LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009	
PUM Driver Board Test Report			
R. M. Cutler, University of Birmingham			

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

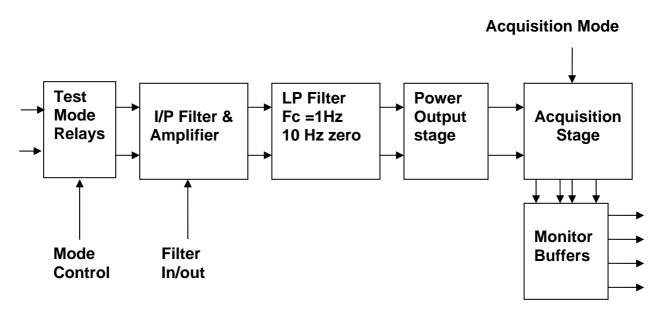
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit.....PUM20P
Test EngineerRMC
Date23/2/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

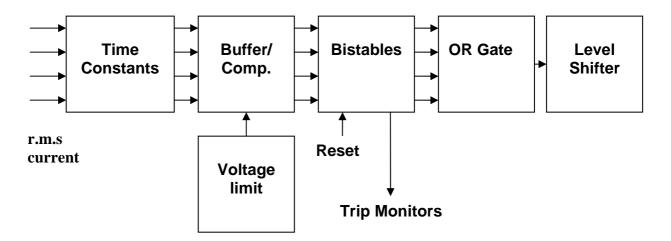
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM20P
Test Engineer	RMC
Date	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM20P
Test Engineer	RMC
Date	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link in place (J7/2 to 18)

Solder joint on C1, channel 4 reworked because of a dry joint.

Links:

Check that the link W4 is present on each channel.

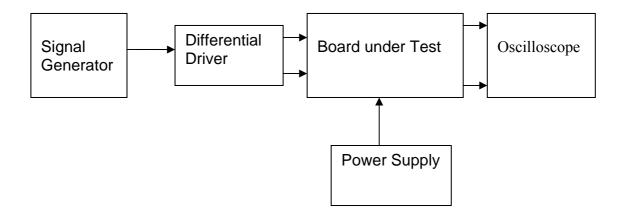
Connect the test lead to ground pins 1, 3, 5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM20P
Test Engineer	RMC
Date	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
5	0V			
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	
5	0V		
6	Imon1N	18	$\sqrt{}$
7	Imon2N	19	$\sqrt{}$
8	Imon3N	20	V
9	Imon4N	21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM20P
Test Engineer	RMC
Date	23/2/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.017	$\sqrt{}$	2mV
+15v TP4	-15.040		1.5 mV
-15v TP6	+14.876		7 mV

All Outputs smooth DC, no oscillation?	1	

Some pick up present

Record Power Supply Currents

Supply	Current
+16.5v	0.294 A
-16.5v	0.232 A

If the supplies are correct, proceed to the next test.

Unit	PUM20P
Test Engineer	RMC
Date	23/2/11

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicat	OK?	
	ON	OFF	
Ch1			$\sqrt{}$
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1			$\sqrt{}$
Ch2			$\sqrt{}$
Ch3			$\sqrt{}$
Ch4	V	V	V

ACQUISITION RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	$\sqrt{}$	V	V
Ch3			√
Ch4	1		

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	
Ch3	
Ch4	√

Unit	PUM20P
Test Engineer	RMC
Date	23/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.201	Pin 1 to Pin 2	1.201	$\sqrt{}$
2	1.201	Pin 5 to Pin 6	1.200	$\sqrt{}$
3	1.200	Pin 9 to Pin 10	1.200	$\sqrt{}$
4	1.201	Pin 13 to Pin 14	1.200	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.962	Pin 3 to Pin 4	0.962	
2	0.964	Pin 7 to Pin 8	0.964	
3	0.964	Pin 11 to Pin 12	0.964	√
4	0.967	Pin 15 to Pin 16	0.967	

Unit......PUM20P
Test EngineerRMC
Date23/2/11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.23		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.13		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.20		1.0 to 1.3v	0.4 to 2.4dB	
Ch4	1.27		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.53		0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.54		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch3	0.53		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch4	0.50		0.48 to 0.6v	-6.5 to -4.5dB	V

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.13		0.12 to 0.15v	-16.5 to -18.5dB	\checkmark
Ch2	0.13		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.13		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.13		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.42 to 0.52v	-5.5 to -7.5dB	√
Ch2	0.476		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.469		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.465		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.16		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch2	1.16		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.16		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.16		1.0 to 1.28v	0.34 to 2.34dB	

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.18		1.0 to 1.3v	0.5 to 2.5dB	
Ch2	1.18		1.0 to 1.3v	0.5 to 2.5dB	V
Ch3	1.18		1.0 to 1.3v	0.5 to 2.5dB	V
Ch4	1.18		1.0 to 1.3v	0.5 to 2.5dB	

Unit.....PUM20P
Test EngineerRMC
Date23/2/11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	5 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	40mV		33 to 45mV	-30dB to -27dB	
Ch2	40mV		33 to 45mV	-30dB to -27dB	
Ch3	39mV		33 to 45mV	-30dB to -27dB	
Ch4	39 mV		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.294		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.294		0.275 to 0.32V	-12dB to -9dB	√
Ch3	0.294		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.291		0.275 to 0.32V	-12dB to -9dB	√

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.471		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.473		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.472		0.46 to 0.49V	-7dB to -6dB	√

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.473		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.471		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	

Unit	PUM20P
Test Engineer	RMC
Date	

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f=1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	√	
Ch2	√	
Ch3	V	
Ch4	√	

Unit.....PUM20P
Test EngineerRMC
Date23/2/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$

Very slowly increase the voltage, and observe the level at which it trips.

|--|

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.2 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1.3 seconds

