plots
refer to an early configuration of the system when the resonances were at slightly
different frequencies and the LVDT still not calibrated.
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Figure 5.9: Modal horizontal LVDT power spectra. In this case the diagonalization
of the sensors is very good and the three virtual sensors sense almost only one mode
each.
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Figure 5.10: The plots show the horizontal LVDTS before (red curves) and after
(blu curves) closing local damping control loops on each horizontal actuator (each
actuator is controlled indipendently by the others). The sensors were not calibrated
yet and the optics table was mechanically locked.
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The blue (with EMAS) and red (with EMAS) have different DC values because of
the way the modified physical plant response is measured according to the available
EPICS test points.
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Figure 5.13: Diagonal transfer functions for the horizontal degrees of freedom fitted
by a pendulum function.
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Figure 5.14: Diagonal transfer functions for the vertical degrees of freedom fitted by
a pendulum function.
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Chapter 6

System Performances

In this chapter we present the latest experimental results from the HAM-SAS ex-
periment. First we introduce the quantities by which we measured the system
performances, then we discuss the attenuation performance achieved, the strategy
adopted for the controls and the issue about the very low frequency displacement
noise observed.

6.1 Measuring the HAM-SAS Performances
Before discussing the performances of the system, we want to clarify the defini-
tions and the properties of the quantities that we are going to consider. Since we
are here interested in seismic attenuation performances, the observable that we
have in mind is always a coordinate position.

6.1.1 Power Spectrum Densities
Be x(t) the coordinate in the time domain describing the system [15]. Its power
spectrum density is defined as the Fourier transform

Px ( f ) =
1/
√

2π
x ∗ x (0)

∫ +∞

−∞

x ∗ x (τ) (τ) e−2πiωtdτ (6.1)

in which x ∗ x (τ) is the autocorrelation function of x(t) which is defined as:

x ∗ x (τ) =
∫ +∞

−∞

x (t) x (t + τ) dt (6.2)

From Parseval’s theorem the root mean square value is connected to the power
spectrum by:

xr.m.s. =

√∫ +∞

−∞

Px ( f ) d f (6.3)
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We rather work with an object derived from the power spectrum, the amplitude
spectral density1. It is simply defined as the square root of the power spectrum:

S ( f ) =
√

Px ( f ). (6.4)

and its dimensions are [x]/
√

Hz. The advantage of this object is that the unit
matches better what we measure with the sensors (i.e. meters).

The spectrum measurements on HAM-SAS data have been made with an FFT
Matlab based software tool, averaging on many measurements. The averaged
spectra are accompanied by the root mean square of the measurement, intended
as the standard deviation on the points j of the set at frequency i:

S r.m.s.( fi) =

√√√
1
N

N∑
j=1

(
S̄ ( fi) − S j( fi)

)
. (6.5)

The spectrum r.m.s. represents a useful parameter for the evaluation of the mea-
surement noise.

6.1.2 Transmissibility and Signal Coherence
The particular transfer functions in which both the input and the output quanti-
ties are the same dynamic variables as position, velocity or acceleration are called
transmissibilities. We evaluated the seismic performance of HAM-SAS measur-
ing the transmissibilities of the system for each degree of freedom. They were
obtained simply dividing the Fourier transform of the output signal from the geo-
phones on the optics table by the input signal from the Guralp seismometers on
the ground, both of them correspondent to the same degree of freedom.

