
Optimizing Workflow Data Footprint
Gurmeet Singh1, Karan Vahi1, Arun Ramakrishnan1, Gaurang Mehta1, Ewa Deelman1, Henan

Zhao2, Rizos Sakellariou2, Kent Blackburn3, Duncan Brown3,4, Stephen Fairhurst3,5, David Meyers3,6,

G. Bruce Berriman7 , John Good7, Daniel S. Katz8
1 USC Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, CA 90292, USA.

{gurmeet, vahi, arun, gmehta, deelman}@isi.edu
2 School of Computer Science, University of Manchester, Manchester M13 9PL, UK.

{hzhao,rizos}@cs.man.ac.uk
3 LIGO Laboratory, California Institute of Technology, MS 18-34, Pasadena, CA 91125, USA

{kent, dbrown, fairhurst_s, dmeyers}@ligo.caltech.edu
4 Theoretical Astrophysics, California Institute of Technology, MS

130-33, Pasadena, CA 91125
5Physics Department, University of Wisconsin--Milwaukee, Milwaukee, WI

53202
6 Northrop Grumman Information Technology, 320 North Halstead Suite 170, Pasadena, CA 91107, USA

7 Infrared Processing and Analysis Center, California Institute of Technology, CA 91125
{gbb,jcg@ipac.caltech.edu}

8 Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803
{dsk@cct.lsu.edu}

Abstract

In this paper we examine the issue of optimizing disk usage and of scheduling large-scale scientific
workflows onto distributed resources where the workflows are data-intensive, requiring large amounts
of data storage, and where the resources have limited storage resources. Our approach is two-fold: we
minimize the amount of space a workflow requires during execution by removing data files at runtime
when they are no longer required and we demonstrate that workflows may need to be restructured in a
way that reduces the data footprint of the workflow. For a workflow used by gravitational-wave
physicists, we were able to show through simulations that the amount of storage required by the
workflow is reduced by up to 57%. We show the results of our data management and workflow
restructuring solutions using a Laser Interferometer Gravitational-Wave Observatory (LIGO)
application and an astronomy application, Montage, running on the Open Science Grid. We show that
although reducing the data footprint of Montage by 48% can be achieved with dynamic data cleanup
techniques, LIGO Scientific Collaboration workflows require additional restructuring to achieve a 56%
reduction in data space usage. We also examine the cost of the restructuring in terms of the
application’s runtime.

1. Introduction
Today, scientific analyses are frequently composed of several application components, each often designed and

tuned by a different researcher. Recently, scientific workflows [1] have emerged as a means of combining

individual application components into large-scale analysis by defining the interactions between the components

and the data that they rely on. Scientific workflows provide a systematic way to capture scientific methodology by

supplying a detailed trace (provenance) of how the results were obtained. Additionally, workflows are

collaboratively designed, assembled, validated, and analyzed. Workflows can be shared in the same manner that

LIGO-P070017-00-Z

data collections and compute resources are shared today among communities. The scale of the analysis and thus

of the workflows often necessitates that substantial computational and data resources be used to generate the

required results. CyberInfrastructure projects such as the TeraGrid [2] and the Open Science Grid (OSG) [3] can

provide an execution platform for workflows, but they require a significant amount of expertise on the part of the

scientist to be able to make efficient use of them.

Pegasus [4-6] which stands for Planning for Execution in Grids, is a workflow mapping engine developed and

used as part of several projects in physics [7], astronomy [8, 9], including gravitational-wave science [10], as well

as earthquake science [11, 12], neuroscience [13], and others. Pegasus bridges the scientific domain and the

execution environment by automatically mapping the high-level workflow descriptions onto distributed resources

such as the TeraGrid, the Open Science Grid, and others. Pegasus relies on the Condor DAGMan [14] workflow

engine to launch workflow tasks and maintain the dependencies between them. Pegasus enables scientists to

construct workflows in abstract terms without worrying about the details of the underlying CyberInfrastructure or

the particulars of the low-level specifications required by the underlying middleware (Globus [15] or Condor

[16]). Pegasus is used day-to-day to map complex, large-scale scientific workflows with thousands of tasks

processing terabytes of data onto the Grid.

As part of the mapping, Pegasus automatically manages data generated during workflow execution by staging

them out to user-specified locations, by registering them in data registries, and by capturing their provenance

information. When workflows are mapped onto distributed resources, issues of performance related to workflow

job scheduling and data replica selection are most often the primary drivers in optimizing the mapping. However,

in the case of data-intensive workflows it is possible that typical workflow mapping techniques produce

workflows that are unable to execute due to the lack of disk space necessary for the successful execution. In this

paper we examine the issue of minimizing the amount of storage space that a workflow requires for execution,

also called the data footprint of the workflow. In some cases, we also demonstrate that workflow restructuring is

needed to obtain a reduction in the workflow data footprint.

The remainder of the paper is organized as follows. The next section provides further motivation for this work by

examining a Laser Interferometer Gravitational Wave Observatory (LIGO) [17] Scientific Collaboration (LSC)

application which requires large amounts of storage space and targets the OSG as its execution environment and

an astronomy application called Montage. These applications exhibit behaviors found in many scientific

workflows used today. Section 3 describes a data cleanup algorithm for reducing the amount of space required by

a workflow by removing files when they are no longer required. Section 4 shows the simulation and experimental

results of applying the cleanup algorithm to the LSC and Montage application and discusses the reasons for

limited improvement in the case of the LSC workflow. In Section 5 we examine workflow restructuring as a

means of reducing the footprint of the LSC workflow and present results for the restructured workflow. Section 6

follows up with a discussion on the issues of restructuring of the LIGO workflow from the science perspective.

