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Abstract. We present a method that assesses the theoretical detection limit of a

Bayesian Markov chain Monte Carlo search for a periodic gravitational wave signal

emitted by a neutron star. Inverse probability yields an upper limit estimate for the

strength when a signal could not be detected in an observed data set. The proposed

method is based on Bayesian model comparison that automatically quantifies Occam’s

Razor. It limits the complexity of a model by favoring the most parsimonious model

that explains the data. By comparing the model with a signal from a pulsar to the null

model that assumes solely noise, we derive the detection probability and an estimate

for the upper limit that a search, for example, for a narrow-band emission for SN1987a,

might yield on data at the sensitivity of LIGO data for an observation time of one year.

PACS numbers: 04.80.Nn, 02.70.Uu.

1. Introduction

Several mechanisms have been proposed that would cause rapidly rotating neutron stars

to emit quasi-periodic gravitational waves [1, 2]. Interferometric gravitational wave

detectors that are now operating in numerous locations around the world [3, 4, 5, 6] now

allow for their verification and much work has gone into the development of dedicated

search algorithms for these signals. Radio observations can provide the sky location,

rotation frequency and spin-down rate of known pulsars. The frequency of the reported

remnant of SN1987a for example is not known accurately [7] but Markov Chain Monte

Carlo (MCMC) methods [8, 9, 10, 11, 12] are able to search a range of frequencies (and

other physical parameters) in a reasonable time.

As in previous studies [13, 14] the signal under consideration is one that is expected

from a non-precessing triaxial neutron star. The gravitational wave signal from such an

object is at f = 2fr twice its rotation frequency fr, and we characterize the amplitudes

of each polarization with overall strain factor, h0. The measured gravitational wave

signal will also depend on the antenna patterns of the detector for the ‘cross’ and ‘plus’

polarizations, F×,+(t;ψ, α, δ), giving a signal s(t)=F+(t; . . .)h0(1+cos2 ι)cos Φ(t; . . .)/2+

LIGO-P070016-00-Z



A Bayesian method to set upper limits on the strength of a periodic gravitational wave2

F×(t; . . .)h0 cos ι sin Φ(t; . . .) where ι is the inclination angle. The antenna pattern of the

detector depends on time t, the polarization angle ψ and its location determined by right

ascension α and declination angle δ. The location is assumed to be known from, for

example, radio observations. A simple slowdown model [15] provides the phase evolution

of the signal as

Φ(t;n, f, ḟ) = φ0 + 2π
[

f(T(α,δ) − T0) + ḟ(T(α,δ) − T0)
2/2

]

, (1)

where

T(α,δ) = t+ δt = t+
r · n

c
+ ∆T (2)

is the time of arrival of the signal at the solar system barycenter when t is the time at

the detector. Here, φ0 is the phase of the signal at a fiducial time T0, r is the position

of the detector with respect to the solar system barycenter, n is a unit vector in the

direction of the neutron star (depending on α and δ), c is the speed of light and ∆T

contains the relativistic corrections to the arrival time [16].

If f , ḟ , and n are known from radio observations, for instance, the signal can

be heterodyned by multiplying the data by exp[−iΦ(t;n, f, ḟ)], low-pass filtered and

resampled, so that the only time varying quantity remaining is the antenna pattern

of the interferometer. The reference sky location is also needed for the heterodyning

process prior to the MCMC simulation. We are left with a simple model with four

unknown parameters h0, ψ, φ0, and ι. If there is an uncertainty in the frequency and

frequency derivative two additional parameters come into play, the differences between

the signal and heterodyne frequency and frequency derivatives, ∆f and ∆ḟ . The unit

vector n points to the right ascension α and declination δ of the purported neutron star.

A detailed description of the heterodyning procedure is presented elsewhere [13, 14].

