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Abstract 

In this paper we examine the issue of optimizing disk usage and of scheduling large-scale scientific 
workflows onto distributed resources where the workflows are data-intensive, requiring large amounts 
of data storage, and where the resources have limited storage resources. Our approach is two-fold: we 
minimize the amount of space a workflow requires during execution by removing data files at runtime 
when they are no longer required and we demonstrate that workflows may need to be restructured in a 
way that reduces the data footprint of the workflow. For a workflow used by gravitational-wave 
physicists, we were able to show through simulations that the amount of storage required by the 
workflow is reduced by up to 57%. We show the results of our data management and workflow 
restructuring solutions using a Laser Interferometer Gravitational-Wave Observatory (LIGO) 
application and an astronomy application, Montage, running on the Open Science Grid. We show that 
although reducing the data footprint of Montage by 48% can be achieved with dynamic data cleanup 
techniques, LIGO Scientific Collaboration workflows require additional restructuring to achieve a 56% 
reduction in data space usage. We also examine the cost of the restructuring in terms of the 
application’s runtime. 

1. Introduction  
Today, scientific analyses are frequently composed of several application components, each often designed and 

tuned by a different researcher. Recently, scientific workflows [1] have emerged as a means of combining 

individual application components into large-scale analysis by defining the interactions between the components 

and the data that they rely on. Scientific workflows provide a systematic way to capture scientific methodology by 

supplying a detailed trace (provenance) of how the results were obtained. Additionally, workflows are 

collaboratively designed, assembled, validated, and analyzed. Workflows can be shared in the same manner that 
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data collections and compute resources are shared today among communities. The scale of the analysis and thus 

of the workflows often necessitates that substantial computational and data resources be used to generate the 

required results. CyberInfrastructure projects such as the TeraGrid [2]  and the Open Science Grid (OSG) [3] can 

provide an execution platform for workflows, but they require a significant amount of expertise on the part of the 

scientist to be able to make efficient use of them. 

Pegasus [4-6] which stands for Planning for Execution in Grids, is a workflow mapping engine developed and 

used as part of several projects in physics [7], astronomy [8, 9], including gravitational-wave science [10], as well 

as earthquake science [11, 12], neuroscience [13], and others. Pegasus bridges the scientific domain and the 

execution environment by automatically mapping the high-level workflow descriptions onto distributed resources 

such as the TeraGrid, the Open Science Grid, and others. Pegasus relies on the Condor DAGMan [14] workflow 

engine to launch workflow tasks and maintain the dependencies between them. Pegasus enables scientists to 

construct workflows in abstract terms without worrying about the details of the underlying CyberInfrastructure or 

the particulars of the low-level specifications required by the underlying middleware (Globus [15] or Condor 

[16]). Pegasus is used day-to-day to map complex, large-scale scientific workflows with thousands of tasks 

processing terabytes of data onto the Grid. 

As part of the mapping, Pegasus automatically manages data generated during workflow execution by staging 

them out to user-specified locations, by registering them in data registries, and by capturing their provenance 

information. When workflows are mapped onto distributed resources, issues of performance related to workflow 

job scheduling and data replica selection are most often the primary drivers in optimizing the mapping. However, 

in the case of data-intensive workflows it is possible that typical workflow mapping techniques produce 

workflows that are unable to execute due to the lack of disk space necessary for the successful execution. In this 

paper we examine the issue of minimizing the amount of storage space that a workflow requires for execution, 

also called the data footprint of the workflow. In some cases, we also demonstrate that workflow restructuring is 

needed to obtain a reduction in the workflow data footprint.  

The remainder of the paper is organized as follows. The next section provides further motivation for this work by 

examining a Laser Interferometer Gravitational Wave Observatory (LIGO) [17] Scientific Collaboration (LSC) 

application which requires large amounts of storage space and targets the OSG as its execution environment and 

an astronomy application called Montage. These applications exhibit behaviors found in many scientific 

workflows used today. Section 3 describes a data cleanup algorithm for reducing the amount of space required by 

a workflow by removing files when they are no longer required. Section 4 shows the simulation and experimental 

results of applying the cleanup algorithm to the LSC and Montage application and discusses the reasons for 

limited improvement in the case of the LSC workflow. In Section 5 we examine workflow restructuring as a 

means of reducing the footprint of the LSC workflow and present results for the restructured workflow. Section 6 

follows up with a discussion on the issues of restructuring of the LIGO workflow from the science perspective. 

Finally we give an overview of related work and include concluding remarks. 



2. Motivation 
Many applications today are structured as workflows. Some examples of such applications that are being 

routinely used in large-scale collaborations are the LSC’s binary inspiral search and the Montage application. 