Unit	PUM20P
Test Engineer	RMC
Date	23/2/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.498	24.9 mA
Ch2	0.495	24.7 mA
Ch3	0.489	24.4 mA
Ch4	0.494	24.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.655	32.7 mA	>16mA	
Ch2	0.654	32.7 mA	>16mA	
Ch3	0.650	32.5 mA	>16mA	
Ch4	0.654	32.7 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	
Ch2	0.750	37.5 mA	>16mA	
Ch3	0.749	37.4 mA	>16mA	
Ch4	0.751	37.5 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	37.4 mA	>16mA	
Ch2	0.750	37.5 mA	>16mA	
Ch3	0.749	37.4 mA	>16mA	
Ch4	0.751	37.5 mA	>16mA	

Unit	PUM20P
Test Engineer	RMC
Date	23/2/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.195	9.75 mA
Ch2	0.196	9.80 mA
Ch3	0.190	9.50 mA
Ch4	0.191	9.55 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.422	21.1 mA	>16mA	$\sqrt{}$
Ch2	0.423	21.1 mA	>16mA	$\sqrt{}$
Ch3	0.416	20.8 mA	>16mA	$\sqrt{}$
Ch4	0.415	20.7 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.4 mA	>16mA	$\sqrt{}$
Ch2	0.730	36.5 mA	>16mA	
Ch3	0.728	36.4 mA	>16mA	
Ch4	0.729	36.4 mA	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	>16mA	$\sqrt{}$
Ch2	0.749	37.4 mA	>16mA	
Ch3	0.748	37.4 mA	>16mA	
Ch4	0.750	37.5 mA	>16mA	V

Unit	PUM20P
Test Engineer	RMC
Date	23/2/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.18	5.91	295 mA
Ch2	4.18	5.91	295 mA
Ch3	4.16	5.88	294 mA
Ch4	4.15	5.87	293 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.58	7.89	394 mA	>400mA	
Ch2	5.59	7.90	395 mA	>400mA	
Ch3	5.57	7.87	393 mA	>400mA	
Ch4	5.56	7.86	393 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	>400mA	
Ch2	6.70	9.47	473 mA	>400mA	
Ch3	6.67	9.43	471 mA	>400mA	
Ch4	6.68	9.33	466 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	>400mA	
Ch2	6.72	9.50	475 mA	>400mA	
Ch3	6.68	9.33	466 mA	>400mA	V
Ch4	6.71	9.49	474 mA	>400mA	V

Unit.....PUM20P
Test EngineerRMC
Date23/2/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable ?
-10v	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
-7v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\
-5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
-1v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\
0v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\
1v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\
5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
7v	V	V	V	V
10v	V	V	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009		
	PUM Driver Board Test Report			
R. M. Cutler, University of Birmingham				

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

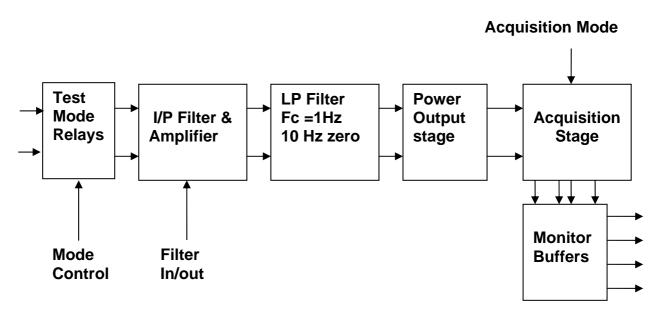
Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit	PUM2P	Serial No	
Test E	ngineerRMC		
Date	4/1/2010		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

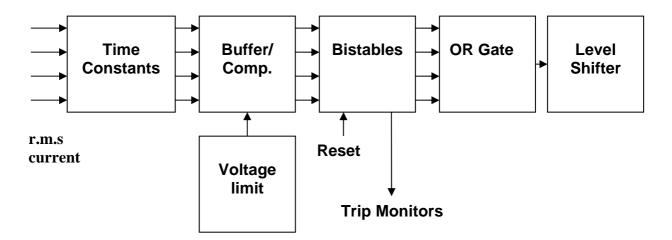
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

		Serial No
_	neerRMC	
Date	4/1/2010)
Signal ger Digital osc Analogue Agilent Dy	pplies (At least +/- nerator (capable o cilloscope oscilloscope ynamic Signal Ana e Balanced Driver	

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Scope	Tektronix	2225	
PSU	Farnell	LT30-1	
PSU	Farnell	L30-2	
Calibrator	Time	1044	

Unit	.PUM2P	Serial No
	neerRMC	
•	4/1/2010	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links:

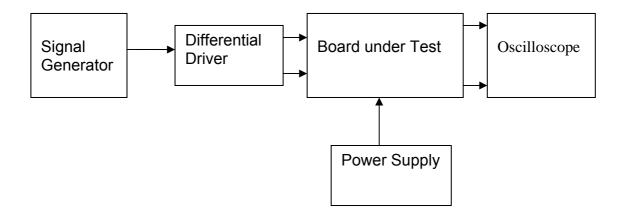
Check that the link W4 is present on each channel. $\sqrt{}$ Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header. $\sqrt{}$

UnitPUM2P	Serial No
Test Engineer	RMC
Date	4/1/2010

4. Continuity Checks

J2

PIN	SIGNA	٩L	DESCRIPTION	ON	To J1 PIN	OK?
1	PD1P		Photodiode /	4+	1	
2	PD2P		Photodiode I	B+	2	
3	PD3P		Photodiode (C+	3	V
4	PD4P		Photodiode D+ 4		V	
	5		0V			
6	PD1N		Photodiode /	4-	14	
7	PD2N		Photodiode B- 15			
8	PD3N		Photodiode C- 16			
9	PD4N		Photodiode I	D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
	5	0V		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	V
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	V
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM2P	Serial No	
	igineerRMC		
	4/1/2010		

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02v		1mV p/p
+15v TP4	-14.97v		1mV p/p
-15v TP6	-15.08v		5mV p/p

All Outputs smooth DC, no oscillation?	OK

Record Power Supply Currents

Supply	Current
+16.5v	0.49A
-16.5v	0.3A

If the supplies are correct, proceed to the next test.

