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1. Introduction 
Second generation gravitational wave detectors using laser interferometry adopt stable cavity 
configuration in the recycling cavity. One realization is to place a mode matching telescope in the 
recycling cavity and makes the gouy phase of the recycling cavity large enough to suppress the 
degeneracy. 

The field is focused to make the Rayleigh range small so that enough gouy phase is aquired 
through propagation in a limited length cavity. In the focusing cavity where mode parameter 
changes, the field curvature is small and the field exhibits very rapid oscillation in the plane 
perpendicular to the propagation direction. This makes it difficult to use a FFT-based simulation to 
calculate the field propagation through the cavity because the number of grid points needs to be 
large so that the initial boundary condition with rapid oscillation can be properly sampled. 

An algorithm based on the adaptive grid size formulation of the FFT-based cavity simulation is 
shown to accelerate the calculation of fields propagating through a stable cavity adapted in the 
recycling cavity. This method allows the number of the grid points of the FFT calculation to be 
smaller than that needed when this algorithm is not used, and the simulation time can be reduced by 
an order of magnitude. 

2. Focusing cavity 

 
Figure 1 Focusing cavity 
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Figure 1 shows the recycling cavity consisted of a recycling mirror, RM, a focusing cavity made of 
RM2 (ROC=-4.555m) and RM3 (ROC=36m), and ITM. Ein is the field going to RM3, and its field 
parameters are shown in red. Ein is reflected by RM3 to E0, and E0 propagates to RM2 to become 
E1. E1 is then reflected by RM2 to become Eout, and its parameters are shown in blue. The 
focusing cavity length is 16.1558m and the Rayleigh range in the cavity is very small, 3.87cm. The 
dominant part of the gouy phase comes from the cavity formed by RM and RM2, which accounts 
for 95% of the total gouy phase of the recycling cavity, 25°. 
The ROC of E0 is 100 times smaller than that of Ein, and the ROC of E1 is 10 times smaller than 
that of Eout. E0 and Ein (E1 and Eout) have the same beam size on the reflecting mirror, so the 
spatial oscillation of E0 (E1) is much rapid than Ein (Eout). This causes the numerical simulation 
difficult as is discussed below.  
In this document, the discussion is limited to the propagation from Ein to Eout in Figure 1, but the 
same argument applies to the reverse propagation. 
The Fresnel approximation of the Huygen’s integral propagating from z0 to z1 is given by the 
convolution of the source field at z0, and the paraxial propagation kernel: 

 
E(x1, y1, z1) = d∫∫ x0dy0E(x0 , y0 , z0 ) ⋅K(Δx,Δy,Δz)

Δx = x1 − x0 , Δy = y1 − y0 , Δz = z1 − z0
     ( 1 ) 

where K(x,y,z) is the paraxial propagation kernel defined as 

K(x, y, z) = i
z ⋅ λ

exp(−i ⋅ k ⋅ x
2 + y2

2z
)

r2 = x2 + y2
        ( 2 ) 

When an incoming field, Ein, is reflected by a mirror with curvature Rm at normal incidence, the 
reflected field, E0, acquires the following wave front phase: 

E0 (x, y, z) = Mm (x, y, z) ⋅Ein (x, y, z)

= Mm (x, y, z) ⋅Ein (x, y, z) ⋅ exp(i ⋅φ(r))

φ(r) = k ⋅ r
2

Rm

     ( 3 ) 

In this equation, Mm is the effect of the reflection by the mirror m, and Mm is the part after 
removing the phase by its curvature which is explicitly written as exp(iϕ). Mm is 0 outside of the 
mirror aperture. The field curvature changes by –Rm/2 by this reflection. The reflection map Mm  is 
assumed be smooth and can be handled using the same FFT grid spacing used for Ein. 

The field propagating from RM3 to RM2 is calculated by substituting the source field E0 given by 
Eq. (3) in the propagation formula Eq. (1). The integration goes over the mirror RM3 surface. 

When the field E0 on RM3 is sampled with a spacing of dr, the phase change from r to r+dr is 

dφ =
2k ⋅ r ⋅dr
Rm

         ( 4 ) 
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In order to change the Rayleigh range in a short distance, curvature of the focusing mirror is small. 
With Rm=36m and r=5.4cm, the phase spacing in units of 2π is 

dφ
2π

=
2 ⋅0.054

36 ⋅1.064 ×10−6 dr = 2800 ⋅dr        ( 5 ) 

The FFT-based simulation uses data values at grid points on the mirror surface. In order to have 
enough sampling points, e.g., 10, at this radius, the spacing should be 3.6x10-5m, or 9000 sampling 
points in a ±3 x beam size window. In the central region with smaller value of r, this number can be 
smaller, yet special care needs to be taken to use very large number of sampling points to properly 
handle this very rapid oscillation in the outer region. 