Here we describe them both and focus on their computational requirements. 

2.1. Laser-Interferometer Gravitational-Wave Observatory 

LIGO is a network of gravitational-wave detectors, one located in Livingston, LA and two co-located in Hanford, 

WA.  The observatories' mission is to detect and measure gravitational waves predicted by general relativity---

Einstein's theory of gravity---in which gravity is described as due to the curvature of the fabric of time and space. 

One well-studied phenomenon which is expected to be a source of gravitational waves is the inspiral and 

coalescence of a pair of dense, massive astrophysical objects such as neutron stars and black holes. Such 

binary inspiral signals are among the most promising sources for LIGO [18, 19]. Gravitational waves interact 

extremely weakly with matter, and the measurable effects produced in terrestrial instruments by their passage will 

be miniscule. In order to increase the probability of detection, a large amount of data needs to be acquired 

and analyzed which contains the strain signal that measures the passage of gravitational waves. LSC 

applications often require on the order of a terabyte of data to produce meaningful results. 

Data from the LIGO detectors is analyzed by the LIGO Scientific Collaboration (LSC) which possesses many 

project-wide computational resources.  Additional resources would allow the LSC to extend its science goals.  

Thus, the LSC has been reaching out toward Grid deployments such as the OSG to extend their own capabilities. 

OSG supports the computations of a variety of scientific projects ranging from high-energy physics, biology, 

material science, and many others. The shared nature of OSG resources imposes limits on the amount of 

computational power and data storage available to any particular application. A scientifically meaningful run of 

the binary inspiral analysis requires a minimum of 221 GBytes of gravitational-wave data and approximate 

70,000 computational workflow tasks.  

The LIGO Virtual Organization (VO) is supported on nine distinct Compute Elements managed by other 

institutions supporting the OSG. Each Compute Element is an HPC or High Throughput Computer (HTC) 

resource, with, on average, 258 GB of shared scratch disk space. The shared scratch disk space is used by 

approximately 20 VOs with the OSG. The LIGO VO can not reserve space on these shared resources.  

2.2. Montage 

Montage [9, 20] is an application that constructs custom science-grade astronomical image mosaics on demand. 

Figure 1 shows the structure of a small Montage workflow. The figure only shows the graph of the resource-

independent abstract workflow. The executable workflow will contain data transfer, registration nodes, and 

optionally data cleanup nodes, in addition to those shown in the figure. 
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Figure 1: A small Montage workflow. 

Table 1 gives a description of the workflow and the number of the jobs for a representative 2 degree square 

mosaic of 2MASS [21] images centered around the celestial object M17. The levels of the workflow represent the 

depth of a node in a workflow determined through a breadth-first traversal of the directed graph. The actual 

workflow has 4 more levels in addition to the 7 shown in Table 1 and these remaining levels consists of tasks for 

creating a visualizable image of the mosaic. The inputs to the workflow include the input images in standard FITS 

format (a file format used throughout the astronomy community), and a “template header file” that specifies the 

mosaic to be constructed.  The workflow can be thought of as having three parts, including reprojection of each 

input image to the coordinate space of the output mosaic, background rectification of the reprojected images, and 

coaddition to form the final output mosaic.  

Table 1: Characteristics of the Tasks/Transformations in the Montage Workflow. 

Level  Transformation 
Name 

Description No. of jobs at 
the level 

Approximate 
Size of data 
input/output for 
each job (MB) 

1 mProject Reprojects a single image to the 
image parameters and footprints 
defined in a header file. 

152 4.2 / 8.1 

2 mDiffFit Finds the difference between two 
images and fits a plane to that 
difference image 

410 16.3 / 0.6 

3 mConcatFit Does a simple concatenation of 
the plane fit parameters from 
multiple mDiffFit jobs into a 
single file 

1 0.12 / 0.08 

4 mBgModel Models the sky background using 1 0.1 / 0.007 



the plane fit parameters from 
mDiffFit and computes planar 
corrections for the input images 
that will rectify the background 
across the entire mosaic 

5 mBackground Applies the planar correction 
to a single image 

410 8.1 / 8.1 

6 mImgtbl Extracts the FITS header 
geometry information from a set 
of files and stores it in an image 
metadata table 

4 407.6 / 0.01 

7 mAdd Co-adds a set of reprojected 
images  to produce a mosaic as 
specified in a template header file 

4 407.6 / 272.4 

 

As the sizes of the mosaics increase, the data processed and generated in the workflow increase. In the near future 

Montage will be provided as a service to the astronomy community. It is expected that there will be many 

simultaneous mosaics being generated based on the user requests, and thus it will become important to minimize 

the footprint of each workflow.  