Finally we give an overview of related work and include concluding remarks.

2. Motivation
Many applications today are structured as workflows. Some examples of such applications that are being

routinely used in large-scale collaborations are the LSC’s binary inspiral search and the Montage application.

Here we describe them both and focus on their computational requirements.

2.1. Laser-Interferometer Gravitational-Wave Observatory

LIGO is a network of gravitational-wave detectors, one located in Livingston, LA and two co-located in Hanford,

WA. The observatories' mission is to detect and measure gravitational waves predicted by general relativity---

Einstein's theory of gravity---in which gravity is described as due to the curvature of the fabric of time and space.

One well-studied phenomenon which is expected to be a source of gravitational waves is the inspiral and

coalescence of a pair of dense, massive astrophysical objects such as neutron stars and black holes. Such

binary inspiral signals are among the most promising sources for LIGO [18, 19]. Gravitational waves interact

extremely weakly with matter, and the measurable effects produced in terrestrial instruments by their passage will

be miniscule. In order to increase the probability of detection, a large amount of data needs to be acquired

and analyzed which contains the strain signal that measures the passage of gravitational waves. LSC

applications often require on the order of a terabyte of data to produce meaningful results.

Data from the LIGO detectors is analyzed by the LIGO Scientific Collaboration (LSC) which possesses many

project-wide computational resources. Additional resources would allow the LSC to extend its science goals.

Thus, the LSC has been reaching out toward Grid deployments such as the OSG to extend their own capabilities.

OSG supports the computations of a variety of scientific projects ranging from high-energy physics, biology,

material science, and many others. The shared nature of OSG resources imposes limits on the amount of

computational power and data storage available to any particular application. A scientifically meaningful run of

the binary inspiral analysis requires a minimum of 221 GBytes of gravitational-wave data and approximate

70,000 computational workflow tasks.

The LIGO Virtual Organization (VO) is supported on nine distinct Compute Elements managed by other

institutions supporting the OSG. Each Compute Element is an HPC or High Throughput Computer (HTC)

resource, with, on average, 258 GB of shared scratch disk space. The shared scratch disk space is used by

approximately 20 VOs with the OSG. The LIGO VO can not reserve space on these shared resources.

2.2. Montage

Montage [9, 20] is an application that constructs custom science-grade astronomical image mosaics on demand.

Figure 1 shows the structure of a small Montage workflow. The figure only shows the graph of the resource-

independent abstract workflow. The executable workflow will contain data transfer, registration nodes, and

optionally data cleanup nodes, in addition to those shown in the figure.

1

22

5

1

2 2

5

1

2 2

5

1

2

5

1

2

5

1

5

3

4

6

7

Figure 1: A small Montage workflow.

Table 1 gives a description of the workflow and the number of the jobs for a representative 2 degree square

mosaic of 2MASS [21] images centered around the celestial object M17. The levels of the workflow represent the

depth of a node in a workflow determined through a breadth-first traversal of the directed graph. The actual

workflow has 4 more levels in addition to the 7 shown in Table 1 and these remaining levels consists of tasks for

creating a visualizable image of the mosaic. The inputs to the workflow include the input images in standard FITS

format (a file format used throughout the astronomy community), and a “template header file” that specifies the

mosaic to be constructed. The workflow can be thought of as having three parts, including reprojection of each

input image to the coordinate space of the output mosaic, background rectification of the reprojected images, and

coaddition to form the final output mosaic.

Table 1: Characteristics of the Tasks/Transformations in the Montage Workflow.

Level Transformation
Name

Description No. of jobs at
the level

Approximate
Size of data
input/output for
each job (MB)

1 mProject Reprojects a single image to the
image parameters and footprints
defined in a header file.

152 4.2 / 8.1

2 mDiffFit Finds the difference between two
images and fits a plane to that
difference image

410 16.3 / 0.6

3 mConcatFit Does a simple concatenation of
the plane fit parameters from
multiple mDiffFit jobs into a
single file

1 0.12 / 0.08

4 mBgModel Models the sky background using 1 0.1 / 0.007

the plane fit parameters from
mDiffFit and computes planar
corrections for the input images
that will rectify the background
across the entire mosaic

5 mBackground Applies the planar correction
to a single image

410 8.1 / 8.1

6 mImgtbl Extracts the FITS header
geometry information from a set
of files and stores it in an image
metadata table

4 407.6 / 0.01

7 mAdd Co-adds a set of reprojected
images to produce a mosaic as
specified in a template header file

4 407.6 / 272.4

As the sizes of the mosaics increase, the data processed and generated in the workflow increase. In the near future

Montage will be provided as a service to the astronomy community. It is expected that there will be many

simultaneous mosaics being generated based on the user requests, and thus it will become important to minimize

the footprint of each workflow.

3. Approach
The first algorithm described in this section adds a cleanup job for a data file when that file is no longer

required by other tasks in the workflow or when it has already been transferred to permanent storage.

The purpose of the cleanup job is to delete the data file from a specified computational resource. Since a

data file can be potentially replicated on multiple resources (in case the compute tasks are mapped to

multiple resources) the decision to add cleanup jobs are made on a per resource basis.

In order to illustrate the working of the algorithm, Figure 2(a) shows an executable workflow containing

7 compute jobs {0,1,..,6} mapped to 2 resources {0,1}. The algorithm first creates a subgraph of the

executable workflow for each execution resource used in the workflow. The subgraph of the workflow

on resource 0 contains jobs {0,1,3,4} and the subgraph on resource 1 contains jobs {2,5,6} (shown in

Figure 2(a)). The cleanup nodes added to this workflow using the algorithm are shown in Figure 2(b).