The model of the heterodyned signal of a pulsar has form [14]

y(tk; a) = F+(tk;ψ, α, δ)h0(1 + cos2 ι)ei∆Φ(tk;α,δ,∆f,∆ḟ)/4

− iF×(tk;ψ, α, δ)h0 cos ιei∆Φ(tk;α,δ,∆f,∆ḟ)/2, (3)

where tk is the time of the kth bin and a = (h0, cos ι, φ0, ψ, ∆f, ∆ḟ) is a vector of

the unknown parameters. ∆Φ(t;α, δ,∆f,∆ḟ) represents the residual phase evolution of

the signal, equaling φ0 + 2π[∆f(T(α,δ) − T0) + ∆ḟ(T(α,δ) − T0)
2/2], where T(α,δ) (Eq. (2))

depends on the known sky location of the pulsar. Note, that the gravitational wave

oscillates at twice the rotation frequency of the pulsar’s rotation frequency. Therefore,

the frequency in Eq. 3 refers to the gravitational wave frequency. The objective is to fit

this model to the data Bk = y(tk; a)+εk,where εk is assumed to be normally distributed

noise with a mean of zero and known variance σ2
k. Assuming statistical independence

of the binned data points, Bk, the joint likelihood that these data d = {Bk} arise from

a model with a certain parameter vector a is [14]

p(d|a) ∝
∏

k

exp
[

− |(Bk − y(tk; a))/σk|
2
]

/2 = exp
[

−χ2(a)/2
]

, (4)

where

χ2(a) =
∑

k

|Bk − y(tk; a)|2/σ2
k. (5)
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In order to draw any inference on the unknown parameter vector a the posterior

probability of a given d is needed, which can be obtained from the likelihood via an

application of Bayes’ theorem. The unnormalized posterior density p(a|d) ∝ p(a)p(d|a)

is the product of the prior density of a, p(a), and the joint likelihood, p(d|a). In this

study uniform priors distributions are used with prior ranges [0, 2π], [−π/4, π/4] and

[−1, 1] for the angle parameters φ0, ψ and cos ι respectively.

For h0, a uniform prior is specified with boundary [0, 10−20]. For the frequency and

spin down uncertainty, suitable uniform priors are used with ranges of [− 1
120
, 1

120
] Hz and

[−10−9, 10−9] Hz s−1 for ∆f and ∆ḟ , respectively, as applied in [10]. The normalized

posterior density p(a|d) = p(a)p(d|a)/p(d) cannot be evaluated analytically, therefore

Monte Carlo methods are used here to explore p(a|d), as described in [10].

When the signal-to-noise ratio (SNR) and hence the signal’s evidence declines,

it becomes increasingly difficult to sample efficiently from the posterior distribution

using MCMC. The major problem lies in the frequency parameters ∆f and ∆ḟ . Long

integration periods yield narrow posterior modes and when the SNR is small, their

occurrence is also negligible with most of the posterior probability mass spread over

the entire parameter space determined by the prior distribution. The sampling process

of an MCMC sampler becomes inefficient in covering that part of the parameter space

where the signal is concentrated. The question that will be addressed in this paper

is the threshold of the SNR for which MCMC sampling becomes ineffective and below

which no signal parameters can be retrieved.

2. The detection of weak signals

The presence of a signal within the data can be assessed by a formal Bayesian model

comparison of the model the contains a signal with the null model that contains no signal.

Bayes factors could be applied but they require a properly converged MCMC output.

Without the need of MCMC samples, this paper aims to give theoretical detection

probabilities dependent on signal-to-noise ratios.

2.1. Derivation of a theoretical detection probability

For the Bayesian Information Criterion (BIC), also called the Schwarz criterion, there

is no particular need for the MCMC output samples. The BIC is defined [17] as

BIC = −2 log(maximum likelihood) + P , (6)

where the penalty term P = d log n brings in the number of d = 6 independent

parameters that describe the model, and the number n of data samples. The penalty

term penalizes the number of parameters in a model in order give preference to simpler

models and meet the principle of Occam’s Razor.

The objective is to derive a theoretical limit for the detection of a signal within a

data set observed during a determined observation period at a certain noise level. This
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section is dedicated to find a distribution of the BIC depending on the noise, conditioned

on the parameters of a potential pulsar.

The observation period is a vector OP = (t1, . . . , tn)
′ of n time points tk with

k ∈ {1, . . . , n} during which the data has been collected starting from tstart and ending

at tend. The noise vector is a vector σ = (σ1, . . . , σn)
′ for the n data bins. Given the true

parameter vector of the pulsar from which the signal arises, the full information needed

for a detection is determined by the vector a∗ = (h∗0, cos ι
∗, ψ∗, α∗, δ∗,∆f ∗,∆ḟ ∗,σ,OP)′.

Although some parameters like the sky location are expected to be known, they are

essential factors for the detection probability in connection with the observation period

and the noise. These are essential parts of the parameter vector as the detection depends

significantly on them.