3. Approach  
The first algorithm described in this section adds a cleanup job for a data file when that file is no longer 

required by other tasks in the workflow or when it has already been transferred to permanent storage. 

The purpose of the cleanup job is to delete the data file from a specified computational resource. Since a 

data file can be potentially replicated on multiple resources (in case the compute tasks are mapped to 

multiple resources) the decision to add cleanup jobs are made on a per resource basis. 

In order to illustrate the working of the algorithm, Figure 2(a) shows an executable workflow containing 

7 compute jobs {0,1,..,6} mapped to 2 resources {0,1}.  The algorithm first creates a subgraph of the 

executable workflow for each execution resource used in the workflow. The subgraph of the workflow 

on resource 0 contains jobs {0,1,3,4} and the subgraph on resource 1 contains jobs {2,5,6} (shown in 

Figure 2(a)).  The cleanup nodes added to this workflow using the algorithm are shown in Figure 2(b). 

The cleanup job for removing file f on resource r is denoted as Cfr.  



  
Figure 2: (a)The Original Executable Workflow Mapped by Pegasus to Two resources. (b) The 

Workflow with Dynamic Cleanup Nodes Added. 

For each task in the subgraph, a list of files either required or produced by the task is constructed. For 

example list of files for task 1 mapped to resource 0 contains files b and c. For each file in the list, a 

cleanup job for that file on that resource is created (if it does not already exist) and the task is made 

parent of the cleanup job. Thus a cleanup job, Cc0, for removing file c on resource 0 is created and task 1 

is made parent of this cleanup job. The cleanup jobs for some files might already have been created as a 

result of parsing previous tasks. For example, the cleanup job Cb0 for removing file b on resource 0 

already exists (as a result of parsing task 0). In this case the task being parsed is added as a parent of the 

cleanup job. Thus task 1 is added as a parent of cleanup job Cb0.  When the entire subgraph has been 

traversed, there exists one cleanup job for every file required or produced by tasks mapped to the 

resource. If a file required by a task is being staged-in from another resource, then the algorithm makes 

the cleanup job for the file on the source resource a child of the stage-in job, thus ensuring that the file is 

not cleaned up on the source resource before it is transferred to the target resource. For example, file b 

required by task 2 mapped to resource 1 is being staged-in from resource 0 using stage-in job Ib012, and 

so the cleanup job for file b on resource 0 (Cb0) is made a child of Ib012. 

Finally, if a file produced by a task is being staged-out to a storage location, the cleanup job is made a 

child of the stage-out job. For instance, the cleanup job Ch0 for removing file h on resource 0 is made a 



child of the stage-out job Soh that stages out file h to permanent storage. By adding the appropriate 

dependencies, the algorithm makes sure that the file is cleaned up only when it is no longer required by 

any task in the workflow.  The pseudocode for the algorithm is shown in Figure 3. Its running time is 

O(e+n), where e is the number of edges and n is the number of tasks in the executable workflow 

assuming that each edge represents the dependency of a particular file between two tasks. Multiple file 

dependencies between two tasks are represented by multiple edges. The algorithm makes sure that the 

workflow cleans up the unnecessary data files as it executes (by adding cleanup nodes to the executable 

workflow) and at the end there are no files remaining on the execution resources.  

Figure 3: Dynamic Data Cleanup Algorithm, With One Cleanup Job Per Data File. The Running 

Time of the Algorithm O( m ), where m is the no of edges  in the abstract  workflow. 

In our initial work [22], we were able to achieve as much as a 57% data footprint improvement for LSC-

like workflows in a simulated environment. Our next step was to evaluate the performance of the 

algorithm on a real application and a real grid. However, in order to make the algorithm viable, we 

needed to improve the algorithm in terms of the number of cleanup jobs it added to the workflow and in 

terms of the number of dependencies it introduced. The issue is that increasing the number of tasks and 

dependencies in a workflow increases the amount of time the workflow engine spends managing the 

workflow and introduces additional overheads to the overall workflow execution because of the inherent 

overheads in scheduling jobs onto distributed systems (job handling at the submission site, network 

Input: Executable Workflow, r = 1..R (list of resources) 
Output: Executable Workflow including cleanup jobs 
 
Method AddCleanUpJobs 
For every resource r = 1..R 

Let Gr=(Vr,Er) be the subgraph induced by the tasks mapped to resource r 
For every job j in Vr  

For every file f required by j 
create cleanUpJob Cfr for file f for resource r if it does not already exist 
add job j as parent of the cleanUpJob Cfr 
if file f is produced at another resource s 

Let Ifrsj = stage-in job for transferring file f from resource r to resource s for job j 
create cleanUpJob Cfs for file f at resource s if it does not exist and make Ifrsj  parent of Cfs 

End if 
End For 
For every file f produced by j 

create cleanUpJob Cfr for file f for resource r if it does not already exist 
add job j as parent of the cleanUpJob Cfr  
If f is being staged out to final storage, add Cfr as child of the stage-out job. 