UnitPUM2P	.Serial No
Test EngineerRMC	
Date4/1/2010	

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	1
Ch2	V	V	√
Ch3	V	V	√
Ch4	1	V	V

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	1	V
Ch2	V	1	V
Ch3	V	1	V
Ch4	V	1	V

ACQUISITION RELAYS

Channel	Indica	Indicator		
	ON	OFF		
Ch1	1	1	V	
Ch2	V	1	1	
Ch3	V	1	1	
Ch4	1	1	1	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	\checkmark
Ch2	\checkmark
Ch3	$\sqrt{}$
Ch4	$\sqrt{}$

UnitPUM2P	Serial No
Test EngineerRMC.	••
Date4/1/20	10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.2V	Pin 1 to Pin 2	1.2V	$\sqrt{}$
2	1.2V	Pin 5 to Pin 6	1.2V	$\sqrt{}$
3	1.2V	Pin 9 to Pin 10	1.2V	$\sqrt{}$
4	1.2V	Pin 13 to Pin 14	1.2V	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.186V	Pin 3 to Pin 4	1.186V	$\sqrt{}$
2	1.186V	Pin 7 to Pin 8	1.186V	V
3	1.186V	Pin 11 to Pin 12	1.186V	$\sqrt{}$
4	1.186V	Pin 15 to Pin 16	1.186V	

UnitPUM2P	Serial No	
Test EngineerRMC		
Date5/1/2010		

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	7.3dB	1.3dB	1.0 to 1.3v	0.4 to 2.4dB	$\sqrt{}$
Ch2	7.53dB	1.53dB	1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	7.46dB	1.46dB	1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	7.35dB	1.35dB	1.0 to 1.3v	0.4 to 2.4dB	√ √

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.38	-5.62	0.48 to 0.6v	-6.5 to -4.5dB	V
Ch2	0.58	-5.42	0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.47	-5.53	0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.39	-5.63	0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	-11.46	-17.46	0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	-11.47	-17.47	0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	-11.43	-17.43	0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	-11.43	-17.43	0.12 to 0.15v	-16.5 to -18.5dB	V

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	-0.4	-6.4	0.42 to 0.52v	-5.5 to -7.5dB	V
Ch2	-0.48	-6.48	0.42 to 0.52v	-5.5 to -7.5dB	√
Ch3	-0.33	-6.33	0.42 to 0.52v	-5.5 to -7.5dB	√
Ch4	-0.32	-6.32	0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	7.06	1.06	1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch2	7.3	1.3	1.0 to 1.28v	0.34 to 2.34dB	
Ch3	7.31	1.31	1.0 to 1.28v	0.34 to 2.34dB	
Ch4	7.31	1.31	1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Simulation		Pass/Fail
Ch1	7.5	1.5	1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch2	7.45	1.45	1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch3	7.49	1.49	1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch4	7.49	1.49	1.0 to 1.3v	0.5 to 2.5dB	$\sqrt{}$

UnitPUM2F	PSe	rial No
Test Engineer	RMC	
Date	5/1/2010	

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	-39.3	-45.3	0.3 to 0.4mV	-70dB to -65dB	
Ch2	-39.3	-45.3	0.3 to 0.4mV	-70dB to -65dB	
Ch3	38.3	-44.3	0.3 to 0.4mV	-70dB to -65dB	
Ch4	-39.4	-45.4	0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simi	Simulation	
Ch1	-37.6	-43.6	3.3 to 4.2mV	-50dB to -45dB	
Ch2	-37.6	-43.6	3.3 to 4.2mV	-50dB to -45dB	
Ch3	-37.6	-43.6	3.3 to 4.2mV	-50dB to -45dB	
Ch4	-37.5	-43.5	3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	Simulation	
Ch1	-22.4	-28.4	33 to 45mV	-30dB to -27dB	
Ch2	-22.4	-28.4	33 to 45mV	-30dB to -27dB	
Ch3	-22.4	-28.4	33 to 45mV	-30dB to -27dB	
Ch4	-22.3	-28.3	33 to 45mV	-30dB to -27dB	V

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	-4.63	-10.63	0.275 to 0.32V	-12dB to -9dB	
Ch2	-4.63	-10.63	0.275 to 0.32V	-12dB to -9dB	
Ch3	-4.65	-10.65	0.275 to 0.32V	-12dB to -9dB	
Ch4	-4.55	-10.55	0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	-0.52	-6.52	0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	-0.52	-6.52	0.46 to 0.49V	-7dB to -6dB	
Ch3	-0.59	-6.59	0.46 to 0.49V	-7dB to -6dB	
Ch4	-0.53	-6.53	0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$

	Output	-6dB	Simulation Pass/Fa		Pass/Fail
Ch1	-0.48	-6.48	0.47 to 0.49V	-7dB to -6dB	
Ch2	-0.49	-6.49	0.47 to 0.49V	-7dB to -6dB	
Ch3	-0.55	-6.55	0.47 to 0.49V	-7dB to -6dB	
Ch4	-0.49	-6.49	0.47 to 0.49V	-7dB to -6dB	

UnitF	PUM2P	Serial No
Test Engine	erRMC	
Date	5/1/2010	

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1		$\sqrt{}$
Ch2		$\sqrt{}$
Ch3	V	$\sqrt{}$
Ch4	V	$\sqrt{}$

UnitPU	M2P	Serial No	
Test Engineer			
Date	12/5/2010		

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.18v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.3 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip	?	1.4 seconds

UnitPUM2F	Serial No
Test Engineer	.RMC
Date	5/1/2010

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.234	11.7 mA
Ch2	0.235	11.75 mA
Ch3	0.234	11.7 mA
Ch4	0.234	11.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.40	20mA	16mA	\checkmark
Ch2	0.40	20mA	16mA	\checkmark
Ch3	0.40	20mA	16mA	
Ch4	0.40	20mA	16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.722	36.1 mA	16mA	
Ch2	0.723	36.1 mA	16mA	
Ch3	0.723	36.1 mA	16mA	V
Ch4	0.725	36.25 mA	16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.754	37.7 mA	16mA	$\sqrt{}$
Ch2	0.754	37.7 mA	16mA	$\sqrt{}$
Ch3	0.754	37.7 mA	16mA	$\sqrt{}$
Ch4	0.756	37.8 mA	16mA	