3. Field propagation with magnification 
When a field propagates from RM3 to RM2, the beam size becomes smaller by an order of 
magnitude. It was shown that a coordinate scaling is convenient to handle these cases [ 1, 2 ].  
In order to magnify the beam size of E1, the coordinate perpendicular to the propagation direction 
is scaled by a factor of α with the substitution of x1 = α x1’ and y1 = α y1’ in the propagation 
formula Eq. (1). With α < 1, the image size in the new coordinate system in (x1’, y1’) is magnified 
by 1/α. 
By changing the arguments of the propagation kernel K from (x1-x0,y1-y0) to (x1’-x0,y1’-y0), the 
integral formula can be rewritten as follows: 

 

E1(x1, y1, z1) = d∫∫ x0dy0E0 (x0 , y0 , z0 ) ⋅K(x1 − x0 , y1 − y0 ,Δz)

= d∫∫ x0dy0E0 (x0 , y0 , z0 ) ⋅K(αx1 '− x0 ,αy1 '− y0 ,Δz)

= C(x1, y1,Δz,α ) d∫∫ x0dy0E 0 (x0 , y0 , z0 ) ⋅K(x1 '− x0 , y1 '− y0 ,Δz /α )

  ( 6 ) 

where  E  and   C  are given as follows: 

 

E0(x0 , y0 , z0 ) = E0 (x0 , y0 , z0 )exp(i ⋅φ0 (r0 ))

φ0 (r) = k
(α −1)
2Δz

r2
      ( 7 ) 

 

C(x1, y1,Δz,α ) =
1
α
exp(i ⋅ψ(r1))

ψ(r) = k (1 /α −1)
2Δz

r2
        ( 8 ) 

 When E0 is replaced by the expression using Ein, Eq. (3),  E  becomes as follows: 

 

E 0 (x0 , y0 , z0 ) = Mm3(x0 , y0 , z0 ) ⋅Ein (x0 , y0 , z0 )exp(i ⋅φin (r0 ))

φin (r) = k(
(α −1)
2Δz

+
1
Rm3

)r2
    ( 9 ) 

where Rm3 is the ROC of and Mm3 is the reflection map of RM3. 
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If α is chosen to be 

α = 1− 2Δz
Rm3

          ( 10 ) 

the rapidly oscillating part in Eq. (3) is cancelled by the extra factor introduced by the coordinate 
scaling. The oscillation can be suppressed when α is close to this optimal value. 
This optimal scaling factor α is a reasonable choice. The Rayleigh range in the focusing cavity is 
very small, and the beam size of a field is proportional to the distance to the waist position. The 
distance between RM3 and the waist position is –Rm3/2, and that of RM2 is –Rm3/2 + Δz in this 
approximation, so the optimal choice of α, Eq. (10), is approximately the ratio of the beam size on 
RM2 to that on RM3. 

Field Eout is related to E1 by the following equation, similar to Eq.(3): 

Eout (x, y, z) = Mm2 (x, y, z) ⋅E1(x, y, z)

= Mm2 (x, y, z) ⋅E1(x, y, z) ⋅ exp(i ⋅φ(r))

φ(r) = k ⋅ r
2

Rm2

     ( 11 ) 

where Rm2 is the ROC of and Mm2 is the reflection map of RM2. Mm is a part of the reflection map 
excluding the mirror curvature, and this includes the finite aperture and surface aberration effects. 
By combining this with Eq.(6), the field Eout is related to Ein by the following equation: 

 
Eout (x1, y1, z1) = C(x1, y1,Δz,α ) d∫∫ x0dy0E 0 (x0 , y0 , z0 ) ⋅K(x1 '− x0 , y1 '− y0 ,Δz /α )   ( 12 ) 

where C is defined as follows: 

C(x1, y1,Δz,α ) =
1
α
exp(i ⋅ψ (r1)) ⋅Mm2 (x1, y1, z1)

ψ (r) = k((1 /α −1)
2Δz

+
1
Rm2

)r2
      ( 13 ) 

If you use the optimal value of α, Eq.(10), then this relation becomes simplified as follows: 

Eout (x1, y1, z1) =

C(x1, y1,Δz,α ) d∫∫ x0dy0Ein (x0 , y0 , z0 ) ⋅Mm3(x0 , y0 , z0 ) ⋅K(x1 '− x0 , y1 '− y0 ,Δz /α )
 ( 14 ) 

C(x1, y1,Δz,α ) =
1
α
exp(i ⋅ψ (r1)) ⋅Mm2 (x1, y1, z1)

ψ (r) = k( 1
Rm3 − 2Δz

+
1
Rm2

)r2
      ( 15 ) 

Because Rm3 + Rm2 - 2Δz << 2Δz, ψ (r)  is much smaller than  ψ
(r)  in Eq.(8) for arbitrary chosen 

value of α. This corresponds to the fact that the ROC of Eout is much larger than that of E1. This 
relationship holds when α is close to the optimal value. 
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4. Propagation using FFT 
Eq.(12) gives the expression to calculate the outgoing field, Eout, of the focusing cavity by using the 
incoming field, Ein. The rapidly oscillating phase ϕ in Eq.(3) and that in Eq. (11), can be suppressed 
by a proper choice of the scaling factor α. One optimal choice is the one given in Eq.(10), which 
makes ϕin to 0 and makes ψ in Eq.(13) suppressed  as well. 