Experimentally the input and output of a transmissibility measurement can be
disturbed by noise and the ratio between the two relative spectra does not represent
necessarily the transfer function of the system. In LTI system theory (Linear Time
Invariant), it can be demonstrated [47] that two signal x (t) and y (t) are correlated
if and only if it is possible to define a function H (t) such that:

y (t) = H (t) ∗ x (t) ⇒ Y (ω) = H (ω) X (ω) . (6.6)

To evaluate the quality of the measured ratio between the two spectra as actually
representing the transfer function, for the measurement on HAM-SAS we have
considered the coherence function to evaluate the correlation between the signal.
The coherence Cxy (ω) between x and y is defined as

Cxy (ω) =

∣∣∣Rxy (ω)
∣∣∣2

Xx (ω) Yy (ω)
(6.7)

1Although often we improperly refer to it as power spectrum or just spectrum.
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Figure 6.1: Advanced LIGO HAM requirements for the displacement noise of the
Power Recycling and Output Mode Cleaner and model of Livingston seismic power
spectrum.

where Rxy (ω) is the Fourier transform of the cross-correlation function between x
and y, defined as

Rxy (τ) = x ∗ y (τ) . (6.8)

The coherence is a real function between zero and one. It is one if x and y are
correlated. On the other hand, when x and y are uncorrelated (i.e., y is a noise
process not derived from x), the coherence converges to zero at all frequencies.

6.2 Evaluating the Seismic Performances
The Advanced LIGO HAM requirements [48] set a reference to evaluate the
HAM-SAS seismic performances and they represented the ultimate goal of the
system commissioning. In particular the constraints for the Power Recycling and
Mode Cleaner optics set a displacement noise limit of 2 × 10−7 m/

√
Hz in the

0.1-0.2 Hz band, 4 × 10−10 m/
√

Hz at 600 mHz and 3 × 10−11 m/
√

Hz above 20
Hz (fig.6.1). The conditions have been defined according to a model of the ground
seismic spectra at both of the sites, Hanford (LHO) and Livingston (LLO) [49].
The horizontal and vertical ground noise are considered equal and expressed, in
the frequency range 100mHz < f < 40Hz, as a polynomial expansion in log
space:

log xg ( f ) = p1
(
log f

)n
+ p2

(
log f

)n−1
+ . . . + pn log f + pn+1 (6.9)

where xg is the displacement spectral density. Because the average ground noise at
the two observatories and at MIT differ significantly, three separate ground noise
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Figure 6.2: Ground noise models for the Hanford (LHO), Livingston (LLO) and
LASTI sites. Each curve was obtained by a polynomial fit of the seismometer data.
The plot shows LASTI as a noisier location than the sites in the horizontal and vertical
DOF.

models are estimated for LHO, LLO and LASTI; these are shown in fig.6.2. In
the models the ground noise input is taken to be the same for all three translational
degrees of freedom.

6.3 Experimental Results

We want here to show and discuss some of the latest power spectra and trans-
missibilities which illustrate the status of the system performances in the present
configuration.

As we explained in chapter 5, the roles of the controls system are two: to
keep the Attenuator at the working point in order to have the best passive isolating
performance and to actively assist the mechanics in attenuating the seismic noise.
We will see here the effect of these different strategies.
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6.3.1 Passive Attenuation
As explained in chapter3, both the IPs and the GAS filter were set to perform at
best at their correspondent working point2. Because of absolute and differential
thermal drifts of the apparatus and ground movements and tilts (tidal movements,
water table variations, movements of heavy loads on the floor and in the building
vicinities, diurnal and seasonal differential heating and cooling of the facilities3

etc.), only position control can guarantee and maintain a perfect alignment of
the optical table. The very low tuning of the resonant frequencies exacerbates
these drifts both in the vertical and horizontal directions.4. Misalignments can
be worsened and even bring to instabilities because of recoil effects between the
spring box and the pendulums.

From the measured physical plant responses (see sec.5.2.6), we designed static
positioning control loops (DC) with a very low unitary gain frequency (u.g.f.) of
about 1 mHz by which we obtained the power spectrum of fig.6.3.

The structure between 10 and 20 Hz is typical of all the measurements. It
corresponds to a internal mechanical resonance of the system which we had no
time to identify and damp. We believe it is likely due to either the tilt correcting
springs or the wire by which they pull the central column. When the HAM cham-
ber was still open, it was in part, but not totally, attenuated by magnetic dampers
(see fig.6.4). It is expected to be fixed with properly designed dampers and/or
redesigned springs.