UnitPUM2	PSerial No	
Test Engineer	RMC	
Date	.5/1/2010	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.089	4.45 mA
Ch2	0.088	4.4 mA
Ch3	0.090	4.5 mA
Ch4	0.090	4.5 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.257	12.85	16mA	$\sqrt{}$
Ch2	0.257	12.57	16mA	$\sqrt{}$
Ch3	0.260	13.0	16mA	$\sqrt{}$
Ch4	0.261	13.0	16mA	

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.698	34.9 mA	16mA	
Ch2	0.702	35.1 mA	16mA	
Ch3	0.702	35.1 mA	16mA	
Ch4	0.704	35.2 mA	16mA	$\sqrt{}$

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	37.7 mA	16mA	
Ch2	0.753	37.6 mA	16mA	
Ch3	0.753	37.6 mA	16mA	V
Ch4	0.755	37.7 mA	16mA	V

UnitPUN	<mark>/12</mark> Р	Serial No	
Test Engineer	RMC		
Date	5/1/2010		

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.13	5.8	292 mA
Ch2	4.15	5.8	293 mA
Ch3	4.14	5.8	292 mA
Ch4	4.19	5.9	296 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.45	7.7	385 mA	400mA	
Ch2	5.47	7.7	386 mA	400mA	
Ch3	5.39	7.6	381 mA	400mA	
Ch4	5.53	7.8	391 mA	400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.6	7.9	396 mA	400mA	
Ch2	5.57	7.8	393 mA	400mA	
Ch3	5.55	7.8	392 mA	400mA	
Ch4	5.63	7.9	398 mA	400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.66	8.00	400 mA	400mA	
Ch2	5.77	8.16	400 mA	400mA	
Ch3	5.73	8.10	405 mA	400mA	
Ch4	5.74	8.11	405 mA	400mA	

Unit	PUM2P	Serial No
	jineerRMC	
Date	13/1/2010	

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable	Ch3 o/p	Ch3 stable	Ch4 o/p	Ch4 stable
-10v	-12.01	V	-12.00	V	-12.00	V	-12.008	V
-7v	-8.40	V	-8.40	V	-8.41	V	-8.406	V
-5v	-6.00		-6.10		-6.00		-6.004	$\sqrt{}$
-1v	-1.19		-1.19	$\sqrt{}$	-1.200		-1.196	$\sqrt{}$
0v	0.00	V	-0.00	V	0.003	V	0.000	V
1v	1.19	V	1.19	V	1.200	V	1.198	V
5v	6.00		5.99	V	6.00	V	6.004	V
7v	8.40		8.39		8.41		8.405	
10v	12.00	V	12.00	V	12.00	1	12.007	V

LIGO Laboratory / LIGO Scientific Collaboration

PUM Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

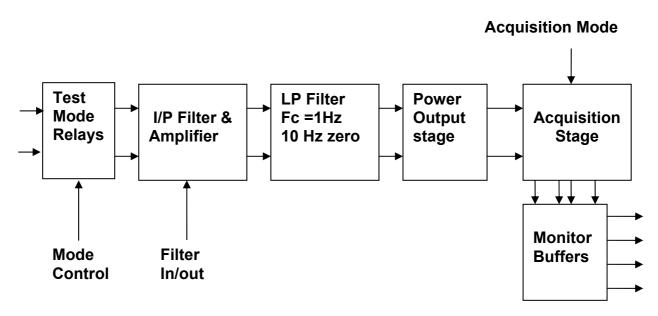
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers public/ALUK Homepage.htm


Unit.....PUM3P
Test EngineerRMC
Date18/1/10

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

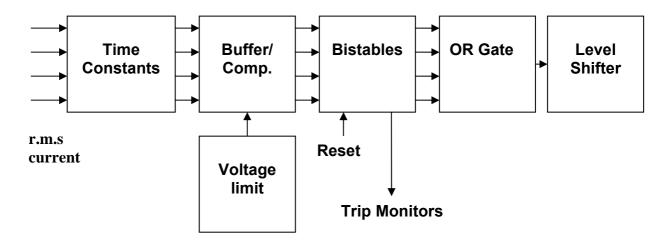
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM3P
Test Engineer	RMC
Date	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Scope	Tektronix	2225	
PSU	Farnell	LT30-1	
PSU	Farnell	L30-2	
Calibrator	Time	1044	

Unit.....PUM3P
Test EngineerRMC
Date18/1/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Small mark on C2

Links:

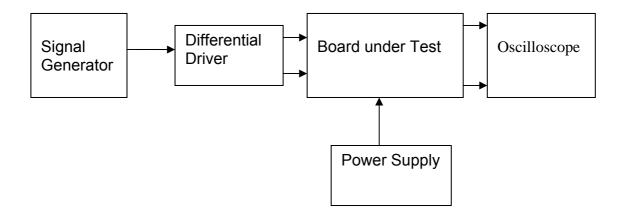
Check that the link W4 is present on each channel. $\sqrt{}$

Unit	PUM3P
Test Engineer	RMC
Date	18/1/10

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	√		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	
3	Imon3P		7	
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	lmon1N		18	
7	Imon2N		19	
8	Imon3N		20	√
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	V
11	V- (TP2)	-17v Supply	V
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		√
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM3P
Test Engineer	RMC
Date	18/1/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04	$\sqrt{}$	5 mV pk/pk
+15v TP4	14.95	$\sqrt{}$	5mV
-15v TP6	-14.95	V	25 mV

All Outputs smooth DC, no oscillation?	Occasional hf
	interference spike -
	probably pick up.

Record Power Supply Currents

Supply	Current
+16.5v	0.3A
-16.5v	0.25A

If the supplies are correct, proceed to the next test.