The cleanup job for removing file f on resource r is denoted as Cfr.

Figure 2: (a)The Original Executable Workflow Mapped by Pegasus to Two resources. (b) The

Workflow with Dynamic Cleanup Nodes Added.

For each task in the subgraph, a list of files either required or produced by the task is constructed. For

example list of files for task 1 mapped to resource 0 contains files b and c. For each file in the list, a

cleanup job for that file on that resource is created (if it does not already exist) and the task is made

parent of the cleanup job. Thus a cleanup job, Cc0, for removing file c on resource 0 is created and task 1

is made parent of this cleanup job. The cleanup jobs for some files might already have been created as a

result of parsing previous tasks. For example, the cleanup job Cb0 for removing file b on resource 0

already exists (as a result of parsing task 0). In this case the task being parsed is added as a parent of the

cleanup job. Thus task 1 is added as a parent of cleanup job Cb0. When the entire subgraph has been

traversed, there exists one cleanup job for every file required or produced by tasks mapped to the

resource. If a file required by a task is being staged-in from another resource, then the algorithm makes

the cleanup job for the file on the source resource a child of the stage-in job, thus ensuring that the file is

not cleaned up on the source resource before it is transferred to the target resource. For example, file b

required by task 2 mapped to resource 1 is being staged-in from resource 0 using stage-in job Ib012, and

so the cleanup job for file b on resource 0 (Cb0) is made a child of Ib012.

Finally, if a file produced by a task is being staged-out to a storage location, the cleanup job is made a

child of the stage-out job. For instance, the cleanup job Ch0 for removing file h on resource 0 is made a

child of the stage-out job Soh that stages out file h to permanent storage. By adding the appropriate

dependencies, the algorithm makes sure that the file is cleaned up only when it is no longer required by

any task in the workflow. The pseudocode for the algorithm is shown in Figure 3. Its running time is

O(e+n), where e is the number of edges and n is the number of tasks in the executable workflow

assuming that each edge represents the dependency of a particular file between two tasks. Multiple file

dependencies between two tasks are represented by multiple edges. The algorithm makes sure that the

workflow cleans up the unnecessary data files as it executes (by adding cleanup nodes to the executable

workflow) and at the end there are no files remaining on the execution resources.

Figure 3: Dynamic Data Cleanup Algorithm, With One Cleanup Job Per Data File. The Running

Time of the Algorithm O(m), where m is the no of edges in the abstract workflow.

In our initial work [22], we were able to achieve as much as a 57% data footprint improvement for LSC-

like workflows in a simulated environment. Our next step was to evaluate the performance of the

algorithm on a real application and a real grid. However, in order to make the algorithm viable, we

needed to improve the algorithm in terms of the number of cleanup jobs it added to the workflow and in

terms of the number of dependencies it introduced. The issue is that increasing the number of tasks and

dependencies in a workflow increases the amount of time the workflow engine spends managing the

workflow and introduces additional overheads to the overall workflow execution because of the inherent

overheads in scheduling jobs onto distributed systems (job handling at the submission site, network

Input: Executable Workflow, r = 1..R (list of resources)
Output: Executable Workflow including cleanup jobs

Method AddCleanUpJobs
For every resource r = 1..R

Let Gr=(Vr,Er) be the subgraph induced by the tasks mapped to resource r
For every job j in Vr

For every file f required by j
create cleanUpJob Cfr for file f for resource r if it does not already exist
add job j as parent of the cleanUpJob Cfr
if file f is produced at another resource s

Let Ifrsj = stage-in job for transferring file f from resource r to resource s for job j
create cleanUpJob Cfs for file f at resource s if it does not exist and make Ifrsj parent of Cfs

End if
End For
For every file f produced by j

create cleanUpJob Cfr for file f for resource r if it does not already exist
add job j as parent of the cleanUpJob Cfr
If f is being staged out to final storage, add Cfr as child of the stage-out job.

End For
End For

End For
End Method AddCleanUpJobs

latencies, queue time at the remote resource). Because of these overheads, we decided to design an

improved algorithm that will reduce the number of cleanup tasks at the possible cost of the workflow

footprint. The algorithm in Figure 4 creates at most one cleanup node per computational workflow task.

Figure 4: Dynamic Data Cleanup Algorithm, With One Cleanup Job Per Computational Task.

The complexity of this algorithm is O(e * (e+n)), where e is the number of edges in the workflow with

cleanup jobs and n is the number of jobs .

 Method AddCleanUpJobs
Preprocessing : Let G = (V,E) be the workflow .

Start by assigning 1 as level for the root jobs.
For every job J in the workflow

 Level(J) = Max(level(Parent(J))) + 1
End For

End Preprocessing
For every Resource r = 1 .. R
Let Gi=(Vi,Ei) be the sub graph induced by the jobs mapped to Resource r .
Let LeafListi be the list of the leaf jobs in Gi .

Initialize PriorityQue<key=level,priority=min> PQ with LeafListi
While PQ is not empty , pop a job J from PQ.

Create a cleanup job new_cleanup
If File a is used/produced by J

IF a is not already set to be cleaned up by another job set new_cleanup to clean a.
ELSE add J as the parent of job K which was already set to clean a.

If new_cleanup is not trivial , add it as the child of job j
Mark job j as visited and add all the unvisited neighbors(in this case parents) to PQ.
CALL Method Reduce_Dependencies (new_cleanup , Gi).

