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The future laser interferometric gravitational-wave detectors sensitivity can be

improved using squeezed light. In particular, in the article [1], a scheme which uses

the optical field with frequency dependent squeeze factor, prepared by means of a

relitively short (∼ 30 m) amplitude filter cavity, was proposed. Here we consider an

improved version of this scheme, which allows to further reduce the quantum noise

by exploiting the quantum entanglement between the optical fields at the filter cavity

two ports.

I. INTRODUCTION

In high-sensitive optical position meters, and, in particular, in laser interferometric
gravitational-wave detectors, two kinds of optical quantum noises exist. The first one —
measurement noise, known also as shot noise — arises due to the optical field phase fluctu-
ation. Its spectral density Sx is inversely proportional to the optical power W circulating in
the interferometer arms. The second one — back action, or radiation-pressure noise — is a
random force acting on test mass(es) due to the optical field amplitude fluctuations. This
noise spectral density SF is directly proportional to W .

In the contemporary (first) generation of laser interferometric gravitational-wave detec-
tors [2, 3, 4, 5, 6, 7], the optical power is relatively small and the measurement noise
dominates in all frequency band of interest. In the planned second generation detectors
[8, 9, 10, 11] the circulating power will be about hundred times higher. Correspondingly,
sensitivity will be better at least by one order of magnitude. Near the characteristic fre-
quency Ω0/2π ∼ 100 Hz it will be close to the Standard Quantum Limit (SQL), i.e. the
sensitivity level where the test mass response on the back-action force becomes equal to the
measurement noise.

It is well known that performance of laser interferometric gravitational-wave detectors
can be improved by using squeezed quantum states of the optical field. Preparation of
optical field quantum states squeezed in gravitational-wave band (10-10000 Hz) presents
a significant technical problem. However, now this problem can be considered as solved
[12, 13].

Squeezed state inside the interferometer can be created by injection squeezed vacuum
into the interferometer dark port. In this case, the shot noise will be suppressed by the
price of increased radiation pressure noise, allowing to reach the SQL using less optical
power [14] (it has to be noted that the circulating power close to 1 MW is planned for the
second generation detectors). Using a frequency-dependent squeezing angle [15], it is possible
to obtain sensitivity better than the SQL. The necessary dependence can be created, in
particular, by reflecting squeezed vacuum (before its injection into the interferometer) from
additional detuned filter cavities [16, 17, 18]. However, this technology is very sensitive to
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the filter cavities optical losses. Therefore, in order to obtain a significant sensitivity gain,
very long (kilometer-scale) filter cavities are required.

An alternative method based on a different type of filter cavity was proposed in the article
[1]. In this method (which will be referred by below as CMW), the filter cavity works as
a high-pass filter for the squeezed light, creating light which is squeezed only at high side-
band frequencies (& 100 Hz). In this case, the measurement noise will be reduced at high
frequencies only, that is in the frequency domain where it dominates. At the same time, the
back action noise will remain unchanged at low frequencies (where it dominates), and will
increase only at high frequencies, where its influence is negligible in comparison with the
measurement noise. As a result, this method improves sensitivity at high frequencies, but
does not affect it at low frequencies.

It is important, that in the CMW procedure squeezed light does not enter into the filter
cavity at low side-band frequencies. The sensitivity degradation due to the optical losses
increases inversely proportional to the observation frequency Ω. Therefore, this method
should be less sensitive to the filter cavity losses.

Estimates, presented in the article [1], shows, however, that this method performance
is not as good as it could be expected, and there is a noticeable sensitivity degradation at
medium frequencies — close to the filter cavity half-bandwidth γf (see, for example, Fig. 3
of [1] and Fig. 3 of the current paper). This degradation stems from the fact that there
is a quantum entanglement between output optical fields of two filter cavity ports [26]. It
vanishes at low and high frequencies, where the input field are simply pass through or reflect
from the cavity, and reaches the maximum at frequencies around γf . It is well known that
the quantum entanglement represent an informational resource. This resource is not used
in the original CMW scheme. As a result, the redundant quantum noise arises.

Thus disadvantage was recognized in the article [1], in in order to reduce it, multiple filter
cavitites configurations was proposed. Here we consider another more simple and effective
method, see Fig. 1. The scheme proposed here differs from the original one (see Fig. 1 of
[1]) by the additional homodyne detector AHD attached to the filter cavity idle port. Due
to the quantum entanglement, output signal of this detector contains information about
both the shot and the radiation pressure noises. Therefore, adding it to the output of the
main homodyne detector MHD with an optimal weight function, it is possible to remove the
redundant noise, substantially improving the sensitivity at medium frequencies.