End For 
End For 

End For          
End Method AddCleanUpJobs 



latencies, queue time at the remote resource). Because of these overheads, we decided to design an 

improved algorithm that will reduce the number of cleanup tasks at the possible cost of the workflow 

footprint. The algorithm in Figure 4 creates at most one cleanup node per computational workflow task. 

Figure 4: Dynamic Data Cleanup Algorithm, With One Cleanup Job Per Computational Task. 

The complexity of this algorithm is O( e * (e+n) ), where e is the number of edges in the workflow with 

cleanup jobs and n is the number of jobs . 

    Method AddCleanUpJobs 
Preprocessing : Let G = (V,E)  be the workflow . 

Start by assigning 1 as level for the root jobs. 
For every job J in the workflow  

 Level( J ) = Max( level( Parent( J ) ) ) + 1  
End For 

End Preprocessing 
For every Resource r = 1 .. R 
Let Gi=(Vi,Ei) be the sub graph induced by the jobs mapped to Resource r . 
Let LeafListi be the list of the leaf jobs in Gi . 

Initialize PriorityQue<key=level,priority=min> PQ with LeafListi 
While PQ is not empty , pop a job J from PQ. 

Create a cleanup job new_cleanup 
If File a  is used/produced by J 

IF a is not already set to be cleaned up by another job set new_cleanup to clean a. 
ELSE add J as the parent of job  K which was already set to clean a. 

If new_cleanup is not trivial , add it as the child of job j 
Mark job j as visited and add all the unvisited neighbors( in this case parents ) to PQ. 
CALL Method Reduce_Dependencies ( new_cleanup , Gi ). 

End While 
End Method AddCleanUpJobs 
 
Method Reduce_Dependencies ( CleanupJob C , Graph Gi ) 
      ListParents be the list of jobs that are direct parents of  C. 
      Duplicates is an empty set of jobs. 
      For every Job J that is in ListParents 
        If  J is not in Duplicates    

              Initiasise Queue BFSq with all the parents of J. 
              While BFSq is not empty 
                     Pop job uJ from BFSq. 
                     If uJ is not marked as visited 
                      Mark uJ as visited. 
                              If uJ is a member of ListParents  
                               Add uJ to Duplicates. 
                              End If 
                              Add all unvisited parents of uJ to BFSq. 
                     End If 
              End While 
        End If 

 End For 
      Remove all edges between CleanupJob C and the jobs in Duplicates. 
End Method Reduce_Dependencies 



The above algorithm is also careful in deciding how the files are being clustered to be cleaned up. When 

two files a and b are clustered together all the jobs that use these files need to finish execution before 

they can be cleaned up. As Figure 5 illustrates, a bad clustering of files can delay the cleanup of files and 

hence affect negatively the scratch space usage. Here two different setups of per job cleanup files on the 

same workflow are shown. Scenario 2 gives a more efficient cleanup than Scenario 1 because in 

Scenario 1 cleanup of File a is delayed until b becomes eligible for cleanup. The idea is that if File a is 

used by both job i and job j ,the algorithm would associate the file to be cleaned up  by the job that’s  

lower in the workflow (The preprocessing step in the algorithm takes care of this ). 

 
Figure 5: An example of Suboptimal (a) and Optimal Data File Removal Clustering. 

4. Experiments 

4.1. Setup 

In this paper, we use two methods for evaluating our approach: simulation and runs of the real 

applications on the grid. For all the experiments, the workflows are specified in an abstract format and 

then mapped onto the resources by Pegasus in the case of real execution. In the case of the simulator 

these resources are simulated and in the case of the grid execution, we use the resources of the Open 

Science Grid.  



Simulation 

The simulations are performed using a Java-based grid simulator called GridSim [23]. This simulator 

can be used to simulate any number of grid resources and users. We added attributes to the task model in 

GridSim to explicitly model clean up jobs. In our experiments, each simulated resource is a cluster of 

homogeneous processors with space sharing and a First Come First Serve (FCFS) scheduling policy. 

The processing speed of the resources and the bandwidth between the users and resources can be 

configured and contention for network resources is ignored. For the simulation experiments described in 

this paper, each resource was a cluster of ten homogeneous processors.    