End While
End Method AddCleanUpJobs

Method Reduce_Dependencies (CleanupJob C , Graph Gi)
 ListParents be the list of jobs that are direct parents of C.
 Duplicates is an empty set of jobs.
 For every Job J that is in ListParents
 If J is not in Duplicates

 Initiasise Queue BFSq with all the parents of J.
 While BFSq is not empty
 Pop job uJ from BFSq.
 If uJ is not marked as visited
 Mark uJ as visited.
 If uJ is a member of ListParents
 Add uJ to Duplicates.
 End If
 Add all unvisited parents of uJ to BFSq.
 End If
 End While
 End If

 End For
 Remove all edges between CleanupJob C and the jobs in Duplicates.
End Method Reduce_Dependencies

The above algorithm is also careful in deciding how the files are being clustered to be cleaned up. When

two files a and b are clustered together all the jobs that use these files need to finish execution before

they can be cleaned up. As Figure 5 illustrates, a bad clustering of files can delay the cleanup of files and

hence affect negatively the scratch space usage. Here two different setups of per job cleanup files on the

same workflow are shown. Scenario 2 gives a more efficient cleanup than Scenario 1 because in

Scenario 1 cleanup of File a is delayed until b becomes eligible for cleanup. The idea is that if File a is

used by both job i and job j ,the algorithm would associate the file to be cleaned up by the job that’s

lower in the workflow (The preprocessing step in the algorithm takes care of this).

Figure 5: An example of Suboptimal (a) and Optimal Data File Removal Clustering.

4. Experiments

4.1. Setup

In this paper, we use two methods for evaluating our approach: simulation and runs of the real

applications on the grid. For all the experiments, the workflows are specified in an abstract format and

then mapped onto the resources by Pegasus in the case of real execution. In the case of the simulator

these resources are simulated and in the case of the grid execution, we use the resources of the Open

Science Grid.

Simulation

The simulations are performed using a Java-based grid simulator called GridSim [23]. This simulator

can be used to simulate any number of grid resources and users. We added attributes to the task model in

GridSim to explicitly model clean up jobs. In our experiments, each simulated resource is a cluster of

homogeneous processors with space sharing and a First Come First Serve (FCFS) scheduling policy.

The processing speed of the resources and the bandwidth between the users and resources can be

configured and contention for network resources is ignored. For the simulation experiments described in

this paper, each resource was a cluster of ten homogeneous processors.

Grid Execution

For our grid execution, we use the Pegasus [4-6] workflow mapping system to map a high-level

workflow description onto the available resources and use the Condor DAGMan [14] workflow

execution engine to execute the workflow on the mapped resources. Pegasus locates the available

resources and creates an executable workflow where the executable tasks are assigned to resources,

where there are data transfer nodes to stage data in and out of the computations, data registration nodes

to register the intermediate data products into registries, and in cases of workflows with dynamic

cleanup nodes, these will be included as well. The executable workflow is given to DAGMan for

execution. DAGMan follows the dependencies defined in the workflow and releases the nodes that are

ready to run to a local Condor queue. Tasks destined for the grid are sent to the grid resources using

Condor-G [24]. The final scheduling of these tasks is done by the resource managers of the remote grid

resources. As part of the execution, the data is generated along with its associated metadata and any

provenance information that is collected.

4.2. Comparison of Cleanup Algorithms

In our first set of experiments, we compared the behavior of the two cleanup algorithms described in

Section 3. We performed the evaluation via simulation and compared the number of cleanup jobs

created by each algorithm and the number of dependencies added to the workflow. We performed the

experiments using both the LSC and Montage workflows containing 164 and 731 compute tasks

respectively. Algorithm I represents the algorithm where one cleanup job is created for every file, and

Algorithm II represents at most one cleanup job per every compute job in the workflow. Results show

that Algorithm II obtains a data footprint similar to that of Algorithm I while also achieving a significant

reduction in the number of cleanup tasks and dependencies. As indicated in Table 2 there is

approximately a 40% reduction in the number of tasks and almost 30% reduction in the number of

dependencies.

Table 2: Comparison via Simulation of the Data Cleanup Algorithms, Showing the Reduction in

the Number of Cleanup Tasks and the Number of Dependencies.

LSC workflow Max Space Used
(MBs)

No of CleanUp
Jobs

No of
dependencies

Algorithm I 1027.13 237 840

Algorithm II 1028.23 96 238

2-degree
MONTAGE

Max Space Used
(MBs)

No of CleanUp
Jobs

No of
dependencies

Algorithm I 2405.71 2029 4211

Algorithm II 2409.71 731 1296

4.3. Minimizing the Workflow Footprint With Dynamic Cleanup

In our initial simulations [22], we have shown the potential of using data cleanup techniques to reduce

the data footprint for LSC-like workflows. Here we observe the performance of the data cleanup

algorithms using real applications: Montage and LSC running on the Open Science Grid. For reasons of

clarity and to reduce the effect of cross-site scheduling we focus our experiments on a single grid site.

However, the algorithms are also applicable when workflows are scheduled across multiple sites.

Figure 6 shows the results of running the Montage workflow, which creates a one degree square mosaic

of the M17 region of the sky. The graph shows the storage usage of the workflow over time for both the

original workflow (without cleanup) and the workflow which dynamically cleans up redundant data.

Figure 6. One Degree Square Montage Workflow Data Footprint over Time. The dots indicate

completion of cleanup jobs.

We can see that in this case we were able to reduce the overall workflow data footprint from 1291.583

MB down to 714.545 MB, a saving of 44.676%. We conducted similar experiments while increasing

the size of the mosaics to 2 and 4 degree square. Figure 7 and Figure 8 show the results. For the 2 degree

square mosaic the data footprint was reduced from 4.659 to 2.421 GB (48%) and for the 4 degree square

mosaic from 16.24 to 9.687 GB (40.35%).