In Sec. II, quantum noises of this scheme is calculated and it is shown that the additional
detector allows to reach the fundamental minimum of this noise. In Sec. III, the scheme
sensitivity is estimated for different values of the optical power and the interferometer band-
width.

For simplicity, we suppose here that the interferometer is tuned in resonance, i.e., the
“optical springs” technology [19, 20] is not used. We suppose also, that there are no optical
losses in the main interferometer itself, and take into account only losses in the filter cavity.
This approximation is justified by the fact that contemporary and planned gravitational-
wave detectors have kilometer-scale arm cavities, while the filter cavity length in the setup
considered in article [1] and here is supposed to be about a few tens of meters (it is well known
that the optical losses influence is inversely proportional to the cavity length). We take into
account, however, non-unity quantum efficiency of the photodetectors, which significantly
cripples performance of the squeezed states based schemes.

The main notations and parameters values used in this paper are listed in Table I. For the
consistency with the quantum theory of measurements, the “double-sided” definition of the
noises spectral densities used in this paper. However, for the equvalent strain noise spectral
density Sh(Ω), the “single-sided” definition standard for the gravitational-wave community
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Quantity Value for estimates Description

Ω Gravitational-wave frequency

c 3× 108 m/s Speed of light

ωp 1.77 × 1015 s−1 Optical pump frequency

m 40 kg Test mass

L 4 km Interferometer arms length

W Power circulating in each of the arms

W0 840 kW Power planned for the Advanced LIGO

J =
8ωpW

McL

J0 =
8ωpW0

McL
(2π × 100)3 s−3

γ Interferometer half-bandwidth

γ0 = J
1/3
0 2π × 100 s−1 “Conventional” interferometer half-bandwidth

lf 30 m Filter cavity length

er
√

10 Input field squeezing factor

A2
f 10−5 Filter cavity losses per bounce

T 2
I Filter cavity input mirror transmittance

T 2
E = T 2

I −A2
f Filter cavity end mirror transmittance

γf =
cT 2
I

2lf
Filter cavity half-bandwidth

ηf =
T 2
E

T 2
I

Filter cavity quantum efficiency

η 0.9 Photodetectors quantum efficiency

ζ Homodyne angle of AHD

TABLE I: Main notations used in this paper.

is used [see Eq. (16)].

II. QUANTUM NOISES CALCULATION

A. Filter cavity

Following the article [1], consider a resonance-tuned filter cavity pumped through its
input mirror IM by squeezed vacuum (see Fig. 1). Suppose that the cavity end mirror EM
is also partly transparent, and the following condition is satisfied for the mirrors power
transmittance and the cavity losses per bounce:

T 2
I = T 2

E + A2
f . (1)

The cavity tuned in such a way is transparent at low sideband frequencies Ω� γf and have
reflectivity close to unity at high frequencies Ω� γf . Therefore, the reflected beam which is
fed into the gravitational wave detector dark port will be squeezed only at high frequencies.
At low frequencies the squeezed state will be replaced by the vacuum state created partly
by the end mirror transmittance and partly by the cavity optical losses.

It has to be noted that it was supposed in the article [1] that only one (input) mirror
of the filter cavity is partly transparent: TE = 0 and TI = Af . However, using modern



4

PSfrag replacements√
Sh(Ω)

Ω/2π

W

W

m

m
m
m

FR

PBS

Filter cavity
MHD

AHD

IM

EM

LM

AHD

|SQZ〉

|0〉

Entanglement

FIG. 1: Squeezed vacuum is reflected from the resonance-tuned filter cavity and is fed into the

gravitational-wave detector dark port using the polarization beam splitter PBS and the Faraday

rotator FR. MHD — the main homodytne detector; AHD — the additional homodytne detector.

high-refelective mirrors, it is possible to obtain Af � TI and, therefore, TE ≈ TI . Really,
the filter cavity half-bandwidth has to be close to γf ∼ 2π × 100 s−1. Therefore, there has
to be T 2

I = 2lfγf/c ∼ 10−4. Taking into account that, with the best mirrors available now,
the filter cavity losses per bounce can be as small as A2

f ≈ 10−5, it is possible to provide the

value of 1− ηf = 1− T 2
E/T

2
I = A2

f/T
2
I ∼ 0.1 .