Below about 400 mHz the transmitted seismic motion amplitude becomes
higher than the requirements, especially for x, and under 100 mHz the horizontal
displacement becomes greater than 1 µm/

√
Hz. In particular we notice three peaks

between 100 and 300 Hz correspondent to the resonances of the vertical DOFs.
These resonances enter in every degree of freedom because of couplings between
different degrees of freedom. They actually cause a larger appparent displacement
on the horizontal than in the vertical. The coupling originates likely in recoil ef-
fects between the spring box and the optics table. It must be considered that the
table with all its payload has a mass which is three times that of the spring box
and the center of mass is located 50 cm over the pivot point of the GAS filters.
The mechanical solution foreseen for this problem is to implement a lower tun-
ing of the vertical frequencies, by an additional compression of the GAS filters’

2As part of the lower frequency tuning process, optimization of the GAS system would have
required a complete frequency versus load scan of the vertical degree of freedom, to set the payload
at the GAS minimum frequency point. Even this step was not performed for lack of time.

3The effects of creep [46] in the SAS structure have been neutralized by prolonged baking
under load after assembly

4This, as well as time constraints, is the reason why, in absence of working controls of the
static positioning, in the first implementation we chose a conservative tune of both GAS filters and
the IP table, at twice or more of achievable frequencies.
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Figure 6.3: Optics table displacement power spectrum of the x, z and yaw (θz) de-
grees of freedom. Only weak DC control loops are closed. The straight line is the
HAM requirement refernce. The spectrum can be considered as a measurement of
the passive performance of HAM-SAS.

blades (or by EMAS control), until the natural larger damping at lower frequency
neutralizes these resonances.

As already pointed out in sec. 4.2.3, the geophones are inertial sensors and
thus affected by tilt-to-horizontal coupling. For this reason in x and y spectra,
especially at low frequency where we suspect the effect to be more important,
we cannot distinguish between the actual horizontal motion and what is angular
motion of the vertical DOFs sensed as horizontal motion. Under 100 mHz the
measurements from the geophones have then to be considered with that caveat.
As explained in sec. 4.2.3, the tilt contribution could be subtracted out of x if we
had an independent and reliable measure of it. The test to know if the tilt signal
is useful for subtraction from the horizontal signal is that it must show coherence
with the horizontal signal. But neither the tilt measured by the vertical geophones
(i.e. Ry in fig.6.3), nor the optical lever were found to be coherent with the hor-
izontal signal. For the geophones the reason is that their sensitivity decreases
significantly below 100 Hz whereas a very high accuracy would be needed to
measure a tilt angle from the difference of two vertical signals5.

5This is basically the same reason why it is not easy to have reliable tilt-seismometer sensors.
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Figure 6.4: Damper magnets installed to attenuate the wire and tilt correction
spring’s resonance.

6.3.2 Getting to the Design Performances

The HAM SAS mechanics is equivalent to that of an extremely large seismometer.
Its mass is basically completely inertial at high frequency, while in the low fre-
quency band it moves around under the influence of tilt for the horizontal direction
and in a way which is also affected by the hysteresis of the materials used to build
its flexures. Like the mass of any horizontal accelerometer, the dominant frac-
tion of its horizontal residual motion is excited by ground tilt. Ideally, this sort
of random motion, in absence of any damping mechanism, would be enhanced
indefinitely as the resonance frequencies are tuned toward zero frequency6. If a
suitable evaluation of the ground tilt were available, the part induced by the tilt of
the residual motion could be eliminated by feed-forward controls7.