Figure 7: Two Degree Square Montage Workflow Data Footprint over Time. The dots indicate

the completion of cleanup jobs.

Figure 8: Four Degree Square Montage Workflow Data Footprint over Time. The dots indicate

the completion of cleanup jobs.

We also tested our data cleanup algorithm with a small LSC workflow running on the OSG. Figure 9

shows the results. Although, based on our initial simulations [22] we expected a significant reduction in

the workflow data footprint, we were not able to see the reduction when the actual workflow was

executed on the OSG. We did only notice that cleanup is happening in the workflow only after all the

input data has already been staged-in. We also measured the runtime overhead of the cleanup tasks. The

workflow without cleanup nodes ran in 135 minutes, whereas the workflow with cleanup nodes took 100

minutes. The difference in the runtimes can be attributed to the use of non-dedicated resources and

network latencies when scheduling workflow tasks over a wide area network. In the next section we

explore the reasons for not achieving a significant reduction in the data workflow footprint.

Figure 9: Small LSC Workflow Data Footprint Over Time with and without cleanup.

4.4. Contributions to the workflow footprint

Here we analyze the Montage and LSC workflows and see that the opportunities for reducing the

workflow footprint for Montage are inherent in the workflow whereas the ones in LSC are limited. The

reduction in the workflow footprint results when cleanup opportunities are present in the workflow

before the maximum data footprint is reached. In order to illustrate the difference between the Montage

and LSC workflow, we divide the workflow into levels. All the tasks in the workflow that have no

parent dependencies are assigned level 1. The level of other tasks can be assigned by a breadth-first

traversal where the level of any tasks is the maximum level of any of its parent tasks plus one. The

number inside the vertices in Figure 1 shows the level number of the tasks in the Montage Workflow.

The 2 degree square Montage workflow has 11 levels while the LSC workflow has 6.

Assuming that all the level i tasks are executed before tasks in level (i+1), Figure 10 and Figure 11 show

the total workflow footprint (WFP) at the end of execution of each level without any cleanup and when

cleanup is used. The difference between the two represents the cleanup opportunity at each level of the

workflow and is also shown in the figure. The difference between the maximum WFP without and with

cleanup across all levels represents the maximum reduction in storage space for the workflow. For the

LSC workflow (Figure 10), there isn’t much difference between the maximum WFP with and without

cleanup. The reason is that most of data used or generated by the workflow is already materialized by

the end of level one and the cleanup opportunities are mostly absent until level five. For the Montage

workflow, the WFP without cleanup gradually increases and cleanup opportunities exist across the

workflow (Figure 11). Thus in this case, the maximum WFP with cleanup is only about 28% of the

value without cleanup and represents a 72% possible reduction in the footprint of the workflow. In our

experiments however, we do not achieve this ideal 72% reduction because the workflow is not

scheduled evenly level by level and tasks from multiple levels might end up executing at the same time.

Nevertheless, this analysis still gives an important insight into the storage requirements of a workflow

and the reduction in the workflow footprint that can be achieved by using the cleanup algorithm alone.

LIGO

0

200

400

600

800

1000

1200

1 2 3 4 5 6
Levels

M
B

WFP Without Cleanup WFP With Cleanup CleanUp Opportunity

Figure 10: The cumulative Workflow footprint (WFP) with and without cleanup and the cleanup

opportunities at each level of the LSC Workflow.

Montage 2 Degree

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11
Levels

M
B

WFP Without CleanUp WFP With CleanUp CleanUp Opportunity

Figure 11: The cumulative Workflow footprint (WFP) with and without cleanup and the cleanup

opportunities at each level of the Montage Workflow.

5. Reducing the workflow footprint through workflow
restructuring
The analysis of the LSC workflow revealed that the workflow was structured such that all the input data

would be staged-in at the beginning of the run and not cleaned up until the level 5 of the workflow. One

solution we explored was to restructure the workflow by adding extra dependencies so that the

computation would progress in a depth-first manner and thus portions of the workflow would reach the

computations and thus the cleanup nodes in level 5 of the original workflow before the remaining level 1

computations would start. By ordering the data stagein jobs for these remaining level 1 computations

after the cleanup up jobs of the preceding level 5 tasks, we can achieve a significant reduction in the

workflow footprint.

In order to illustrate the restructuring, Figure 12 shows a simple workflow containing two parallel chains

with tasks {0,1} and {2,3} respectively mapped to a single resource. When run without restructuring

both the files a and c would likely be staged in simultaneously and the footprint of the workflow will

include both of these files present on the storage system at the same time. The restructuring adds a

dependency between the last job of the first chain {1} and the stagein job of the second chain, Sic.

Moreover, the cleanup jobs have the highest priority among all jobs. Thus it is very likely that the file a

would be cleaned up by Ca before file c is staged to the resource by Sic, thus reducing the footprint of the

workflow. When these files are large, the restructuring would achieve a significant reduction in the

footprint of the workflow.

Figure 12: An example workflow before and after restructuring.

We note that the same effect can be achieved with careful scheduling of workflow tasks and data

transfers. In some sense we refer to workflow restructuring as the ordering or sequencing of the

execution of the tasks within the workflow (and this can be done in a resource-independent way),

whereas workflow scheduling schedules the tasks of a workflow onto two or more resources.

5.1. Moderate Workflow Restructuring

Initially, we only did a very limited restructuring of the LSC workflow. Figure 13(a) shows the small

LSC workflow and Figure 13(b) shows the restructured workflow. We took the first independent cluster

in the LSC workflow (shown by the oval) and made all the remaining jobs in the workflow dependent on

it. This assures that this cluster executes first.