It is shown in Appendix A, that squeezing factors for the phase and amplitude quadrature
components of the filter cavity output beam are equal to

Sϕ,I(Ω) =
Ω2e−2r + γ2

f

Ω2 + γ2
f

, (2a)

SA,I(Ω) =
Ω2e2r + γ2

f

Ω2 + γ2
f

, (2b)

and these noises are non-correlated:

SϕA,I(Ω) = 0 . (3)

It is easy to see, that

Sϕ,I(Ω)SA,I(Ω) = 1 +
4Ω2γ2

f sinh2 r

(Ω2 + γ2
f)

2
> 1 . (4)

It follows from Eqs. (3, 4), that there is a redundant quantum noise in the filter cavity output
beam which is maximal at Ω = γf and vanishes if Ω→ 0 or Ω→∞, i.e., if the filter cavity
is completely reflective or completely transparent.

Consider the beam which leaves the filter cavity through the end mirror EM. It is squeezed
at low frequencies Ω < γf . Squeezing factors of the corresponding phase and amplitude
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quadrature components are equal to (see Appendix A)

Sϕ,E(Ω) = 1−
ηfγ

2
f(1− e−2r)

Ω2 + γ2
f

, (5a)

SA,E(Ω) = 1 +
ηfγ

2
f(e

2r − 1)

Ω2 + γ2
f

. (5b)

and these quadratures are also non-correlated, SϕA,E(Ω) = 0.
Redundant noise exists at this output too:

Sϕ,E(Ω)SA,E(Ω) = 1 +
4ηfγ

2
f [Ω

2 + (1− ηf)γ2
f ] sinh2 r

(Ω2 + γ2
f)

2
> 1 . (6)

At the same time, there is cross-correlation between the corresponding (phase and ampli-
tude) quadrature components at the filter cavity two outputs:

Sϕ,IE(Ω) = − i
√
ηf Ωγf(1− e−2r)

Ω2 + γ2
f

, (7a)

SA,IE(Ω) =
i
√
ηf Ωγf (e2r − 1)

Ω2 + γ2
f

. (7b)

It will be shown below that it is this cross-correlation allows to compensate the redundant
noise.

B. Meter noise

The component of output signal of the main homodyne detector (MHD in Fig. 1) created
by the optical quantum noise is proportional to

x̂sum(Ω) = x̂fl(Ω)− F̂fl(Ω)

mΩ2
, (8)

where xfl(Ω) is is the measurement noise and F̂fl(Ω) is the back-action force, see Eqs. (B8,
B9). Spectral density of the noise (8) is equal to:

Ssum(Ω) = Sx(Ω) +
SF (Ω)

m2Ω4
, (9)

where

Sx(Ω) =
~(γ2 + Ω2)

4mJγ

[
Sϕ,I(Ω) +

1− η
η

]
, (10a)

SF (Ω) =
~mJγ

Ω2 + γ2
SA,I(Ω) (10b)

are spectral densities of the noises x̂fl(Ω) and F̂fl(Ω), correspondingly, see Appendix B. The
second term in the square brackets in Eq. (10a) arises due to the homodyne detector non-
unity quantum efficiency η < 1.
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Due to Heisenberg’s uncertainty relation, spectral densities (10) satisfy the following
inequality [21, 22]:

Sx(Ω)SF (Ω)− |SxF (Ω)|2 > ~
2

4
, (11)

where SxF is cross-correlation spectral density, which is equal to zero in this particular case.
Without optical losses or other non-fundamental noise sources, there has to be exact equality
in this formula. However, it follows from Eq. (4) that even in the case of η = 1, product of
spectral densities (10) is equal to

Sx(Ω)SF (Ω) =
~2

4

[
1 +

4Ω2γ2
f sinh2 r

(Ω2 + γ2
f)

2

]
>
~2

4
. (12)

Therefore, this meter is not optimal from the quantum measurements theory point of view.
The origin of this fact is, evidently, the information loss in the filter cavity. Part of this loss
created by the light absorption on the filter cavity is inevitable. But the other part created
by the information leak through the filter cavity end mirror can be eliminated using the
correlation (7).