Without any closed loops on the system, the LVDT signals from HAM SAS are
equivalent to those of an array of seismometers (fig.6.5). Then the control strategy
consists in having no active control at high frequency, where its attenuation per-
formance corresponds to the sensitivity limit of seismometers and geophones, and
to reduce the residual motion by tying the system to ground at the lowest frequen-
cies by means of LVDT signals feedback. The LVDTs, being relative position
sensors, are not directly influenced by tilts. Fundamental is then the choice of the
optimal u.g.f. and of filters to avoid feeding LVDT and actuation noise to the high
frequency side, where the performance is already equivalent to that of an ideal
seismometer. The process is analogous to, and shares the same noise sources of,
that of an active attenuation system, where the signal of position sensors is used to
stabilize the r.m.s. motion at the lowest frequencies, and is blended into the signal

6The limit case, for zero frequency tune, is that of a mass on a completely frictionless table,
which would move to infinity for even the slightest table tilt

7The feed-forward filtering is an alternative for feedback for the seismic noise attenuation when
a signal correlated to the noise is available. The idea is to produce a secondary noise source such
that it cancels the effect of the primary noise at the location of the error sensors.
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Figure 6.5: The Guralps’ and the LVDTs’ signal match at high frequency. HAM-
SAS and the optics table can bee considered as afree mass in that range and thus the
relative position signal from the LVDTs follows the ground movement. (The unit on
the Y-axis is µ/

√
Hz).

of the best available seismometer above a critical frequency. In both active and
passive systems the amount of low frequency r.m.s. residual motion is determined
by the effective cutoff frequency of the position sensors, and in both systems the
horizontal residual motion can ideally be reduced by means of tilt meter signals.

The low frequency seismic residual motion can be amplified by the quality
factor of the mechanical resonances of the system. The effects of these resonances
in SAS can be eliminated in two ways. The resonances can be damped - like
in most seismometers - by electromagnetic damping, or by driving the motion
resonances sufficiently low in frequency that the quality factor drops. If the quality
factor becomes smaller than 1, the system is completely dominated by tilt and by
the internal forces in its flexure materials.

SAS has two ways to control its resonant frequencies. First the frequencies
are minimized mechanically, by increasing the load of the IP tables and the ra-
dial compression of the GAS filters to as close as possible to the critical point.
This process is practically limited by only the onset of hysteresis. After getting
to the limits of the mechanical tuning, the resonance frequencies can be further
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reduced by means of the electromagnetic spring (EMAS) control system8. Since
strong EMAS can reintroduce control noise, it is first important to mechanically
minimize the frequency resonances to minimize control noise9. An other bene-
fit of minimizing the frequency rigid body motion resonances is that the actuator
authority requirements are minimized, and this automatically minimizes noise re-
injection due to the electronics.

6.3.3 Lowering the Vertical Frequencies

It is know that for oscillators at very low frequency hysteresis becomes an impor-
tant effect and that the quality factor scales with the square of the frequency [52].
Thus we implemented the Electro-Magnetic Anti-Spring (see sec.5.3.4) controls
system to the vertical degrees of freedom with the purpose to damp the vertical
resonance and to increase the attenuation factor. Figure (6.6) shows the results
of this strategy. The vertical frequencies were all shifted below 100 mHz and the
vertical power spectrum easily met the requirements. In the very low frequency
region were all the 6 modes of the system piled up, the effect of the coupling
between the horizontal and the vertical DOFs and tilt became more and more im-
portant. For the reasons explained in the previous section, the detected horizontal
displacement increased and went far above the requirements.

We tried to damp the resonance at low frequencies with damping control loops
in every DOF but the price for an appreciable reduction of the horizontal displace-
ment was a large control bandwidth and then a significant noise re-injected above
1 Hz.

Also, the EMAS made system less stable and a small environmental change
like a person walking close by the HAM chamber could trigger an instability in
the loops.

6.3.4 Active Performance

We found so far that the best performance could be obtained with only position
controls and damping controls in parallel, tuned in order to have u.g.f. between
about 0.5 and 1 Hz. Optimizing the gains and the bandwidth for each loop, we
ensured the stability and reduced the noise re-injection at high frequency as much
as possible. The results for x and z are shown in fig.6.9.

8The EMAS springs are a more complex system, but have the advantage that they can be easily
coupled with very low u.g.f. static positioning feedback, to counter the otherwise dominating
hysteresis effects.