A signal detection depends on the actual evidence of the model that assumes the

presence of a signal from a pulsar within an arbitrary data set when compared to the

null model of mere noise. Each potential data set under consideration is based on the

true parameters of a potential pulsar. Therefore each model comparison is conditioned

on a data set d∗ that is conditioned on the parameter vector a∗. This fact can be used

to obtain, for large sample sizes, an approximation for the maximum likelihood value

since the maximum likelihood estimate (MLE) is asymptotically consistent and efficient

under certain regularity conditions that are generally satisfied [18]. Thus the estimates

converge to the true values for large samples sizes. The sample sizes that we expect are

in fact in the range of tens of thousands.

A potential data set d∗ from a pulsar, based on a true parameter vector a∗ is

modeled by M∗ : d
(k)
∗ = y(tk; a∗) + εk with noise vector εk. Due to the fact that d∗ is

conditioned on a∗, an approximate maximum log-likelihood under model M1 is

log MLd∗,a∗,M1
≈ −χ2

d∗,a∗,M1
(a∗)/2 = −

∑

k

|εk|
2

2σ2
k

, (7)

This term comprises the sum of the squared residuals as the model is fitted by the

true parameter vector. On the other hand, under model M0 that encompasses no

parameters, the log-likelihood has a constant value and therefore its maximum is

log MLd∗,a∗,M0
= −χ2

d∗,a∗,M0
/2 = −

∑

k

|yk(tk; a∗) + εk|
2

2σ2
k

, (8)

where the summation term contains the true and given parameter vector of the signal.

It is clear that log MLd∗,a∗,M1
≥ log MLd∗,a∗,M0

∀a∗. As a result of this, naturally model

M1 has to be preferred at all times. This, however, does not take into account the

penalty term that comes into play due to the principle of Occam’s razor. Equality

of Eq. 8 and 7 can only be achieved for a zero amplitude h∗
0 in parameter vector a∗.

But how large do we have to choose this amplitude, also considering other influential

parameters, in order to justify model M1 with its many more parameters? This is the

essential idea behind this model comparison approach and the penalty terms play a key

role in it.
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We aim to compare model M0 and M1 conditioned on the data set d∗, conditioned

on a potential pulsar characterized by the true parameter vector a∗. By substituting

Eq. (7) and Eq. (8) into Eq. (6), we obtain

BICd∗,a∗,M0
= −2 log MLd∗,a∗,M0

(9)

as model M0 has d = 0 parameters and

BICd∗,a∗,M1
= −2 log MLd∗,a∗,M1

+ P . (10)

With respect to M0 and M1, a probability for model M1 can be derived by

p(M1|d∗,a∗) =
(

1 + e∆BICd∗,a∗

/2−log p(M1)+log p(M0)
)−1

(11)

Here, p(M0) and p(M1) are prior probabilities for M0 and M1 respectively. The

interested reader is referred [19] for a more detailed derivation. We will address different

prior scenarios later but for now, we choose equal probabilities p(M0) = p(M1) = 0.5

for the models as a natural choice when there is no prior information about the

possible existence of a signal. This yields p(M1|d∗,a∗) =
(

1 + e∆BICd∗,a∗

/2
)−1

where

∆BICd∗,a∗
:= BICd∗,a∗,M1

− BICd∗,a∗,M0
. It represents the probability that the data

d∗ from a potential pulsar with given parameter vector a∗ is better modeled by M1 (a

signal) rather than M0 (no signal). In other words it is the probability for the existence

of a signal in the data that is emitted by a pulsar with parameter vector a∗. It is

merely the difference of the two BIC values under consideration that is responsible for a

signal detection. A difference of zero for example would yield a 50% probability for both

models. A probability conditioned on data d∗ from the vector a∗, can be expressed as

p(M1|a∗) = E [p(M1|d∗,a∗)|a∗] = E
[

(1 + e∆BICd∗,a∗

/2)−1|a∗

]

. (12)

There is no simple way to solve this expression analytically and although feasible,

a Monte Carlo sampling process would be lengthly. From a physical perspective, phase

φ0 and the frequency parameters ∆f , ∆ḟ should have no impact on the actual signal

detection as the SNR mainly depends on the amplitude h∗
0, inclination cos ι∗, noise σ,

and observation time OP. To a smaller extent the SNR is also influenced by the course

of the antenna pattern over the observation time OP with parameters ψ∗, α∗, and δ∗.