Really, suppose that some quadrature component q̂ζ of the end mirror output beam,
defined by the homodyne angle ζ [see Eq. (C1)], is monitored using the additional homodyne
detector AHD. Due to the correlation (7), this detector provides some information about the
quantum fluctuations (8). Therefore, mixing in optimal way the main detector output with
the additional detector output, it is possible to reduce the sum quantum noise. It is shown
in Appendix C, that this optimized sum noise spectral density is equal to

Seff
sum(Ω) = Seff

x (Ω)− 2Seff
xF (Ω)

mΩ2
+
Seff
F (Ω)

m2Ω4
, (13)

where Seff
x (Ω), Seff

F (Ω), Seff
xF (Ω) are spectral densities of the effective measurement noise,

effective back action force and the corresponding cross spectral density, see Eqs.(C9). It
can be shown, that if η = 1, then these spectral densities satisfy the following uncertainty
relation:

Seff
x (Ω)Seff

F (Ω)− |Seff
xF (Ω)|2 =

~2

4

[
1 +

4Ω2γ2
f sinh2 r

(Ω2 + γ2
f)

2

1− ηf
Sζ(Ω)

]
, (14)

where Sζ(Ω) is the noise qζ spectral density [compare with Eq. (12)]. In the ideal no-losses
case of ηf = 1, the RHS of this equation is equal to ~2/4, which means that the noises in
this case are as small as allowed by quantum mechanics.

Spectral density (13) depends on two free parameters: ζ and γf , which should be tuned
in some optimal way. It is evident that there is no the unique universal optimization here,
and the choice of ζ and γf depends on the desired shape of Seff

sum(Ω). Below we will use the
following simple procedure which provides smooth broadband spectral density.

Consider the ratio of Seff
sum(Ω) to the spectral density of the corresponding ordinary (with-

out squeezing) meter with increased by er optical power:

K(Ω) =
Seff

sum(Ω)
∣∣
W

Susqueezed
sum (Ω)

∣∣
Wer

. (15)

“Corresponding” means that the both meters has the same values of m and γ. Characteristic
spectral dependences of K(Ω) is shown in Fig. 2. There is one maximum here close to the
frequency Ω = γf , and if Ω� γf or Ω� γf , then K(Ω) ≈ e−r. We will use the values of ζ
and γf , which provide the minimal value of this maximum.
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FIG. 2: Typical shape of the function K(Ω) for original CMW scheme (dashes) and for CMW

scheme with the addtional detector (solid) and with ζ = 0 (a), ζ = ζoptimal (b), ζ = π/2 (c).
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FIG. 3: The square root of the sum quantum noise spectral density for: conventional unsqueezed

interferometer (dashes); original CMW scheme (a); CMW scheme with the additional homodyne

detector (b). In all three cases, W = 840 kW, γ = 2π × 100 s−1, and η = 1.

III. THE SENSITIVITY

A. Conventional interferometer

In this subsection, we suppose that the interferometer half-bandwidth γ is equal to γ0.
Below this case will be referred to as “conventional interferometer”.

In Fig. 3, we plot the quantum noise spectral densities of the scheme with the additional
detector considered above, of the original CMW scheme and of the SQL-limited (unsqueezed)
interferometer. The noises are normalized as equivalent strain fluctuations:

Sh(Ω) =
8~

mL2Ω2
Sx(Ω) . (16)

The circulating optical power W is supposed to be equal to the value planned for the
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FIG. 4: The square root of the sum quantum noise spectral density for CMW scheme with the

additional homodyne detector for different values of the optical power: (a) W0e
−2r ≈ 84 kW, (b)

W0e
−r ≈ 266 kW, (c) W0 = 840 kW (solid lines), in comparison with the conventional unsqueezed

interferometer at W = 840 kW (dashes). In all cases, γ = 2π × 100 s−1 and η = 1.

Advanced LIGO (W0 = 840 KW). It is easy to see that the additional detector allows to
significantly reduce the noise at medium and low frequencies, compare lines (a) and (b). At
low frequencies, the noise virtually does not differ from the one of the ordinary interferometer
(without filter cavity).

It is well known that reducing the optical power, it is possible to increase sensitivity at low
frequencies (in the radiation-pressrure noise domination area), sacrifying the high-frequency
sensitivity (in the shot noise domination area). In Fig. 4, the noises of the scheme considered
here are plotted for the following three values of the optical power: W0 e

−2r = 84 KW,
W0 e

−r = 266 KW, and W0 = 840 KW, together with the quantum noise of the conventional
unsqueezed interferometer at W = 840 kW.

The power W = W0 e
−r provides almost even gain in the quantum noise spectral density

in the all frequency band [see line (b)], similar to the regime with frequency-dependent
homodyne angle [15, 16]. The gain value is smaller than in the latter case, er vs. e2r.
However, the required optical power is also er times smaller. Regime with W = W0 e

−2r

allows to reduce the quantum noise spectral density at low frequencies by e2r, while keeping
the high-frequency noise at the same level as in the unsqueezed interferometer.