Unit.....PUM3P
Test EngineerRMC
Date18/1/10

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1			
Ch2	$\sqrt{}$		1
Ch3	1	1	1
Ch4	1	1	

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{}$	V	V
Ch2	$\sqrt{}$	V	V
Ch3	$\sqrt{}$	V	V
Ch4	V	V	V

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	1	1	V
Ch2	1	1	V
Ch3	1	1	V
Ch4			

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator	
	ON?	
Ch1	√	
Ch2	√	
Ch3	√	
Ch4		

Unit	PUM3P
Test Engineer	RMC
Date	18/1/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.2v	Pin 1 to Pin 2	1.2v	\checkmark
2	1.2v	Pin 5 to Pin 6	1.2v	\checkmark
3	1.2v	Pin 9 to Pin 10	1.2v	V
4	1.2v	Pin 13 to Pin 14	1.2v	V

8.2 Current monitors

Ch.	Output between R29 and R130	petween R29		Pass/Fail: Equal? (+/- 0.1v)
1	1.188v	Pin 3 to Pin 4	1.188v	$\sqrt{}$
2	1.188v	Pin 7 to Pin 8	1.188v	$\sqrt{}$
3	1.188v	Pin 11 to Pin 12	1.188v	$\sqrt{}$
4	1.188v	Pin 15 to Pin 16	1.188v	$\sqrt{}$

Unit.....PUM3P
Test EngineerRMC
Date18/1/10

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2v		1.0 to 1.3v	0.4 to 2.4dB	V
Ch2	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.53v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.53v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.53v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.53v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.47v		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.47v		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch3	0.47v		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch4	0.47v		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.168v		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.169v		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.169v		1.0 to 1.28v	0.34 to 2.34dB	√
Ch4	1.169v		1.0 to 1.28v	0.34 to 2.34dB	√

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.193v		1.0 to 1.3v	0.5 to 2.5dB	V
Ch2	1.194v		1.0 to 1.3v	0.5 to 2.5dB	√
Ch3	1.194v		1.0 to 1.3v	0.5 to 2.5dB	√
Ch4	1.193v		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM3P
Test EngineerRMC
Date18/1/10

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6.0 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	6.0 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	6.0 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	6.0 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6.7 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6.7 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.7 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.7 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	27 mV		33 to 45mV	-30dB to -27dB	
Ch2	27 mV		33 to 45mV	-30dB to -27dB	
Ch3	29 mV		33 to 45mV	-30dB to -27dB	
Ch4	30 mV		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch2	0.292		0.275 to 0.32V	-12dB to -9dB	V
Ch3	0.291		0.275 to 0.32V	-12dB to -9dB	V
Ch4	0.289		0.275 to 0.32V	-12dB to -9dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.466		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.472		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.471		0.46 to 0.49V	-7dB to -6dB	

	Output	-6dB	Simi	Simulation	
Ch1	0.468		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.474		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch3	0.473		0.47 to 0.49V	-7dB to -6dB	
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	√

Unit	PUM3P
Test Engineer	RMC
Date	18/1/10

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1		V	
Ch2	√	V	
Ch3	√	V	
Ch4	√	√	

Unit	PUM3P
Test Engineer	RMC
Date	18/1/10

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.195v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.5 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1.5 seconds

Unit	PUM3P
Test Engineer	RMC
Date	19/1/10

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.236	11.8
Ch2	0.234	11.7
Ch3	0.234	11.7
Ch4	0.235	11.7

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.405	20.25	>16mA	
Ch2	0.403	20.15	>16mA	
Ch3	0.403	20.15	>16mA	√
Ch4	0.404	20.2	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.724	36.2	>16mA	
Ch2	0.724	36.2	>16mA	
Ch3	0.724	36.2	>16mA	
Ch4	0.725	36.2	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.755	37.75	>16mA	√
Ch2	0.755	37.75	>16mA	√
Ch3	0.755	37.75	>16mA	√
Ch4	0.756	37.8	>16mA	√

Unit	PUM3P
Test Engineer	RMC
Date	19/1/10

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.09	4.5 mA
Ch2	0.09	4.5 mA
Ch3	0.09	4.5 mA
Ch4	0.089	4.45 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.259	12.95 mA	>16mA	
Ch2	0.259	12.95 mA	>16mA	
Ch3	0.259	12.95 mA	>16mA	
Ch4	0.258	12.90 mA	>16mA	

1 KHz

· · · · · ·					
	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail	
Ch1	0.703	35.15 mA	>16mA	V	
Ch2	0.703	35.15 mA	>16mA	V	
Ch3	0.703	35.15 mA	>16mA	V	
Ch4	0.704	35.20 mA	>16mA	√	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.754	37.7 mA	>16mA	$\sqrt{}$
Ch2	0.754	37.7 mA	>16mA	$\sqrt{}$
Ch3	0.754	37.7 mA	>16mA	$\sqrt{}$
Ch4	0.755	37.75 mA	>16mA	\checkmark

Unit	PUM3P
Test Engineer	RMC
Date	19/1/10

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.163	5.887	294 mA
Ch2	4.165	5.890	294 mA
Ch3	4.174	5.902	295 mA
Ch4	4.192	5.928	296 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.36	7.58	379 mA	>400mA	
Ch2	5.48	7.75	387 mA	>400mA	
Ch3	5.50	7.79	389 mA	>400mA	
Ch4	5.53	7.82	391 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.52	7.806	390 mA	>400mA	
Ch2	5.64	7.976	398 mA	>400mA	
Ch3	5.60	7.917	396 mA	>400mA	
Ch4	5.63	7.962	398 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.61	7.934	396.6 mA	>400mA	
Ch2	5.59	7.805	395.3 mA	>400mA	
Ch3	5.60	7.919	395.9 mA	>400mA	
Ch4	5.58	7.891	394.5 mA	>400mA	

Unit	PUM3P
Test Engineer	RMC
Date	19/1/10

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v	$\sqrt{}$	V	$\sqrt{}$	1
-7v	$\sqrt{}$	V	V	√
-5v	$\sqrt{}$	V	V	√
-1v	$\sqrt{}$	V	V	√
0v	$\sqrt{}$	V	V	√
1v	$\sqrt{}$	V	V	√
5v	$\sqrt{}$	V	V	V
7v	√	1	V	1
10v	$\sqrt{}$	V	V	√