We assume the sky location to be known and condition on α∗ and δ∗.

The probability p(M1|a∗) is determined by the distribution of ∆BICd∗,a∗
. Thus the

characteristics of ∆BICd∗,a∗
will be derived below. By using equations Eq. (7), Eq. (8),

Eq. (9), Eq. (10) we obtain

∆BICd∗,a∗
≈
∑

k

|εk|
2 /σ2

k + P −
∑

k

|yk(a∗) + εk|
2 /σ2

k (13)

In [14], white Gaussian noise εk,re, εk,im ∼ N(0, σ2
k) is assumed where the σ2

k

are estimated for each bin from the noise floor in a 4 Hz band of data around the

signal frequency. By substituting y(tk; a∗) of Eq. 3 and defining some abbreviations,

F+,×(tk;ψ
∗, α∗, δ∗) := F+,×

k , ei∆Φ(tk;α∗,δ∗,∆f∗,∆ḟ∗) := ei∆Φk = cos(∆Φk) + i sin(∆Φk),
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1
4
h∗0(1 + cos2 ι∗) =: A+, and 1

2
h∗0 cos ι∗ =: A× we can rewrite Eq. (13) as

∆BICd∗,a∗
≈ P −

∑

k

[

(A+F+
k )2/σ2

k + (A×F×

k )2/σ2
k

]

− 2
∑

k

([

A+F+
k cos(∆Φk) + A×F×

k sin(∆Φk)
]

/σk
)

εk,re/σk

− 2
∑

k

([

A+F+
k sin(∆Φk) − A×F×

k cos(∆Φk)
]

/σk
)

εk,im/σk. (14)

The quadratic noise terms cancel out and we are left with normally distributed terms.

Given a pulsar with parameter vector a∗, the ∆BICd∗,a∗
is thus normally distributed.

The terms that contain the phase evolution canceled out as well and Eq. (14) is thus

independent of the parameters φ0, ∆f , and ∆ḟ . With εk,re, εk,im ∼ N(0, σ2
k) we have

E(εk,re/σk) = E(εk,im/σk) = 0 and the expected value of Eq. (14) has the form

µa∗
:= E(∆BICd∗,a∗

) = P −
∑

k

σ−2
k

[

(A+F+
k )2 + (A×F×

k )2
]

. (15)

Eq. (15) yet allows some insight as it tells us that for a given arbitrary parameter

vector a∗, model M0 would be preferred over M1, if µa∗
> 0. Given a parameter vector

a∗, the variance of Eq. (14) is

σ2
a∗

=Var(∆BICd∗,a∗
) = 4(P − µa∗

). (16)

Both expressions Eq. (15) and Eq. (16) only depend on the five parameters h∗
0,

cos ι∗, ψ∗, α∗, and δ∗. The parameters ψ∗, α∗, and δ∗ only enter in the plus and

cross polarization terms F+
k and F×

k of the antenna pattern which depends on the

orientation sweep of the interferometer towards the pulsar and the polarization angle of

the gravitational wave that it emits.

We are left with the random variable ∆BIC|a∗ ∼ N(µa∗
, σ2

a∗

) that depends on

five parameters of the pulsar plus noise σ and observation period OP. If we assume

constant noise σ over time, we can combine h∗
0 and σ to a more handy SNR h∗0/σ

parameter. We define a new vector a• = (h∗0/σ, cos ι
∗, ψ∗, α∗, δ∗,OP)′ with observation

period OP = (t1, . . . , tn)
′. Explicitly, the difference in the BIC values with respect to

models M0 and M1, for arbitrary data sets, conditioned on a• follow the distribution

∆BIC|a• ∼ N(µBIC,a•
, σ2

BIC,a•

) with

µBIC,a•
=P−

(

h∗0
σ

)2([
1

4
(1 + cos2 ι∗)

]2
∑

k

(

F+
k

)2
+
[

1

2
cos ι∗

]2
∑

k

(

F×

k

)2
)

(17)

and

σ2
BIC,a•

= 4 (P − µBIC,a•
) . (18)

Using these information, Monte Carlo methods can be used to estimate Eq. (12).