In Fig. 5, we plot the quantum noise spectral densities for the same parameters values
as in Fig. 4, but taking into account non-unity quantum efficiency η of the photodetectors
(solis lines). It is easy to observe significant sensitivity degradation at high frequencies
(where the light is squeezed). At the same time, the sensitivity virtually is not affected at
low frequencies. For comparison, spectral densities of the sum quantum noise Shquant and the

sum technical noise Shtech planned for the Advanced LIGO and calculated using the bench
program [23] are also plotted in Fig. 5.

In Table II, numerical estimates of the sensitivity are presented. Two criteria are used
in this Table. The first one is the signal to noise ratio for neutron star - neutron star
(NSNS) inspiral waveforms [18], normalized by the value corresponding to the conventional
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FIG. 5: The square root of the sum quantum noise spectral density for CMW scheme with the

additional homodyne detector for different values of the optical power: (a) W0e
−2r = 84 kW, (b)

W0e
−r ≈ 266 kW, (c) W0 = 840 kW. In all three cases, γ = 2π × 100 s−1. Solid: η = 0.9, dashes:

η = 1. (d) The sum quantum noise of the Advanced LIGO; (e) the sum technical noise of the

Advanced LIGO.

Configuration W γ SNRNSNS SNRperiodic(1 kHz) SNRperiodic(10 kHz)

AdvLIGO 840 KW 1.18 0.36 0.17

CMW conventional 84 KW 2π × 100 s−1 1.11(1.18) 0.47(0.99) 0.47(1.0)

266 KW 2π × 100 s−1 1.11(1.17) 1.5(3.1) 1.5(3.2)

840 KW 2π × 100 s−1 1.07(1.11) 4.6(9.6) 4.7(10.0)

CMW broadened 266 KW 2π × 314 s−1 1.22(1.29) 4.3(9.1) 4.7(10.0)

840 KW 2π × 1000 s−1 1.27(1.34) 24(50) 47(99)

TABLE II: Comparison of sensitivity of different regimes of the CMW scheme with additional

homodyne detector. Low-frequency sensitivity is characterized by the parameter (17), and the

high-frequency one — by the parameter (18). For each pair of numbers, the first one corresponds

to η = 0.9, and the second one (in parenthesis) — to η = 1.

(unsqueezed) interferometer with γ = γ0 and W = W0:

SNRRNSNS =

√√√√√√√√

∫ fISCO

fc

f−7/3

Sh(2πf) + Shtech(2πf)
df

∫ fISCO

fc

f−7/3

Shconv(2πf) + Shtech(2πf)
df

. (17)

Here fc = 10 Hz is the gravitational-wave detector low-frequency cut-off, and fISCO =
1570 Hz is the gravitational-wave frequency corresponding to the Innermost Stable Circular
Orbit of a Schwarzchild black hole with mass equal to 2× 1.4 solar masses. This criterium
characterizes the low-frequency sensitivity. The second criterium is the sensitivity for high-
frequency periodic sources, which is simply the reciprocal value of the noise spectral density
at some given frequency. Similar to [1], we use frequencies f = 1 kHz and f = 10 kHz, and
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FIG. 6: The square root of the sum quantum noise spectral density for CMW scheme with the

additional homodyne detector for different values of the optical power and the interferometer

bandwidth: (a) W0e
−2r = 84 kW, γ0 = 2π × 100 s−1, (b) W0e

−r ≈ 266 kW, γ0e
r ≈ 2π × 314 s−1,

(c) W0 = 840 kW, γ0e
2r = 2π × 1000 s−1. Solid: η = 0.9, dashes: η = 1. (d) The sum quantum

noise of the Advanced LIGO; (e) the sum technical noise of the Advanced LIGO.

normalize the noise by the value corresponding to the conventional unsqueezed interferom-
eter with γ = γ0 and W = W0:

SNRRperiodic(f) =

√
Shconv(2πf) + Shtech(2πf)

Sh(2πf) + Shtech(2πf)
(18)

B. Broadened interferometer

The choice of γ = γ0, while convenient for comparison with the simplest unsqueezed SQL-
limited case, does not provide the best results. Increasing not just the optical power but also
the interferometer bandwidth, it is possible to improve the sensitivity at high frequencies
without sacrifying the low-frequency sensitivity. Really, it follows from Eqs. (9,13), that the
low- and-high frequency asymptotics of the quantum noise spectral density are equal to

Sx(Ω) ≈ ~
2m
×





2J

Ω4γ
, Ω→ 0 ,

Ω2

2Jγ
e−2r , Ω→∞ .