LIGO Laboratory / LIGO Scientific Collaboration

PUM Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

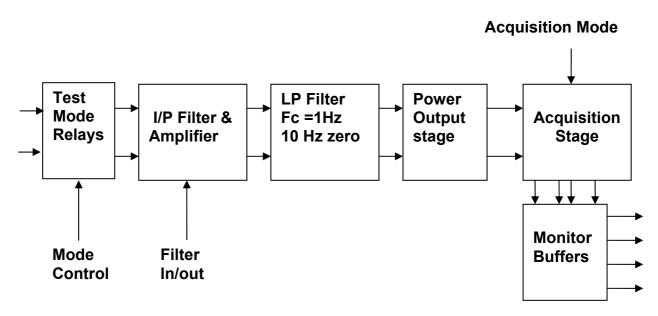
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers public/ALUK Homepage.htm


Unit.....PUM4P
Test EngineerRMC
Date6/4/10

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

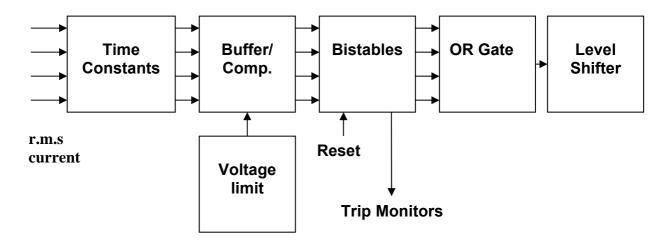
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM4P
Test Engineer	RMC
Date	6/4/10

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Scope	Tektronix	2225	
PSU	Farnell	LT30-1	
PSU	Farnell	L30-2	
Calibrator	Time	1044	

Unit.....PUM4P
Test EngineerRMC
Date6/5/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links:

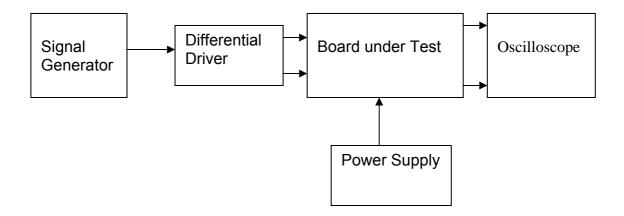
Check that the link W4 is present on each channel. $\sqrt{}$

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	√		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	√
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	V
9	Imon4N	21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04	$\sqrt{}$	1 mV pk/pk
+15v TP4	14.95	$\sqrt{}$	1 mV
-15v TP6	-14.95	$\sqrt{}$	5 mV

All Outputs smooth DC, no oscillation?	1	

Record Power Supply Currents

Supply	Current
+16.5v	0.55A
-16.5v	0.29A

If the supplies are correct, proceed to the next test.

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	√	$\sqrt{}$	$\sqrt{}$
Ch2	√	$\sqrt{}$	$\sqrt{}$
Ch3	√	$\sqrt{}$	$\sqrt{}$
Ch4	√		V

TEST RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1		1	1
Ch2		1	1
Ch3		1	1
Ch4		1	1

ACQUISITION RELAYS

Channel	Indicator		OK?	
	ON	OFF		
Ch1	1	1	1	
Ch2	V	V	V	
Ch3	V	V	V	
Ch4	1	1	√	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	\checkmark
Ch2	\checkmark
Ch3	$\sqrt{}$
Ch4	$\sqrt{}$

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.2v	Pin 1 to Pin 2	1.2v	$\sqrt{}$
2	1.2v	Pin 5 to Pin 6	1.2v	$\sqrt{}$
3	1.2v	Pin 9 to Pin 10	1.2v	$\sqrt{}$
4	1.2v	Pin 13 to Pin 14	1.2v	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.985v	Pin 3 to Pin 4	0.985	$\sqrt{}$
2	0.985v	Pin 7 to Pin 8	0.984	$\sqrt{}$
3	0.985v	Pin 11 to Pin 12	0.985	V
4	0.987v	Pin 15 to Pin 16	0.985	$\sqrt{}$

Unit.....PUM4P
Test EngineerRMC
Date6/5/10

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.1v		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.13v		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.468v		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.462v		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.460v		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.472v		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	1.13v		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch2	1.12v		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch3	1.12v		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.12v		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Si	mulation	Pass/Fail
Ch1	1.193v		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.194v		1.0 to 1.3v	0.5 to 2.5dB	√
Ch3	1.194v		1.0 to 1.3v	0.5 to 2.5dB	√
Ch4	1.193v		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM4P
Test EngineerRMC
Date6/5/10

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simi	ulation	Pass/Fail
Ch1	30 mV		33 to 45mV	-30dB to -27dB	
Ch2	28 mV		33 to 45mV	-30dB to -27dB	
Ch3	28 mV		33 to 45mV	-30dB to -27dB	
Ch4	28 mV		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.292		0.275 to 0.32V	-12dB to -9dB	√
Ch2	0.292		0.275 to 0.32V	-12dB to -9dB	√
Ch3	0.291		0.275 to 0.32V	-12dB to -9dB	√
Ch4	0.291		0.275 to 0.32V	-12dB to -9dB	√

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.466		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.472		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.471		0.46 to 0.49V	-7dB to -6dB	

	Output	-6dB	Simi	ulation	Pass/Fail
Ch1	0.477		0.47 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.476		0.47 to 0.49V	-7dB to -6dB	
Ch3	0.476		0.47 to 0.49V	-7dB to -6dB	
Ch4	0.477		0.47 to 0.49V	-7dB to -6dB	√

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1		√	
Ch2	V	√	
Ch3	V	√	
Ch4	√	√	

Power supply current limited operated, so changed to the 2Amp supply.