Figure 13: (a) The Original LSC Workflow. (b) The Moderately Restructured LSC Workflow.

This restructuring resulted in a “deeper workflow” of 12 levels instead of the original 6, but it also

improved the workflow data footprint. Figure 14 shows the cleanup possibilities for the restructured

workflow; they occur at levels 5 and 11. As a result of this distribution of cleanup oppurtunity, the

maximum workflow footprint with cleanup is about 27% less than that without cleanup. We confirm this

by both simulation and execution on the grid--Figure 15 and Figure 16 respectively. Our simulations

(Figure 15) predicted a saving of 26.5 % in the workflow footprint for the moderately restructured LSC

workflow.

An issue that arises in the grid execution is that the executable workflow generated by Pegasus includes

data stage-in tasks that stage data into the first level of the workflow. These tasks are not dependent on

any other task in the workflow and thus can usually proceed as soon as the workflow is started.

However, this poses a problem, because we can easily saturate the data storage and increase the data

footprint for workflows structured like LSC. To overcome this deficiency, we made these stage-in tasks

dependent on the previous-level computational tasks as shown by an example in Figure 12. We then

proceeded with the execution of the restructured LSC workflow on the grid. The actual grid execution

(Figure 16) showed a reduction of 26% (814.388 MB for the workflow with cleanup, 1099.387 MB for

the workflow without dynamic cleanup).

LIGO With Limited Restructuring

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Levels

M
B

WFP Without CleanUp WFP With CleanUp CleanUp Opportunity

Figure 14: Cleanup Opportunities in the Moderately-Restructured Workflow.

.

Figure 15: Simulated Behavior of the Moderately-Restructured Workflow.

Figure 16: Behavior of the Moderately-Restructured Workflow on the OSG.

5.2. Full Workflow Restructuring

Upon examining the original LSC workflow we can notice additional opportunities for workflow

restructuring. Figure 17 shows the most extreme restructuring we can design that would also not

introduce cycles within the workflow and would potentially reduce the workflow data footprint.

Figure 17: Optimally Restructured LSC Workflow.

Figure 18 shows the cumulative workflow footprint and the cleanup opportunities at each level within

this optimally restructured workflow. The restructuring has increased the number of levels in the

workflow from the original 6 to 36. However, the cleanup opportunities are increased and the maximum

workflow footprint is decreased from approximately 1,125 MB without cleanup to approximately

500MB with cleanup.

LIGO With Full Restructuring

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Levels

M
B

WFP Without CleanUp WFP With CleanUp CleanUp Opportunity

Figure 18: Cleanup Opportunities for the Optimally Restructured LSC Workflow.

The corresponding simulation results are presented in Figure 19. The simulation shows a 59%

improvement in the workflow data footprint. The actual grid runs shows a similar 56% improvement in

data space usage (Figure 20).

Figure 19: Simulated Behavior of the Optimally Restructured LSC Workflow.

Figure 20: Actual Grid Behavior of the Optimally Restructured LSC Workflow.

Obviously there are tradeoff between the data footprint and the workflow execution time which is

reflected in the increased number of workflow levels. The increase is due to the reduction in the

parallelism in the execution. The following figures show the number of workflow tasks running over

time. Figure 21 shows the original LSC workflow which has a maximum and average execution

parallelism of 36 and 15.8 respectively and a runtime of 100.8 minutes. Figure 22 shows the moderately

restructured LSC workflow which exhibits a similar maximum parallelism but has a lower average

parallelism of 9.2. This workflow had an execution time of 152 minutes (an increase of 50% over the

original workflow, proportional to the increase in the number of workflow levels). Figure 23 shows the

task execution profile of the optimally restructured LSC workflow. The maximum parallelism is reduced

to 13 and the average parallelism is 3.1. The workflow execution time is increased to almost 300

minutes--3 times the original workflow execution time reflecting the increase in the number of levels in

the workflow to 36.

Figure 21: Task Execution Profile of the Original LSC Workflow.

Figure 22: Task Execution Profile of the Moderately Restructured LSC Workflow.

Figure 23: Task Execution Profile of the Optimally Restructured LSC Workflow.

6. Science drivers for workflow restructuring
In this paper, the LSC workflow considered is a subset of the large scale workflows used for production

gravitational-wave data analysis. The workflow show in Figure 13 contains 164 nodes, whereas a full

LSC workflow, such as those used to analyze the data taken by the LIGO detectors from November

2005--November 2006, contains 185,000 nodes and 466,000 edges. This workflow analyzes 10 Tb of

input data and produces approximately 1 Tb of output data. Significant restructuring of the workflow

will be needed to run such analysis on compute resources with limited storage. As part of our work we

noticed that the LSC workflows, as they are currently structured, impose challenges on the ability to

minimize the workflow data footprint. LSC scientists have been aware of this and other issues relating to

the structure of the workflow described in [25]. The tools used to represent LSC workflows have been

designed with flexibility to allow easy re-factoring of workflows to avoid being locked into a given

environment or computing system, however.

Consider the LSC workflow as shown in Figure 13(a). The first and second levels of the workflow

analyze all available data from the three LIGO detectors, and then the third level applies consistency

tests by comparing the analysis products from each detector for a given time period. The fourth and fifth

levels of the workflow re- analyze the data, using information gained from these consistency tests, and

then a final consistency test is applied at level 6. These consistency tests are applied to data in blocks of

the order of a day. Once the second test is complete, that block of data has been completely analyzed

[25] and the results are ready for the LSC scientist to review. Since there are no direct dependencies

between nodes at the first level of the workflow, all these nodes are submitted to compute resources

before subsequent levels. These nodes, and subsequent level 2 nodes, prevent any consistency tests from

being applied until the entire data set has been analyzed. Thus, results are not available until a majority

of the data set has been analyzed. This structure was chosen for expedience in the early stage of

development, but has drawbacks for large-scale offline batch processing.