(19)

Therefore, if γ increases proportionally to J ∝ W , then the low-frequency asymptotic of
Sx(Ω) remains unchanged, and the high-frequency one decreases proportionally to J 2 ∝ W 2.
This consideration is illustrated by Fig. 6, where the quantum noise spectral density is plotted
for the same values of the optical power as in Fig. 5, but for proportionally increased values
of γ. The corresponding numerical estimates are also shown in Table II (see the last two
rows).
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FIG. 7: Lossy amplitude filter cavity

IV. CONCLUSION

These estimates show that using the amplitude filter based scheme of [1] in combination
with the additional homodyne detector and the broadened interferometer configuration, it is
possible to obtain sensitivity which is comparable with or better that the one planned for the
Advanced LIGO at low frequencies, and substantially better — at high frequencies, using er

or even e2r times less optical power. Taking into account that 6 dB squeezing in gravitational
waves frequency band is available now [12, 13], and very probably 10 dB squeezing will be
available in the next few years, and taking also into account numerous hassles which stem
from very high optical power planned for the next generation gravitational-wave detectors,
the use of some squeezed states/amplitude filters based scheme with reduced power, similar
to the one considered here, probably, could be the better option.

However, it has to be noted that the use of squeezed states imposes additional technical
problems of its own. In particular, the estimates presented in this paper show, that the
photodetectors non-unity quantum efficiency η < 1 substantially limits the squeezed states
based scheme performance, replacing, in effect, the noise depression factor e−2r by the value

e−2reff = e−2r +
1− η
η

. (20)

For example, if η = 0.9, then the effective squeeze factor ereff can not exceed ∼ 10 dB even
if er →∞.
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Appendix A: Filter cavity

Consider resonance-tuned ring cavity consisting of three mirrors (see Fig. 7): the input
mirror I, the end mirror E and the “loss” mirror L, which transmittance models the cavity
optical losses. Let−RI , iTI , −RE , iTE and−RL, iTL be the reflectivities and transmittances
of these mirrors, correspondingly.
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Suppose that the beam ŝ is in a squeezed state:

ŝ(ω) = ẑ(ω) cosh r − ẑ+(ω) sinh r , (A1)

and the beams n̂, p̂, ẑ are in the ground state.
Equations for the field amplitudes are the following (see notations in Fig. 7):

â = −RI ŝ + iTI ĝ , ĥ = −RI ĝ + iTI ŝ , ĉ = b̂eiωτ1 , (A2a)

q̂ = −REp̂ + iTE ĉ , d̂ = −RE ĉ + iTEp̂ , ê = d̂eiωτ2 , (A2b)

f̂ = −RLê + iTLn̂ , ĝ = f̂eiωτ3 . (A2c)

where τ1,2,3 = l1,2,3/c and l1,2,3 are the distances between the mirrors I and A, A and E, E
and I, correspondingly. It follows from Eqs. (A2), that

â(ω) =
−(RI +RERLe

2iωτ )ŝ(ω) +RLTITEp̂(ω)eiω(τ2+τ3) − TITLn̂(ω)eiωτ3

1 +RIRERLe2iωτ
, (A3a)

q̂(ω) =
−TITE ŝ(ω)eiωτ1 − (RE +RIRLe

2iωτ )p̂(ω) + RITETLn̂(ω)eiω(τ1+τ3)

1 +RIRERLe2iωτ
, (A3b)

where

τ =
τ1 + τ2 + τ3

2
. (A4)

Suppose that the cavity is tuned in resonance:

e2iωpτ = −1 , (A5)

and that

eiωpτ1 = eiωτ3 = 1 , eiωpτ2 = −1 (A6)

(conditions (A6) are not necessary, but they simplify formulae and do not affect the end
results). Suppose also that

TI,E,L ≡ 2
√
γI,E,Lτ � 1 , |Ω|τ � 1 , (A7)

where
Ω = ω − ωp . (A8)

In this case,

RI,E,L ≈ 1− T 2
I,E,L

2
= 1− 2γI,E,Lτ , (A9a)

e2iωτ = −e2iΩτ ≈ −(1 + 2iΩτ) , (A9b)

and

â(ω) =
(γfI − γfA − γfE + iΩ)ŝ(ω)− 2

√
γfIγfA p̂(ω)− 2

√
γfIγfE n̂(ω)

γf − iΩ
, (A10a)

q̂(ω) =
(γfA − γfI − γfE + iΩ)p̂(ω)− 2

√
γfIγfA ŝ(ω) + 2

√
γfEγfE n̂(ω)

γf − iΩ
. (A10b)
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Introduce new effective noises:

p̂′ =
√
ηf p̂ +

√
1− ηf n̂ , n̂′ =

√
ηf n̂−

√
1− ηf p̂ , (A11)

where

ηf =
γfE
γ′fE

, γ′fE = γfE + γfL . (A12)

If p̂ and n̂ correspond to two independent vacuum noises then p̂′ and n̂′ also correspond to
two independent vacuum noises.