Grid Execution 

For our grid execution, we use the Pegasus [4-6] workflow mapping system to map a high-level 

workflow description onto the available resources and use the Condor DAGMan [14] workflow 

execution engine to execute the workflow on the mapped resources. Pegasus locates the available 

resources and creates an executable workflow where the executable tasks are assigned to resources, 

where there are data transfer nodes to stage data in and out of the computations, data registration nodes 

to register the intermediate data products into registries, and in cases of workflows with dynamic 

cleanup nodes, these will be included as well. The executable workflow is given to DAGMan for 

execution. DAGMan follows the dependencies defined in the workflow and releases the nodes that are 

ready to run to a local Condor queue. Tasks destined for the grid are sent to the grid resources using 

Condor-G [24]. The final scheduling of these tasks is done by the resource managers of the remote grid 

resources. As part of the execution, the data is generated along with its associated metadata and any 

provenance information that is collected. 

4.2. Comparison of Cleanup Algorithms 

In our first set of experiments, we compared the behavior of the two cleanup algorithms described in 

Section 3. We performed the evaluation via simulation and compared the number of cleanup jobs 

created by each algorithm and the number of dependencies added to the workflow. We performed the 

experiments using both the LSC and Montage workflows containing 164 and 731 compute tasks 

respectively.  Algorithm I represents the algorithm where one cleanup job is created for every file, and 

Algorithm II represents at most one cleanup job per every compute job in the workflow. Results show 

that Algorithm II obtains a data footprint similar to that of Algorithm I while also achieving a significant 

reduction in the number of cleanup tasks and dependencies. As indicated in Table 2 there is 



approximately a 40% reduction in the number of tasks and almost 30% reduction in the number of 

dependencies.   

Table 2:  Comparison via Simulation of the Data Cleanup Algorithms, Showing the Reduction in 

the Number of Cleanup Tasks and the Number of Dependencies. 

LSC workflow Max Space Used 
( MBs ) 

No of CleanUp 
Jobs 

No of 
dependencies 

Algorithm I       1027.13                237               840 

Algorithm II       1028.23                 96              238 

2-degree 
MONTAGE 

Max Space Used 
( MBs ) 

No of CleanUp 
Jobs 

No of 
dependencies 

Algorithm I       2405.71              2029             4211 

Algorithm II        2409.71                731             1296 

4.3. Minimizing the Workflow Footprint With Dynamic Cleanup 

In our initial simulations [22], we have shown the potential of using data cleanup techniques to reduce 

the data footprint for LSC-like workflows.  Here we observe the performance of the data cleanup 

algorithms using real applications: Montage and LSC running on the Open Science Grid. For reasons of 

clarity and to reduce the effect of cross-site scheduling we focus our experiments on a single grid site. 

However, the algorithms are also applicable when workflows are scheduled across multiple sites.  

Figure 6 shows the results of running the Montage workflow, which creates a one degree square mosaic 

of the M17 region of the sky. The graph shows the storage usage of the workflow over time for both the 

original workflow (without cleanup) and the workflow which dynamically cleans up redundant data.  

 

Figure 6. One Degree Square Montage Workflow Data Footprint over Time.  The dots indicate 

completion of  cleanup jobs. 



We can see that in this case we were able to reduce the overall workflow data footprint from 1291.583 

MB down to 714.545 MB, a saving of 44.676%.  We conducted similar experiments while increasing 

the size of the mosaics to 2 and 4 degree square. Figure 7 and Figure 8 show the results. For the 2 degree 

square mosaic the data footprint was reduced from 4.659 to 2.421 GB (48%) and for the 4 degree square 

mosaic from 16.24 to 9.687 GB (40.35%).  

 
Figure 7: Two Degree Square Montage Workflow Data Footprint over Time.  The dots indicate 

the completion of cleanup jobs. 

 
Figure 8: Four Degree Square Montage Workflow Data Footprint over Time.  The dots indicate 

the completion of cleanup jobs. 

We also tested our data cleanup algorithm with a small LSC workflow running on the OSG. Figure 9 

shows the results. Although, based on our initial simulations [22] we expected a significant reduction in 



the workflow data footprint, we were not able to see the reduction when the actual workflow was 

executed on the OSG. We did only notice that cleanup is happening in the workflow only after all the 

input data has already been staged-in. We also measured the runtime overhead of the cleanup tasks. The 

workflow without cleanup nodes ran in 135 minutes, whereas the workflow with cleanup nodes took 100 

minutes. The difference in the runtimes can be attributed to the use of non-dedicated resources and 

network latencies when scheduling workflow tasks over a wide area network. In the next section we 

explore the reasons for not achieving a significant reduction in the data workflow footprint.   