As an example, we consider a data set that we can expect was taken over one

year at the three LIGO interferometers Hanford (4km, 2km) and Livingston (4km)

with three different noise levels at the three interferometers. A sensible heterodyning

frequency for the SN1987a remnant is f = 2fr = 935Hz [7]. For the purpose of

illustrating an example we will assume rough noise levels that are likely to be close
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to LIGO’s S5 values [20] (LIGO Document G060293-01) at the frequency in question

using the relation to the noise power spectral density as applied in [12]. Thus, as an

example, we choose the noise levels 8 × 10−24 (Hanford 4km), 1.5 × 10−23 (Hanford

2km), and 9 × 10−24 (Livingston 4km) at that frequency and an observation period

OP of one year of S5 data that would be heterodyned to a potential source at

α∗ = 5h 35m 28.03s and δ∗ = −69◦ 16′ 11.79′′ (SN1987a) with 525600 bins at one sample

per minute. The data are analyzed for each interferometer separately and also combined

by the sum of the log-likelihoods, as we assume independence. The parameter vector

encompasses a• =
(

h∗0/σ, cos ι
∗, ψ∗, α∗=5h 35m 28.03s, δ∗=−69◦ 16′ 11.79′′,OP

)

in which

the values of h∗0/σ and cos ι∗ and ψ∗ are unknown. In order to derive a probability

conditioned on h∗0/σ, we need to marginalize p(M1|a•) over cos ι∗ and ψ and obtain

p(M1|h
∗
0/σ, α

∗, δ∗,OP) =
∫

p(M1|a•)dpcos ι(cos ι
∗)dpψ(ψ∗).

Fig. 1 displays the probability of a signal detection as a function of the amplitude.

Two different prior probabilities on the signal existence are chosen. The natural choice

is p(M1) = 0.5 when there is no information available. However, we know that we

focus only a 1/60Hz band and the probability of an existence needs to be split on the

frequency bands in which we expect a signal. In addition, we do not know whether there

is a neutron star at all which lowers the probability further. For this reason, we chose a

rather arbitrary and extremely small probability of p(M1) = 10−9 in order to asses the

impact of that prior probability. We obtain the graph shown in Fig. 1.
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Figure 1. Signal detection probability

for the three different interferometers

and two different prior probabilities

for model M1 as a function of the

amplitude h∗

0
for one year of S5 data.

The curves of two prior probabilities

p(M1) = 0.5 (dashed lines) and

p(M1) = 10−9 (solid lines) are shown.

A larger amplitude h∗0 is required for a successful detection when we doubt the

existence of a signal. Hence, the data must speak more clearly for a signal in order to

overcome the low prior probability but since the observation period of one year is rather

long, the effect of the prior probability is fairly small.

All graphs compiled so far are showing a signal detection probability given a

particular scenario but the question we aim to answer in the next section is how strong

a signal still can be even if a signal can’t be seen.
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2.2. Performance of the Bayesian MCMC search in setting an upper limit

using S5 data

The upper limit estimate for a Bayesian MCMC search involves testing the hypothesis

h∗0 < UL vs. h∗0 ≥ UL under the assumption M0 that there is no signal in

the data. The derivation of the probability p(h∗
0 < UL|M0) will shed light on

this matter. We condition on noise, observation period, and location and after

integrating over the prior distributions of cos ι∗ and ψ∗, p(M0|h
∗
0,OP,σ, α∗, δ∗) :=

∫ ∫

p(M0|a•)dpcos ι(cos ι
∗)dpψ(ψ∗), we obtain

p(h∗0 < UL|M0,OP,σ, α∗, δ∗) =

∫ UL
0 p(M0|h

∗
0,OP,σ, α∗, δ∗)p(h∗0)dh

∗
0

∫

∞

0 p(M0|h∗0,OP,σ, α∗, δ∗)p(h∗0)dh
∗
0

.(19)

In order to derive Eq. (19) we need to find a suitable prior for p(h∗
0). One choice could

be to put a uniform prior on h0 with large boundary [0, 10−20]. The upper boundary of

the prior range has negligible impact on the results of Eq. (19) as long as this boundary

is significantly larger then the upper limit estimate. Fig. 2 displays Eq. (19) for two

different prior probabilities on whether we expect a signal at SN1987a.
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Figure 2. Estimated sensitivity of the Bayesian method described in this paper,

assuming one year of data with the noise level likely to be close to the LIGO

interferometers during their S5 run [20]. The model prior probabilities are p(M1) = 0.5

(left) and p(M1) = 10−9 (right). The prior for h0 is h0 ∼ Unif(0, 10−20). The assumed

noise levels are σH1
= 8 × 10−24, σH2

= 1.5 × 10−23, and σL1
= 9 × 10−24.