Using these new noises and renaming back for brevity

p̂′ → p̂ , n̂′ → n̂ , γ′fE → γfE , (A13)

we obtain, that:

â(ω) = R(Ω)ŝ(ω) + T (Ω)p̂(ω) , (A14a)

q̂(ω) =
√
ηf [T (Ω)ŝ(ω) +Q(Ω)p̂(ω)] +

√
1− ηf n̂(ω) , (A14b)

where

ηf =
γ′fE
γfE

. (A15)

and

R(Ω) =
γfI − γfE + iΩ

γf − iΩ
, T (Ω) = −2

√
γfIγfE

γf − iΩ
, Q(Ω) =

γfE − γfI + iΩ

γf − iΩ
. (A16)

Note the following symmetry conditions:

|R(Ω)|2 + |T (Ω)|2 = |Q(Ω)|2 + |T (Ω)|2 = 1 , R∗(Ω)T (Ω) + T ∗(Ω)Q(Ω) = 0 . (A17)

Introduce two-photon quadrature amplitudes:

âϕ(Ω) = â(ωp + Ω) + â+(ωp − Ω) , âA(Ω) =
1

i

[
â(ωp + Ω)− â+(ωp − Ω)

]
, (A18)

and similarly for all other field amplitudes. It follows from Eqs.(A10), that

âϕ(Ω) = R(Ω)ẑϕ(Ω)e−r + T (Ω)p̂ϕ(Ω) , (A19a)

âA(Ω) = R(Ω)ẑA(Ω)er + T (Ω)p̂A(Ω) , (A19b)

q̂ϕ(Ω) =
√
ηf [T (Ω)ẑϕ(Ω)e−r +Q(Ω)p̂ϕ(Ω)] +

√
1− ηf n̂ϕ(Ω) , (A20a)

q̂A(Ω) =
√
ηf [T (Ω)ẑA(Ω)er +Q(Ω)p̂A(Ω)] +

√
1− ηf n̂A(Ω) . (A20b)

Two-photon amplitudes n̂ϕ(Ω), p̂ϕ(Ω), ẑϕ(Ω), n̂A(Ω), p̂A(Ω), ẑA(Ω) correspond to indepen-
dent fluctuations with spectral densities equal to unity. Taking also into account Eq. (1), it
is easy to show that spectral densities of noises (A19) are equal to (2), spectral densities of
noises (A20) are equal to (5), and and cross spectral densities of the noise pairs âϕ(Ω), q̂ϕ(Ω)
and âA(Ω), q̂A(Ω) are equal to (7).
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Appendix B: Quantum noises of resonant-tuned interferometer

We base the interferometer noises calculations on the “scaling low” theorem of the article
[24], which maps the Michelson/Fabry-Perot topology to a single Fabry-Perot cavity with
one movable mirror.

It is shown in Appendix B of the article [25], that the output field of such a cavity is
described by the following equation (it is supposed here that the cavity is resonance-tuned):

b̂(ω) =
1

`(Ω)

[
`∗(Ω)â(ω) + 2kpE

√
γ

τ
x(Ω)

]
, (B1)

and field inside the cavity — by the equation

ê(ω) =
1

`(Ω)

[
i

√
γ

τ
â(ω) +

ikpEx(Ω)

τ

]
, (B2)

where

τ =
L

c
, kp =

ωp
c
, `(Ω) = γ − iΩ . (B3)

Finite quantum efficiency of the photodetector can be modeled by a grey filter with the
transmittance η:

b̂detect(ω) =
√
η b̂(ω) +

√
1− η û(ω) , (B4)

where û(ω) is the corresponding introduced noise.
Using again two-photon quadratures and taking into account that

`∗(Ω) = `(−Ω) , (B5)

we obtain, that

b̂ϕ detect(Ω) =

√
η

`(Ω)

[
`∗(Ω)âϕ(Ω) + 4kpE

√
γ

τ
x(Ω)

]
+
√

1− η ûϕ(Ω) , (B6a)

êϕ(Ω) = −
√
γ

τ

âA(Ω)