 
Figure 9: Small LSC Workflow Data Footprint Over Time with and without cleanup. 

4.4. Contributions to the workflow footprint   

Here we analyze the Montage and LSC workflows and see that the opportunities for reducing the 

workflow footprint for Montage are inherent in the workflow whereas the ones in LSC are limited. The 

reduction in the workflow footprint results when cleanup opportunities are present in the workflow 

before the maximum data footprint is reached. In order to illustrate the difference between the Montage 

and LSC workflow, we divide the workflow into levels. All the tasks in the workflow that have no 

parent dependencies are assigned level 1. The level of other tasks can be assigned by a breadth-first 

traversal where the level of any tasks is the maximum level of any of its parent tasks plus one. The 

number inside the vertices in Figure 1 shows the level number of the tasks in the Montage Workflow. 

The 2 degree square Montage workflow has 11 levels while the LSC workflow has 6.  

Assuming that all the level i tasks are executed before tasks in level (i+1), Figure 10 and Figure 11 show 

the total workflow footprint (WFP) at the end of execution of each level without any cleanup and when 

cleanup is used. The difference between the two represents the cleanup opportunity at each level of the 



workflow and is also shown in the figure. The difference between the maximum WFP without and with 

cleanup across all levels represents the maximum reduction in storage space for the workflow. For the 

LSC workflow (Figure 10), there isn’t much difference between the maximum WFP with and without 

cleanup. The reason is that most of data used or generated by the workflow is already materialized by 

the end of level one and the cleanup opportunities are mostly absent until level five. For the Montage 

workflow, the WFP without cleanup gradually increases and cleanup opportunities exist across the 

workflow (Figure 11).  Thus in this case, the maximum WFP with cleanup is only about 28% of the 

value without cleanup and represents a 72% possible reduction in the footprint of the workflow.   In our 

experiments however, we do not achieve this ideal 72% reduction because the workflow is not 

scheduled evenly level by level and tasks from multiple levels might end up executing at the same time. 

Nevertheless, this analysis still gives an important insight into the storage requirements of a workflow 

and the reduction in the workflow footprint that can be achieved by using the cleanup algorithm alone.  
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Figure 10: The cumulative Workflow footprint (WFP) with and without cleanup and the cleanup 

opportunities at each level of the LSC Workflow. 
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Figure 11: The cumulative Workflow footprint (WFP) with and without cleanup and the cleanup 

opportunities at each level of the Montage Workflow. 

5. Reducing the workflow footprint through workflow 
restructuring 
The analysis of the LSC workflow revealed that the workflow was structured such that all the input data 

would be staged-in at the beginning of the run and not cleaned up until the level 5 of the workflow. One 

solution we explored was to restructure the workflow by adding extra dependencies so that the 

computation would progress in a depth-first manner and thus portions of the workflow would reach the 

computations and thus the cleanup nodes in level 5 of the original workflow before the remaining level 1 

computations would start. By ordering the data stagein jobs for these remaining level 1 computations 

after the cleanup up jobs of the preceding level 5 tasks, we can achieve a significant reduction in the 

workflow footprint.  

In order to illustrate the restructuring, Figure 12 shows a simple workflow containing two parallel chains 

with tasks {0,1} and {2,3} respectively mapped to a single resource. When run without restructuring 

both the files a and c would likely be staged in simultaneously and the footprint of the workflow will 

include both of these files present on the storage system at the same time. The restructuring adds a 

dependency between the last job of the first chain {1} and the stagein job of the second chain, Sic. 

Moreover, the cleanup jobs have the highest priority among all jobs. Thus it is very likely that the file a 

would be cleaned up by Ca before file c is staged to the resource by Sic, thus reducing the footprint of the 



workflow. When these files are large, the restructuring would achieve a significant reduction in the 

footprint of the workflow.  

 
Figure 12: An example workflow before and after restructuring. 

We note that the same effect can be achieved with careful scheduling of workflow tasks and data 

transfers. In some sense we refer to workflow restructuring as the ordering or sequencing of the 

execution of the tasks within the workflow (and this can be done in a resource-independent way), 

whereas workflow scheduling schedules the tasks of a workflow onto two or more resources.  

5.1. Moderate Workflow Restructuring 

Initially, we only did a very limited restructuring of the LSC workflow. Figure 13(a) shows the small 

LSC workflow and Figure 13(b) shows the restructured workflow. We took the first independent cluster 

in the LSC workflow (shown by the oval) and made all the remaining jobs in the workflow dependent on 

it. This assures that this cluster executes first.  