Unit	PUM4P
Test Engineer	RMC
Date	

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$
•	

Very slowly increase the voltage, and observe the level at which it trips.

|--|

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.5 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1.2 seconds

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.23	11.5 mA
Ch2	0.23	11.5 mA
Ch3	0.23	11.5 mA
Ch4	0.23	11.5 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.40	20 mA	>16mA	
Ch2	0.40	20 mA	>16mA	
Ch3	0.40	20 mA	>16mA	V
Ch4	0.40	20 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.72	36 mA	>16mA	
Ch2	0.72	36 mA	>16mA	
Ch3	0.72	36 mA	>16mA	
Ch4	0.72	36 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.753	37.6 mA	>16mA	
Ch2	0.753	37.6 mA	>16mA	
Ch3	0.753	37.6 mA	>16mA	
Ch4	0.753	37.6 mA	>16mA	

Unit	PUM4P
Test Engineer	RMC
Date	6/5/10

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.09	4.5 mA
Ch2	0.065	3.25 mA
Ch3	0.088	4.4 mA
Ch4	0.09	4.5 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.258	12.9 mA	>16mA	
Ch2	0.257	12.8 mA	>16mA	
Ch3	0.255	12.7 mA	>16mA	
Ch4	0.262	13.1 mA	>16mA	

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.7011	35 mA	>16mA	√
Ch2	0.7013	35 mA	>16mA	√
Ch3	0.7001	35 mA	>16mA	√
Ch4	0.7022	35 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751	37.5 mA	>16mA	
Ch2	0.751	37.5 mA	>16mA	
Ch3	0.751	37.5 mA	>16mA	
Ch4	0.751	37.5 mA	>16mA	√

Unit	PUM4P
Test Engineer	RMC
Date	12/5/10

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12	5.826	291 mA
Ch2	4.12	5.826	291 mA
Ch3	4.10	5.798	289 mA
Ch4	4.10	5.798	289 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.62	7.947	397 mA	>400mA	
Ch2	5.62	7.947	397 mA	>400mA	
Ch3	5.616	7.942	397 mA	>400mA	
Ch4	5.62	7.947	397 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.68	9.446	472.2 mA	>400mA	
Ch2	6.68	9.446	472.2 mA	>400mA	
Ch3	6.68	9.446	472.2 mA	>400mA	
Ch4	6.70	9.475	473.7 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.843	9.677	483.8 mA	>400mA	$\sqrt{}$
Ch2	6.858	9.698	484.9 mA	>400mA	
Ch3	6.83	9.659	482.9 mA	>400mA	√
Ch4	6.85	9.687	484.3 mA	>400mA	√

Unit	PUM4P
Test Engineer	RMC
Date	13/5/10

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v	V	√	√	$\sqrt{}$
-7v	1	1	1	V
-5v	1			
-1v	1			
0v	1			
1v	$\sqrt{}$			
5v	\checkmark			
7v	1			
10v	1	1	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

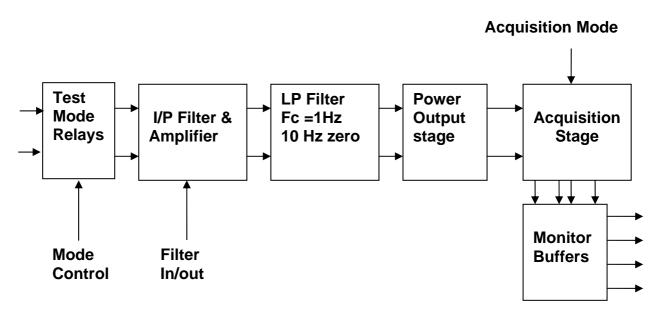
Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- **12.3 Acquisition Mode**
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

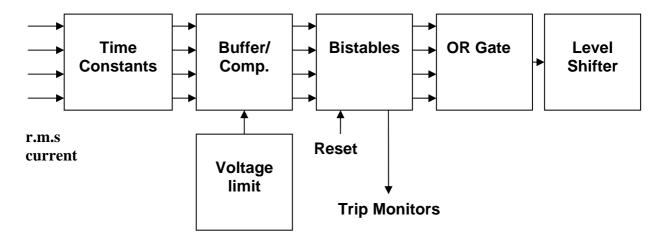
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM5	Serial No	
Test Engineer	RMC		
Date	2/12/11		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit	PUM5P	Serial No	
Test Engineer			
Date	2/12/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

IC10 and IC11: AD797s replaced by AD8671

Ch 3 IC11 pin 7 track repaired.

RESET PULSE MOD

J7/2 Connected to J7/18 on 10/1/11

Links:

Check that the link W4 is present on each channel.

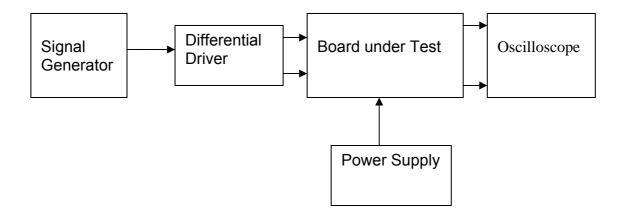
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM5P	Serial No	
Test Engineer			
Date	2/12/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	V
9	Imon4N	21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.0v	$\sqrt{}$	1mV pk/pk
+15v TP4	14.9v	$\sqrt{}$	1.2 mV pk/pk
-15v TP6	-15.5v	V	5mV pk/pk

All Outputs smooth DC, no oscillation?	٦	

Record Power Supply Currents

Supply	Current
+16.5v	0.34 A
-16.5v	0.24 A

If the supplies are correct, proceed to the next test.

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

TEST RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1			1
Ch2			1
Ch3			V
Ch4			1

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1		V	V
Ch2		V	V
Ch3		1	1
Ch4	1	1	1

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	V
Ch3	V
Ch4	V

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.0049	Pin 1 to Pin 2	1.0044	√ ·
2	1.0048	Pin 5 to Pin 6	1.0043	V
3	1.0051	Pin 9 to Pin 10	1.0048	V
4	1.0048	Pin 13 to Pin 14	1.0047	V

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.8065	Pin 3 to Pin 4	0.8064	$\sqrt{}$
2	0.8072	Pin 7 to Pin 8	0.8071	$\sqrt{}$
3	0.8101	Pin 11 to Pin 12	0.8101	
4	0.8073	Pin 15 to Pin 16	0.8075	√