Since we focus our search on a possible pulsar in SN1987a, we can tailor a prior

distribution for h0 as we know the age of SN1987a and its distance. In [21] it is assumed

that a newly formed neutron star spins at high rate and gravitational radiation slows it

down. Two different prior scenarios are conceived here. According to [21], it is

h0(f) = r−1
√

(5GIzz)/(8c3τgw(f)), (20)

where τgw(f) is the time for the gravitational wave frequency to drift down to frequency

f from its original spin rate. In case of SN1987a it is 20 years. Here, G is Newton’s

constant, c the speed of light, r the distance to the neutron star, and Izz the principal

moment of inertia about the rotation axis. In order to derive a prior distribution for h0

we need to determine prior distributions for r and Izz. We assume the distance estimated

in [22] with 50.9 ± 1.8kpc with r ∼ N(50.9, 1.82)kpc for accounting the uncertainty in

the distance. For the moment of inertia, we choose a uniform prior within the range
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[1038, 3 × 1038] as applied in [23]. These considerations yield a prior for h0 as shown

later in Fig. 3.

A totally different approach for obtaining a prior distribution for h0 is by [13]

h0 = 4π2GIzzf
2ε/(c4r) (21)

for a general pulsar expected at SN1987a. Here, f is the pulsar’s rotation frequency,

and ε its ellipticity. We heterodyne to a frequency of f = 2fr = 935Hz, and assume the

gravitational wave frequency to have this value within a 1/60Hz frequency band for a

particular search. An uncertainty beyond this needs to be accounted for in the prior

p(M1) for the existence of the signal within the 1/60Hz band around f because the

signal is not seen outside that band after the heterodyning process.

We use the same uniform prior for Izz as above but we have to find a suitable prior

for the ellipticity. In [24], the ellipticity is assumed to have an exponential distribution

(maximum entropy prior) with cut-off at a maximum ellipticity threshold. Although in

[24] more pessimistic mean and maximum values are used, our choice is more optimistic

in order to account for the fact that we know that a possible neutron star in SN1987a

is very young. We choose a cut-off according to [21] at εmax ≈ 9 × 10−5 based on the

idea of a hybrid neutron star with a mixed quark and baryon core and a normal neutron

star in the outer part. For the mean of the exponential prior distribution we use an

optimistic choice of εmean = 5× 10−5. Both prior distributions for h0 as discussed above

are displayed in Fig. 3 along with their resulting upper limit estimates.
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Figure 3. Two different prior distributions (left column) for h0 for a possible neutron

star in SN1987a and the corresponding curves for the Bayesian MCMC upper limit

estimates (right column). The upper row corresponds to a prior subject to Eq. (20)

whereas the lower row is based on Eq. (21). For the model selection, the prior

probability is chosen p(M1) = 10−9.

The use of such priors changes the results for upper limit estimates compared to

those in Fig. 2 (which were based on a uniform prior). In essence, a uniform prior



A Bayesian method to set upper limits on the strength of a periodic gravitational wave10

on the amplitude recovers the detection ability of an interferometer. For example, in

case of combined data sets, an upper limit estimate based on a uniform prior requires

an amplitude of at least 6.2 × 10−25. The use of prior distributions based on Eq. (20)

and Eq. (21), however, only have 0.001% and 11.4% probability mass above that limit,

respectively. This inevitably yields values for the upper limit estimates dominated by

the prior of h0. This is obvious especially in case of the prior based on Eq. (20) and can

be seen in Fig. 3.