 



    
Figure 13: (a) The Original LSC Workflow. (b) The Moderately Restructured LSC Workflow. 

 

This restructuring resulted in a “deeper workflow” of 12 levels instead of the original 6, but it also 

improved the workflow data footprint. Figure 14 shows the cleanup possibilities for the restructured 

workflow; they occur at levels 5 and 11.  As a result of this distribution of cleanup oppurtunity, the 

maximum workflow footprint with cleanup is about 27% less than that without cleanup. We confirm this 

by both simulation and execution on the grid--Figure 15 and Figure 16 respectively. Our simulations 

(Figure 15) predicted a saving of 26.5 % in the workflow footprint for the moderately restructured LSC 

workflow.   

An issue that arises in the grid execution is that the executable workflow generated by Pegasus includes 

data stage-in tasks that stage data into the first level of the workflow. These tasks are not dependent on 

any other task in the workflow and thus can usually proceed as soon as the workflow is started.  

However, this poses a problem, because we can easily saturate the data storage and increase the data 

footprint for workflows structured like LSC. To overcome this deficiency, we made these stage-in tasks 

dependent on the previous-level computational tasks as shown by an example in Figure 12. We then 

proceeded with the execution of the restructured LSC workflow on the grid. The actual grid execution 

(Figure 16) showed a reduction of 26% (814.388 MB for the workflow with cleanup, 1099.387 MB for 

the workflow without dynamic cleanup).  
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Figure 14: Cleanup Opportunities in the Moderately-Restructured Workflow. 

 

.  

Figure 15: Simulated Behavior of the Moderately-Restructured Workflow. 



 
Figure 16: Behavior of the Moderately-Restructured Workflow on the OSG. 

5.2. Full Workflow Restructuring 

Upon examining the original LSC workflow we can notice additional opportunities for workflow 

restructuring.  Figure 17 shows the most extreme restructuring we can design that would also not 

introduce cycles within the workflow and would potentially reduce the workflow data footprint.  

 

 
Figure 17: Optimally Restructured LSC Workflow. 

 

Figure 18 shows the cumulative workflow footprint and the cleanup opportunities at each level within 

this optimally restructured workflow. The restructuring has increased the number of levels in the 



workflow from the original 6 to 36. However, the cleanup opportunities are increased and the maximum 

workflow footprint is decreased from approximately 1,125 MB without cleanup to approximately 

500MB with cleanup. 
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Figure 18: Cleanup Opportunities for the Optimally Restructured LSC Workflow. 

 

The corresponding simulation results are presented in Figure 19. The simulation shows a 59%  

improvement in the workflow data footprint. The actual grid runs shows a similar 56% improvement in 

data space usage (Figure 20).  

 
Figure 19: Simulated Behavior of the Optimally Restructured LSC Workflow. 

 



 
Figure 20: Actual Grid Behavior of the Optimally Restructured LSC Workflow. 

Obviously there are tradeoff between the data footprint and the workflow execution time which is 

reflected in the increased number of workflow levels. The increase is due to the reduction in the 

parallelism in the execution.  The following figures show the number of workflow tasks running over 

time. Figure 21 shows the original LSC workflow which has a maximum and average execution 

parallelism of 36 and 15.8 respectively and a runtime of 100.8 minutes. Figure 22 shows the moderately 

restructured LSC workflow which exhibits a similar maximum parallelism but has a lower average 

parallelism of  9.2. This workflow had an execution time of 152 minutes (an increase of 50% over the 

original workflow, proportional to the increase in the number of workflow levels). Figure 23 shows the 

task execution profile of the optimally restructured LSC workflow. The maximum parallelism is reduced 

to 13 and the average parallelism is 3.1. The workflow execution time is increased to almost 300 

minutes--3 times the original workflow execution time reflecting the increase in the number of levels in 

the workflow to 36. 

 
Figure 21: Task Execution Profile of the Original LSC Workflow. 



 

 
Figure 22: Task Execution Profile of the Moderately Restructured LSC Workflow. 

 

 
Figure 23: Task Execution Profile of the Optimally Restructured LSC Workflow. 