9In the present tests the mechanical tuning was halted roughly twice above previously achieved
levels
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Figure 6.6: Electromagnetic Anti-Springs are applied to move the vertical reso-
nances to lower frequencies in order to reduce their quality factors and lower in fre-
quency the onset of the attenuation rolloff. The strategy succeeded for the vertical
DOFs although all the 6 modes were then located in the range of few tens of mHz
where they inter-couple. As a result the detected horizontal displacement increased.

The power spectra for the vertical direction meets or exceeds the requirements
in all range of frequencies, except for a small residual peak still present in cor-
respondence of the vertical modes. The horizontal displacements is in agreement
with the requirements as well, except for the very low range where, as we already
pointed out, the geophones are not reliable in the horizontal directions because of
the tilt-to-horizontal coupling. It must be said that we found no coherence with
the tilt measurements as obtained from the optical lever (fig.6.7). which would be
expected if tilt dominates the horizontal accelerometer’s signal. It was not clear
which noise is covering this effect.

With this minimal control strategy applied (figg.6.10,6.10), we measured the
transmissibilities between the ground seismometers and the geophones on the
optics table (fig.6.12,6.13,6.14). Within the limits given by the coherences, the
transmissibilities show attenuation factors of -70 dB in the horizontal degrees of
freedom and of -60 in the vertical. These values correspond to the design and
simulations performances.

The experience with SAS systems ([14], [22]) makes us confident that, with
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Figure 6.7: Coherence between the pitch as measured by the optical lever and the
horizontal degress of fredom as measured by the geophones.

more reliable sensors and seismometers and the applications of the other sub-
systems like the COP correction counterweights on the IPs and of the “magic
wands” on the GAS filters, these performance could be extended to -100 dB in the
horizontal DOF and -80 dB in the vertical while minimizing the low frequency
r.m.s.residual motion at the same time.

6.4 Ground Tilt
Even if the displacement noise at very low frequency can be significantly attenu-
ated by the damping controls, the source of much of the measured horizontal geo-
phone noise still remains not definitely identified. The seismic noise measured by
the seismometers does not explain it unless it comes from angular seismic noise,
which the seismometers would not sense.

According to the model of section 2.4.2 the response of the IPs to the ground
tilt is

x =
A + Bω2

A −Cω2 x0 +
kθ/l2

A −Cω2Θ (6.10)

where Θ represent the angular spectrum of the ground. Since direct and accu-
rate measurements of the ground tilt do not exist, the classical model, very often
adopted to have as estimation, relies on the Rayleigh waves propagation model. In
it, as discussed in the first chapter, the ground tilt noise spectrum is proportional
to the vertical component of Rayleigh waves divided by the propagation speed.
As discussed in chapter 1, the coupling factor between the nominal ground tilt Θ
and its translational motion X0 varies from 10−3 to 10−1 rad/m and thus, ideally,
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Figure 6.8: Geophones noise floor measured disconnecting the sensors from the
readout board.