`(Ω)
. (B6b)

We suppose that the moment of t = 0 is choosen in such a way that E = |E|.
If the phase quadrature is registered, then Eq. (B6a) descrbes the measurement noise. It

can be rewritten as follows:

b̂ϕdetect(Ω) =
4
√
η kpE

`(Ω)

√
γ

τ
[x(Ω) + x̂fl(Ω)] , (B7)

where

x̂fl(Ω) =
1

4kpE

√
τ

γ

[
`∗(Ω)âϕ(Ω) +

√
1− η
η

`(Ω)ûϕ(Ω)

]
. (B8)

is the measurement noise.
The back-action force is proportional to the quadrature (B6b):

F̂fl(Ω) = 2~kpEêϕ(Ω) = −2~kpE
`(Ω)

√
γ

τ
âA(Ω) . (B9)

Taking into account Eqs. (2) and that ûϕ(Ω), p̂ϕ(Ω), ẑϕ(Ω), ûA(Ω), p̂A(Ω), ẑA(Ω) are un-
correlated noises with the spectral density equal to unity, it is easy to show, that spectral
densities of the noises (B8, B9) are described by Eqs. (10), and they are not correlated,
SxF = 0. Using also Eqs. (A20), it can be shown, that these noises are correlated with the
additional homodyne detector output (C1), and the corresponding cross spectral densities
are equal to (C4).
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Appendix C: Additional detector

Output signal of the additional detector is proportional to

q̂ζ(Ω) =
√
η [q̂ϕ(Ω) cos ζ + q̂A(Ω) sin ζ] +

√
1− η v̂(Ω) , (C1)

where ζ is the corresponding homodyne phase and v̂(Ω) is the additional noises which arises
due to the detector finite quantum efficiency η < 1. It follows from Eqs. (5), that spectral
density of the noise (C1) is equal to

Sζ(Ω) = 1 +
ηηfγ

2
f(e

2r sin2 ζ + e−2r cos2 ζ − 1)

Ω2 + γ2
f

, (C2)

and from Eqs. (7,B8,B9) — that cross spectral density of noises (8) and (C1) is equal to

Sζ,sum(Ω) = Sxζ(Ω)− SFζ(Ω)

mΩ2
, (C3)

where

Sxζ(Ω) =

√
~η

4mJγ
(γ − iΩ)Sϕ,IE(Ω) cos ζ , (C4a)

SFζ(Ω) =

√
~mJγη
γ + iΩ

SA,IE(Ω) sin ζ (C4b)

are cross spectral densities of the noise pairs x̂fl, q̂ζ and F̂fl, q̂ζ , correspondingly.
Combined noise of two homodyne detectors can be presented as follows:

x̂eff
sum(Ω) = x̂sum(Ω)− k(Ω)q̂ζ(Ω) , (C5)

where k(Ω) is some factor which has to be optimized. Spectral density of the noise (C5) is
equal to

Seff
sum(Ω) = Ssum(Ω)− 2 Re[k(Ω)Sζ,sum(Ω)] + |k(Ω)|2Sζ(Ω) , (C6)

The minimum of Eq. (C6) in k(Ω) corresponds to

k(Ω) =
Sζ,sum(Ω)

Sζ(Ω)
, (C7)

and is equal to

Seff
sum(Ω) = Ssum(Ω)− |Sζ,sum(Ω)|2

Sζ(Ω)
= Seff

x (Ω)− 2Seff
xF (Ω)

mΩ2
+
Seff
F (Ω)

m2Ω4
, (C8)

where

Seff
x (Ω) = Sx(Ω)− |Sxζ(Ω)|2

Sζ(Ω)
= Sx(Ω)− ~ηηf(Ω

2 + γ2)

4mJγ

Ω2γ2
f(1− e−2r)2

(Ω2 + γ2
f)

2

cos2 ζ

Sζ(Ω)
, (C9a)

Seff
F (Ω) = SF (Ω)− |SFζ(Ω)|2

Sζ(Ω)
= SF (Ω)− ~mJγηηf

Ω2 + γ2

Ω2γ2
f(e

2r − 1)2

(Ω2 + γ2
f)

2

sin2 ζ

Sζ(Ω)
, (C9b)

Seff
xF (Ω) = −S

∗
xζ(Ω)SFζ(Ω)

Sζ(Ω)
=
~ηηf

2

Ω2γ2
f(cosh 2r − 1)

(Ω2 + γ2
f)

2

sin 2ζ

Sζ(Ω)
. (C9c)
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