3. Conclusions

The Bayesian MCMC methods work well when the SNR is sufficiently large but they

struggle when the signal is too weak and the parameters that affect the phase evolution

are not known. The fact that we integrate over very long observation periods requires

an almost exact match of the phase evolution and almost all mass of the posterior

distribution is highly concentrated around one point in the parameter space when the

SNR is large. Finding this posterior peak with Bayesian MCMC methods is time

consuming but once found, the sampling process is easy and efficient. With decreasing

SNR, however, the sampler is forced to also sample from other areas of the parameter

space determined by the prior. This requires multiple retrievals of the narrow peak and

it requires extremely long runs to gain insight into the actual shape of the posterior

distribution. The sampling speed depends on observation length and number of Markov

chains involved when using parallel tempering. For one year of data, each single chain

samples about 150 000 samples per week and chain on a 2.8 GHz machine. At low SNRs

at least 10 chains are needed [19]. No sensible inference can be drawn from an MCMC

output if no frequency parameters can be retrieved. In those cases, the method derived

here, based on model comparison, provides an excellent means for estimating an upper

limit for the amplitude of a signal when using Bayesian MCMC methods, given the

observation period and noise. In practice this method could be used to estimate the

sensitivity of the Bayesian MCMC method on actual S5 data. For long observation

periods, the impact of prior information about the presence of a signal is rather small.

The influence of the amplitude’s prior only becomes significant when the sensitivity, with

respect to the obtained data, is too small for the expected amplitudes. Consequently,

when we expect amplitudes below the detection limit then the upper limit estimate is

determined mainly by the prior distribution of the amplitudes.

Acknowledgments

This work was supported by the Marsden Fund Council from Government funding administered

by the Royal Society of New Zealand (Grant UOA-204), and the National Science Foundation

grant PHY-0553422.



A Bayesian method to set upper limits on the strength of a periodic gravitational wave11

References

[1] C. Cutler. Physical Review D, 66(8):084025, 2002.

[2] L. Bildsten. Astrophysical Journal, 501(1):L89–L93, 1998.

[3] J. Hough et al. In Tsubono et al. [25], pages 175–182.

[4] B. C. Barish et al. In Tsubono et al. [25], pages 155–161.

[5] A. Brillet et al. In Tsubono et al. [25], pages 163–173.

[6] K. Tsubono et al. In Tsubono et al. [25], pages 183–191.

[7] J. Middleditch et al. New Astronomy, 5(5):243–283, 2000.

[8] N. Christensen, R. Meyer, and A. Libson. Classical and Quantum Gravity, 21:317–330, 2004.

[9] N. Christensen, R. J. Dupuis, G. Woan, and R. Meyer. Physical Review D, 70(2):022001–1, 2004.

[10] R. Umstätter, R. Meyer, R.J. Dupuis, J. Veitch, G. Woan, and N. Christensen. Classical and

Quantum Gravity, 21:S1655–S1665, 2004.

[11] R. Umstätter, R. Meyer, R.J. Dupuis, J. Veitch, G. Woan, and N. Christensen. In AIP Conference

Proceedings - Bayesian inference and Maximum Entropy Methods in Science and Engineering:

24th, volume 735, pages 336–343. American Institute of Physics, 2004. International Workshop

on Bayesian Inference and Maximum Entropy Methods in Science and Engineering.

[12] J. Veitch, R. Umstätter, R. Meyer, N. Christensen, and G. Woan. C.Q.G., 22:S995–S1001, 9 2005.

[13] B. Abbott et al. Physical Review D, 69(8):082004–1–082004–16, 2004.

[14] R. J. Dupuis and G. Woan. Physical Review D, 72(10):102002, November 2005.

[15] P. Jaranowski, A. Krolak, and B. F. Schutz. Physical Review D, 58(6):063001, 1998.

[16] J. H. Taylor. Reviews of Modern Physics, 66(3):711–719, 1994.

[17] R. E. Kass and A. E. Raftery. Journal of the American Stat. Association, 90(430):773–795, 1995.

[18] G. Casella and R. L. Berger. Statistical Inference. Duxbury, Pacific Grove, CA, 2nd edition, 2002.

[19] R. Umstätter. PhD thesis, University of Auckland, 2006.

[20] Ligo Document G060293-01, 2006.

[21] B. Abbott et al. preprint, May 2006. arXiv:gr-qc/0605028 v2.

[22] N. Panagia et al. In Bulletin of the American Astronomical Society, page 1243, December 1997.

[23] B. Abbott et al. preprint, February 2007. arXiv:gr-qc/0702039 v1.

[24] C. Polomba. Classical and Quantum Gravity, 22:S1027–S1039, 2005.

[25] K. Tsubono, M.-K. Fujimoto, and K. Kurodo, editors. Tokyo, 1997. Universal Academic Press.