the contribute should be negligible. However the model does not take into account
local environmental factors like the wind and anthropogenic activities which can
tilt the local structures (buildings) and are more likely make a contribution domi-
nant at very low frequencies. The experience from the HAM-SAS prototype and
the seismic team at Virgo ([51]) reinforce that hypothesis, although the ultimate
proof will come when reliable tilt-seismomters will be available. Both LIGO and
Virgo are now strongly involved in the development of such sensors.
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Figure 6.9: The plot shows the power spectrum on the x direction (upper plot) and
of the vertical direction z (lower plot) each one compared with the reference given
by the correspondent displacement spectra from the seismometers on the ground (red
curves) and the HAM requirements. DC, damping and Resonance Gain controls are
active.
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Figure 6.10: The plot shows the transfer function amplitude and phase of the position
and damping combined control for the horizontal mode X that we applied to obtain
the performances which met the seismic attenuation requirements. The same filter
shape, but with different gains and locations of poles and zeros adapted to the specific
physical plant responses are applied to the other modes.
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Figure 6.11: hhh
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Figure 6.12: Active performance. Horizontal Transmissibility along x. The coher-
ence is often low but -70 dB are reached at 4 Hz. The geophone noise floor is reached
at about 20 Hz
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Figure 6.13: Active performance. Horizontal Transmissibility along y. In this case
the coherence is higher than for x and the measurement is less noisy. Also in this case
an attenuation of -70 dB is reached at 4 Hz. The geophone noise floor is reached at
about 20 Hz.
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Figure 6.14: Active performance. Vertical transmissibility along z. In the vertical
direction the coherence is almost zero at very low frequency but is good above. As
a result we have a cleaner measurement than the horizontal ones. An attenuation of
-60 dB is reached at 10 Hz, then the geophone noise floor is reached
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Chapter 7

Conclusions

HAM-SAS represents the convergence of more than ten years of R&D carried
out at LIGO by the SAS group to develop passive and ’soft’ solutions for the
seismic isolation systems of Advanced LIGO. The several technologies produced
and the know-how acquired in the past years merged into one complex system
designed for a specific task in the intermediate and advanced interferometers. The
HAM-SAS first item produced served as a test bench for the SAS systems for
Advanced LIGO, to prove to measure up the leap from the lab to the site, from
single separate systems to a multi stage reliable attenuator for an actual high-
requirement optical bench. The results discussed in this thesis show that HAM-
SAS was able to accomplish that task. We proved that the system is able to support
and control the HAM optics table in exactly the same conditions of the sites that
the LASTI vacuum chambers reproduces. We showed that along each degree of
freedom the system, in its passive configuration, responds like a second order
filter with attenuation that manifestly falls as 1/ω2 up to 10 Hz, reaching -60 dB
in the vertical and -70 dB in the horizontal. Above that frequency the attenuation
is limited by the familiar plateaus produced by the center of percussion effect
of inverted pendulums and GAS filters. This made us confident that, having the
possibility to implement the SAS solutions for this limitations, an additional order
of magnitude in attenuation could be likely achieved in all directions.

The geometry of the system allowed us to apply straightforward control strate-
gies. Vertical and horizontal degrees of freedom are in first approximation inde-
pendent in most of the frequency range. For both the horizontal and the vertical
stages we treated each mode individually and designed control loops to damp the
resonances and control the static position. With such limited bandwidth controls
we could bring the displacement noise power spectrum of the platform to meet the
Advanced LIGO requirements for the HAM chambers at all frequencies. Since the
controls inevitably re-inject some noise at high frequency, a further improvement
of the performance would come from setting the vertical modes at lower frequen-
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cies by re-tuning the GAS filters, improving the tilt correction system and adding
some mass to the IP table. Since the Q factors reduce with ω2 we expect that the
reduction of the resonant frequencies will also reduce or eliminate the need for
viscous resonance damping.

The residual motion at very low frequency, especially in the horizontal de-
grees of freedom, exceeded our expectations. In that frequency region we found
the sensitivity limit of the geophone sensors and of the seismometers which made
hard to clearly distinguish between the contribution from the environment and
the part played by the system. We suspect the role of the ground angular noise
to be determinant in overwhelming the sensor signals. Unfortunately no reliable
measurement of the angular spectrum could be obtainable from the available seis-
mometers on ground. The issue of the seismic angular noise touches HAM-SAS
but it is getting growing attention from both LIGO and Virgo in view of advanced
suspensions.

HAM-SAS showed very interesting performances as a seismic attenuation sys-
tem. It was a complex project and it happened within a very tight time schedule
that did not leave sufficient room a the complete optimization of the system. As
we could expect from a prototype, we encountered many problems and difficul-
ties, but we solved many and we learned from each of them becoming confident
in the HAM SAS potentialities as a platform for seismic isolation in Advanced
LIGO.
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