In our future work, we intend to work with LSC scientists to analyze possible restructuring of the LSC

workflows to improve their efficiency. Minimizing workflow data footprint would allow it to leverage

Grid resources with limited storage and a restructured LSC workflow could be much more efficient,

which is an advantage for obtaining staged results in the offline analysis of longer data sets.

7. Related Work
With Directed Acyclic Graphs (DAGs) being a convenient model to represent workflows, the vast

amount of literature on DAG scheduling is of relevance to the problem of workflow scheduling [26]. In

recent years, there has been a revival of interest in the context of problems especially motivated by

scientific workflow execution and heterogeneous environments [27-30] . In the majority of these works,

data used or materialized in the workflow affects resource selection only to the extent of minimizing the

data transfer time between resources with the goal of minimizing the overall workflow execution time.

No work has taken into account the available data storage when selecting resources, which can be a

critical factor when executing data-intensive workflows. In a national level Grid infrastructure,

unavailability of storage space was cited as the significant cause of job failures [31].

The most interesting work in the context of this paper, which considers data placement, has been

presented in [32, 33]. Their proposed scheduling and replication algorithm keeps track of the popularity

of datasets and replicates those datasets to different sites. However, the data replication approach does

not work well in a storage-constrained environment as it may increase the demand of data storage and

may lead to heavy storage requirements for individual resources. The scheduling algorithm of [32, 33]

has been extended to a heterogeneous resource environment in [34]. This has been further extended in

[35] for situations where a task requires data from multiple sources. However the focus is resource

selection with the goal of minimizing the task completion time and the storage capacity of the resources

is not a candidate for consideration.

In a previous work, we presented algorithms for scheduling workflows on storage constrained resources

[22]. Storage aware scheduling was found to be more reliable and perform better than scheduling

algorithms that do not consider storage constraints. A related problem is to be able to provision storage

resources in advance. Without the ability to guarantee certain storage availability at a resource,

scheduling algorithm that operate using storage constraints would have limited effectiveness. Recently,

low level mechanisms for allowing user level allocation of storage resources have been proposed [36].

This work also shows that the resource providers can benefit from storage allocation in the form of

increased output under high utilization conditions by isolating the users from one another. Other storage

management systems such as Storage Resource Manager (SRM) [37], Storage Resource Broker (SRB)

[38], NeST [39] allows users to request storage allocation.

8. Conclusions
In this work we have evaluated the performance of dynamic data cleanup in workflow-type applications.

In our experiments, we have used both simulation and actual workflow execution on the Open Science

Grid. In the case of Montage, we were able to obtain a reduction of approximately 48% in the amount of

disk space used. However, in order to be able to achieve a significant reduction in footprint for the LSC

workflow (56%), we needed to restructure it in a way that reduced the amount of parallelism in the

workflow. Although for this paper, we restructured the workflow by hand, we plan to investigate

automated techniques in the future. Workflow restructuring is only an element in the footprint reduction,

further improvements can potentially be gained by using data-aware workflow scheduling techniques.

We explored some of these techniques via simulation and plan to evaluate them in real grid

deployments.

Acknowledgements
This work was supported by the National Science Foundation under the grant CNS 0615412. R.

Sakellariou and H. Zhao would like to acknowledge partial support from the EU-funded CoreGrid

Network of Excellence (grant FP6-004265) and the UK EPSRC grant GR/S67654/01. The authors also

thank the Open Science Grid for resources used to motivate the work presented. The work of K.

Blackburn and D. Meyers was supported by the LIGO Laboratory and NSF grants PHY-0107417 and

PHY-0326281. The work of D. Brown was supported by the LIGO Laboratory and NSF grant PHY-

0601459. The work of S. Fairhurst was supported by the LIGO Laboratory and NSF grant PHY-

0326281 and PHY-0200852. LIGO was constructed by the California Institute of Technology and the

Massachusetts Institute of Technology and operates under cooperative agreement PHY-0107417. This

paper has been assigned LIGO Document Number LIGO-P070017-00-Z. Montage was supported by

the NASA Earth Sciences Technology Office Computing Technologies (ESTO-CT) program under

Cooperative Agreement Notice NCC 5-6261. This research was done using resources provided by the

Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of

Energy’s Office of Science.

References
1. Workflows in e-Science, ed. I. Taylor, et al. 2006: Springer.
2. Cray Fortran Reference Manual.
3. Open Science Grid.
4. Deelman, E., et al. Pegasus : Mapping Scientific Workflows onto the Grid. in 2nd EUROPEAN

ACROSS GRIDS CONFERENCE. 2004. Nicosia, Cyprus.
5. Deelman, E., et al., Pegasus: a Framework for Mapping Complex Scientific Workflows onto

Distributed Systems. Scientific Programming Journal, 2005. 13(3): p. 219-237.
6. Deelman, E., et al., Pegasus: Mapping Large-Scale Workflows to Distributed Resources, in

Workflows for e-Science, D. Gannon, et al., Editors. 2006, Springer.
7. Deelman, E., et al., Workflow Management in GriPhyN, in Grid Resource Management, J.