Because the propagation formula to calculate the outgoing field is a convolution of the incoming 
field, reflection map with similar spatial structure and the propagation kernel, the size of the FFT 
grid can be the same as that for the incoming field. 
The Fourier transformation of the integral part of Eq. (14) can be written as a product of the Fourier 
transformation of the product of the incoming field and the reflection map,  E 0 , and that of the 
propagation kernel with a propagation distance of (z1-z0)/ α,  K .  

 

Eout (x1, y1, z1) = C(x1, y1,Δz,α ) ×

dfx dfy∫∫ E0( fx , fy , z0 ) ⋅K( fx , fy ,Δz /α ) ⋅ exp(−i2π ( fxx1 '+ fyy1 '))
    ( 16 ) 

The outgoing field is calculated in the following steps. 
1) Calculate the source field using Eq.(9). 

2) Using the propagation kernel, propagate the incoming field by  (z1-z0)/ α, using FFT. 
3) Scale the output coordinate by 1/α, i.e., switch the coordinate from (x1’,y1’) to (x1,y1). 

4) Multiply C(x1,y1, Δz, α), Eq.(15). 
So long as a proper value of α is chosen, the source field, Eq.(9), has similar spatial structure as the 
incoming field, no special care is needed when FFT is applied. 

5. Practical issues 
There are a few practical issues to apply this method.  
First is the separation of the phase from the mirror reflection map. Mathematically, Eq.(12) can be 
expressed using Mm, instead of Mm , together with ϕ0 in Eq.(7). So long as α is chosen properly, 
large oscillations in these two functions cancel each other. But, numerically, it often happens that 
these oscillation phases are calculated in slightly different way, and that can introduce imperfect 
cancellation. So, it is better to use an expression which does not include any large oscillation. 
Second is the chose of the scaling factor α. The product of two optimal scaling factors, α32 for the 
propagation from RM3 to RM2 and α32 for the propagation from RM2 to RM3, is 

α 32 ⋅α23 = 1+
4Δz2

Rm3Rm2
(1− Rm3 + Rm2

2Δz
)        ( 17 ) 

Because Rm2+Rm3 ≠2 Δz, the scaling from RM3 to RM2 and RM2 to RM3 are not reciprocal. But it 
is close enough that the suppression of the oscillation is enough when one α is chosen to be 
reciprocal of the other, e.g., α(RM2 to RM3) = 1/ α32. 
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Usually, the optimal value of α will not give a convenient FFT window size or spacing on one side 
or both of the propagation. It may be convenient to use the optimal value of α for both propagations 
and apply a smooth interpolation to the FFT grid points which was set by the user. 

6. Numerical results 

 
Figure 2 Propagation with different propagation  

( In Fig.(A), 3 lines except green overlap each other ) 

This figure shows amplitudes of the field Eout for the same input field, Ein, 
TEM00(ROC=1358m,w=5.4cm), calculated using different propagation methods. Figure (A) is the 
case when the aperture of RM3 is infinite and (B) is the case when the aperture is 26cm. 512 or 
2048 marks the number of FFT grid points. The FFT window size is 60cm on RM3, and the scaling 
factor α is the optimal value, 0.1025, and an arbitrary value, 0.2. 
The beam size on RM2 is 0.6cm, and the 3 times of the beam size is shown by long a dashed line. 
As is shown in both (A) and (B), when an optimal value is chosen for the scaling factor, the 
number of grid points can be small (blue), compared to the case using an arbitrary scaling factor 
(green). 
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Figure 3 Choice of reciprocal value 

( For the Fig.(A) calculation, PR3 mirror size is set to infinite to show the tail. The true 
reflected field will be cut at the line marked as mirror size. ) 

This figure shows the effect using a reciprocal value of α for one propagation.  

Figure (A) is a case for the propagation from RM2 to RM3 (mirror 1 corresponds to RM2 and 
mirror 2 to RM3). The RM2 aperture is much larger than the beam size.  0.124 is the optimal 
scaling from RM2 to RM3 and b=1/a means that the scaling factor is calculated using the reciprocal 
of the scaling from RM3 to RM2, i.e., 1/0.1025. As is clear that the reciprocal value is close 
enough that 512 is good enough for the propagation. 
Figure (B) is the propagation from RM3 to RM2 (mirror 1 is RM3 and mirror 2 is RM2). The 
aperture of RM3 is 26cm. Again, up to 3 times of the beam size, marked by long dashed line, 512 is 
good enough either the optimal value is used (blue) or the reciprocal (green, 1/0.124). 

7. Summary 
One needs to properly suppress the spatial oscillation due to the small ROC of the focusing mirrors. 
So long as the scaling factor is chose to make the oscillation to be small, the number of the FFT 
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grid points for the propagation through the focusing cavity can be as small as the one used for the 
propagation of fields outside of the focusing cavity. 
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