 

6. Science drivers for workflow restructuring 
In this paper, the LSC workflow considered is a subset of the large scale workflows used for production 

gravitational-wave data analysis. The workflow show in Figure 13 contains 164 nodes, whereas a full 

LSC workflow, such as those used to analyze the data taken by the LIGO detectors from November 

2005--November 2006, contains 185,000 nodes and 466,000 edges. This workflow analyzes 10 Tb of 

input data and produces approximately 1 Tb of output data. Significant restructuring of the workflow 

will be needed to run such analysis on compute resources with limited storage. As part of our work we 



noticed that the LSC workflows, as they are currently structured, impose challenges on the ability to 

minimize the workflow data footprint. LSC scientists have been aware of this and other issues relating to 

the structure of the workflow described in [25]. The tools used to represent LSC workflows have been 

designed with flexibility to allow easy re-factoring of workflows to avoid being locked into a given 

environment or computing system, however. 

Consider the LSC workflow as shown in Figure 13(a). The first and second levels of the workflow 

analyze all available data from the three LIGO detectors, and then the third level applies consistency   

tests by comparing the analysis products from each detector for a given time period. The fourth and fifth 

levels of the workflow re- analyze the data, using information gained from these consistency tests, and 

then a final consistency test is applied at level 6. These consistency tests are applied to data in blocks of 

the order of a day. Once the second test is complete, that block of data has been completely analyzed 

[25] and the results are ready for the LSC scientist to review. Since there are no direct dependencies 

between nodes at the first level of the workflow, all these nodes are submitted to compute resources 

before subsequent levels. These nodes, and subsequent level 2 nodes, prevent any consistency tests from 

being applied until the entire data set has been analyzed. Thus, results are not available until a majority 

of the data set has been analyzed. This structure was chosen for expedience in the early stage of 

development, but has drawbacks for large-scale offline batch processing. 

In our future work, we intend to work with LSC scientists to analyze possible restructuring of the LSC 

workflows to improve their efficiency. Minimizing workflow data footprint would allow it to leverage 

Grid resources with limited storage and a restructured LSC workflow could be much more efficient, 

which is an advantage for obtaining staged results in the offline analysis of longer data sets. 

7. Related Work 
With Directed Acyclic Graphs (DAGs) being a convenient model to represent workflows, the vast 

amount of literature on DAG scheduling is of relevance to the problem of workflow scheduling [26]. In 

recent years, there has been a revival of interest in the context of problems especially motivated by 

scientific workflow execution and heterogeneous environments [27-30] . In the majority of these works, 

data used or materialized in the workflow affects resource selection only to the extent of minimizing the 

data transfer time between resources with the goal of minimizing the overall workflow execution time. 

No work has taken into account the available data storage when selecting resources, which can be a 

critical factor when executing data-intensive workflows. In a national level Grid infrastructure, 

unavailability of storage space was cited as the significant cause of job failures [31].  



The most interesting work in the context of this paper, which considers data placement, has been 

presented in [32, 33]. Their proposed scheduling and replication algorithm keeps track of the popularity 

of datasets and replicates those datasets to different sites. However, the data replication approach does 

not work well in a storage-constrained environment as it may increase the demand of data storage and 

may lead to heavy storage requirements for individual resources. The scheduling algorithm of [32, 33] 

has been extended to a heterogeneous resource environment in [34]. This has been further extended in 

[35] for situations where a task requires data from multiple sources. However the focus is resource 

selection with the goal of minimizing the task completion time and the storage capacity of the resources 

is not a candidate for consideration. 

In a previous work, we presented algorithms for scheduling workflows on storage constrained resources 

[22]. Storage aware scheduling was found to be more reliable and perform better than scheduling 

algorithms that do not consider storage constraints. A related problem is to be able to provision storage 

resources in advance. Without the ability to guarantee certain storage availability at a resource, 

scheduling algorithm that operate using storage constraints would have limited effectiveness. Recently, 

low level mechanisms for allowing user level allocation of storage resources have been proposed [36]. 

This work also shows that the resource providers can benefit from storage allocation in the form of 

increased output under high utilization conditions by isolating the users from one another. Other storage 

management systems such as Storage Resource Manager (SRM) [37], Storage Resource Broker (SRB) 

[38], NeST [39] allows users to request storage allocation.  

8. Conclusions 
In this work we have evaluated the performance of dynamic data cleanup in workflow-type applications. 

In our experiments, we have used both simulation and actual workflow execution on the Open Science 

Grid. In the case of Montage, we were able to obtain a reduction of approximately 48% in the amount of 

disk space used. However, in order to be able to achieve a significant reduction in footprint for the LSC 

workflow (56%), we needed to restructure it in a way that reduced the amount of parallelism in the 

workflow. Although for this paper, we restructured the workflow by hand, we plan to investigate 

automated techniques in the future. Workflow restructuring is only an element in the footprint reduction, 

further improvements can potentially be gained by using data-aware workflow scheduling techniques.  

We explored some of these techniques via simulation  and plan to evaluate them in real grid 

deployments. 
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