Nabrzyski, J. Schopf, and J. Weglarz, Editors. 2003, Kluwer.
8. Berriman, B., et al. Montage: A Grid-Enabled Image Mosaic Service for the NVO. in

Astronomical Data Analysis Software & Systems (ADASS) XIII. 2003.
9. Berriman, G.B., et al. Montage: A Grid Enabled Engine for Delivering Custom Science-Grade

Mosaics On Demand. in SPIE Conference 5487: Astronomical Telescopes. 2004.
10. Deelman, E., et al. GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational Wave

Scientists. in 11th Intl Symposium on High Performance Distributed Computing. 2002.
11. Deelman, E., et al. Managing Large-Scale Workflow Execution from Resource Provisioning to

Provenance tracking: The CyberShake Example. in 2nd IEEE International Conference on e-
Science and Grid Computing. 2006. Amsterdam, The Netherlands.

12. Maechling, P., et al., SCEC CyberShake Workflows---Automating Probabilistic Seismic Hazard
Analysis Calculations, in Workflows for e-Science, D. Gannon, et al., Editors. 2006, Springer.

13. Lathers, A., et al. Enabling Parallel Scientific Applications with Workflow Tools. in Challenges
of Large Applications in Distributed Environments (CLADE). 2006. Paris.

14. Condor DAGMan: http://www.cs.wisc.edu/condor/dagman.
15. Foster, I. and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit. International

Journal of Supercomputer Applications, 1997. 11(2): p. 115-128.
16. Litzkow, M., M. Livny, and M. Mutka, Condor - A Hunter of Idle Workstations, in Proc. 8th Intl

Conf. on Distributed Computing Systems. 1988. p. 104-111.
17. Barish, B.C. and R. Weiss, LIGO and the Detection of Gravitational Waves. Physics Today,

1999. 52(10): p. 44.
18. Abbott, B., et al., Search for gravitational waves from binary black hole inspirals in LIGO data.

Physical Review D (Particles, Fields, Gravitation, and Cosmology), 2006. 73(6): p. 062001-17.
19. Abbott, B., et al., Search for gravitational waves from primordial black hole binary coalescences

in the galactic halo. Physical Review D (Particles, Fields, Gravitation, and Cosmology), 2005.
72(8): p. 082002-8.

20. Montage, in http://montage.ipac.caltech.edu.
21. The Two Micron All Sky Survey at IPAC (2MASS), in http://www.ipac.caltech.edu/2mass/.
22. Ramakrishnan, A., et al. Scheduling Data-Intensive Workflows onto Storage-Constrained

Distributed Resources. in 7th IEEE International Symposium on Cluster Computing and the Grid
- CCGrid. 2007 (to appear).

23. Rajkumar Buyya, M.M., GridSim: a toolkit for the modeling and simulation of distributed
resource management and scheduling for Grid computing. Concurrency and Computation:
Practice and Experience, 2002. 14(13-15): p. 1175-1220.

24. Frey, J., et al. Condor-G: A Computation Management Agent for Multi-Institutional Grids. in
10th International Symposium on High Performance Distributed Computing. 2001: IEEE Press.

25. Abbott, B., Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. under
preparation.

26. Kwok, Y.-K. and I. Ahmad, Static scheduling algorithms for allocating directed task graphs to
multiprocessors ACM Comput. Surv. , 1999 31 (4): p. 406-471

27. Blythe, J., et al. Task Scheduling Strategies for Workflow-based Applications in Grids. in
CCGrid. 2005. Cardiff, UK.

28. Wieczorek, M., R. Prodan, and T. Fahringer, Scheduling of scientific workflows in the ASKALON
grid environment SIGMOD Rec. , 2005 34 (3): p. 56-62

29. Mandal, A., et al. Scheduling Strategies for Mapping Application Workflows onto the Grid. in
The 14th IEEE International Symposium on High Performance Distributed Computing (HPDC-
14). 2005.

30. Yu, J. and R. Buyya. A Budget Constraint Scheduling of Workflow Applications on Utility Grids
using Genetic Algorithms. in Workshop on Workflows in Support of Large-Scale Science
(WORKS06). 2006. Paris, France.

31. Foster, I., et al. The Grid2003 production grid: principles and practice. in 13th IEEE
International Symposium on High Performance Distributed Computing (HPDC). 2004.

32. Ranganathan, K. and I. Foster. Identifying Dynamic Replication Strategies for a High
Performance Data Grid. in International Workshop on Grid Computing. 2001.

33. Ranganathan, K. and I. Foster. Decoupling Computation and Data Scheduling in Distributed
Data Intensive Applications. in International Symposium for High Performance Distributed
Computing (HPDC-11). 2002. Edinburgh.

34. Venugopal, S., R. Buyya, and L. Winton, A Grid Service Broker for Scheduling e-Science
Applications on Global Data Grids. Concurrency and Computation: Practice and Experience,
2006. 18(6): p. 685-699.

35. Venugopal, S. and R. Buyya. A Set Coverage-based Mapping Heuristic for Scheduling
Distributed Data-Intensive Applications on Global Grids. in 7th IEEE/ACM International
Conference on Grid Computing. 2006. Barcelona, Spain.

36. Thain, D. Operating System Support for Space Allocation in Grid Storage Systems. in 7th
IEEE/ACM International Conference on Grid Computing. 2006. Barcelona, Spain.

37. Shoshani, A., A. Sim, and J. Gu. Storage resource managers: Middleware components for grid
storage. in Nineteenth IEEE Symposium on Mass Storage Systems. 2002.

38. Baru, C., et al. The SDSC Storage Resource Broker. in Proc. CASCON'98 Conference. 1998.
39. Bent, J., et al. Flexibility, manageability, and performance in a Grid storage appliance. in 11th

IEEE International Symposium on High Performance Distributed Computing, 2002. HPDC-11
2002. Proceedings. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