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.3v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch2	1.3v		1.0 to 1.3v	0.4 to 2.4dB	1
Ch3	1.3v		1.0 to 1.3v	0.4 to 2.4dB	1
Ch4	1.3v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.55v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.135v		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.135v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.14v		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.135v		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.48v		0.42 to 0.52v	-5.5 to -7.5dB	
Ch2	0.49v		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.49v		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.49v		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2v		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch2	1.18v		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.2v		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.2v		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2v		1.0 to 1.3v	0.5 to 2.5dB	$\sqrt{}$
Ch2	1.2v		1.0 to 1.3v	0.5 to 2.5dB	V
Ch3	1.21v		1.0 to 1.3v	0.5 to 2.5dB	V
Ch4	1.21v		1.0 to 1.3v	0.5 to 2.5dB	$\sqrt{}$

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	6mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	6mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	6mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	40mV		33 to 45mV	-30dB to -27dB	$\sqrt{}$
Ch2	40mV		33 to 45mV	-30dB to -27dB	
Ch3	40mV		33 to 45mV	-30dB to -27dB	
Ch4	40mV		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.25v		0.275 to 0.32V	-12dB to -9dB	
Ch2	0.25v		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.25v		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.25v		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.49v		0.46 to 0.49V	-7dB to -6dB	√
Ch2	0,49v		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch3	0.49v		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch4	0.49v		0.46 to 0.49V	-7dB to -6dB	

	Output	-6dB	Simi	ulation	Pass/Fail
Ch1	0.49v		0.47 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0,49v		0.47 to 0.49V	-7dB to -6dB	
Ch3	0.49v		0.47 to 0.49V	-7dB to -6dB	
Ch4	0.49v		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1		V	
Ch2	√	V	
Ch3	√	V	
Ch4	√	√	

Unit	PUM5P	Serial No	
Test Engineer			
Date	2/12/10		

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	OK
•	

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.18v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 2.75 seconds

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip)?	1.5 seconds

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.488	24.4mA
Ch2	0.492v	24.6mA
Ch3	0.499v	24.9mA
Ch4	0.49v	24.5mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.647v	32.3 mA	>16mA	
Ch2	0.650v	32.5 mA	>16mA	
Ch3	0.654v	32.7mA	>16mA	√
Ch4	0.648v	32.4mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745v	37.25mA	>16mA	
Ch2	0.747v	37.35mA	>16mA	
Ch3	0.746v	37.3mA	>16mA	
Ch4	0.744v	37.2mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745v	37.25mA	>16mA	
Ch2	0.747v	37.35mA	>16mA	
Ch3	0.745v	37.25mA	>16mA	
Ch4	0.744v	37.2mA	>16mA	

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo		
Ch1 0.190v		9.5 mA	
Ch2	0.193v	9.65 mA	
Ch3	0.200v 10 mA		
Ch4	0.192v	9.6 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.415v	20.75 mA	>16mA	√
Ch2	0.418v	20.9 mA	>16mA	\checkmark
Ch3	0.427v	21.35 mA	>16mA	\checkmark
Ch4	0.416v	20.8 mA	>16mA	$\sqrt{}$

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.724v	36.2 mA	>16mA	
Ch2	0.726v	36.3 mA	>16mA	
Ch3	0.726v	36.3 mA	>16mA	
Ch4	0.723v	36.15 mA	>16mA	\checkmark

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744v	37.2 mA	>16mA	$\sqrt{}$
Ch2	0.726v	36.3 mA	>16mA	$\sqrt{}$
Ch3	0.745v	37.25 mA	>16mA	$\sqrt{}$
Ch4	0.724v	36.2 mA	>16mA	√

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.15v	5.86	293 mA
Ch2	4.14v	5.85	292 mA
Ch3	4.10v	5.79	289 mA
Ch4	4.11v	5.81	290 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.53v	7.82	391 mA	>400mA	
Ch2	5.51v	7.79	389 mA	>400mA	
Ch3	5.50v	7.78	389 mA	>400mA	
Ch4	5.49v	7.76	388 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.6v	9.33	466 mA	>400mA	
Ch2	6.6v	9.33	466 mA	>400mA	
Ch3	6.6v	9.33	466 mA	>400mA	
Ch4	6.57v	9.29	464 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.64v	9.39	469 mA	>400mA	$\sqrt{}$
Ch2	6.62v	9.36	468 mA	>400mA	
Ch3	6.62v	9.36	468 mA	>400mA	√
Ch4	6.61v	9.34	467 mA	>400mA	√

Unit	PUM5P	Serial No	
Test Engineer	RMC		
Date	2/12/10		

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable ?
-10v	V	√	√	V
-7v	1			V
-5v	1			V
-1v				
0v				
1v				
5v	$\sqrt{}$			V
7v	1	√	V	V
10v	1	V	1	√

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

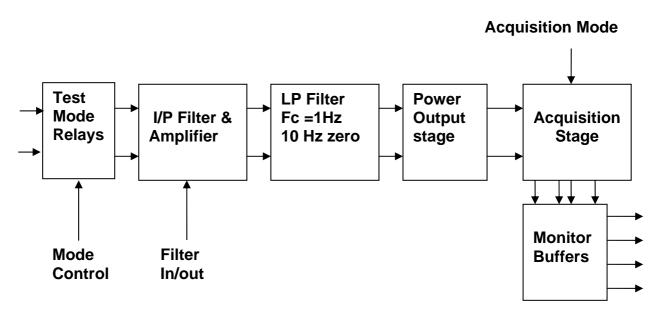
Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

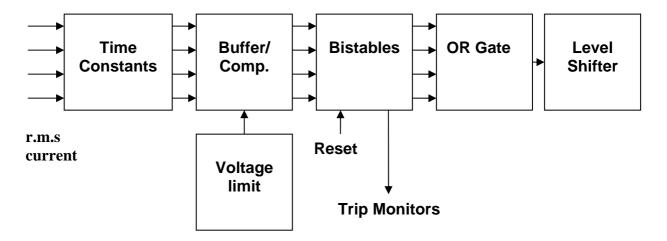
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Test Engine	PUM6 P eerRMC 9/12/10	Serial No	
	olies (At least +/- 20 [.] erator (capable of de	. ,	x, 0.1Hz to 10 KHz))
Analogue o	•	er (or similar)	

Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit

Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

IC10 and IC11 Changed to AD8671 on all channels

RESET PULSE MOD

J7/2 Connected to J7/18 on 10/1/11

Links:

Check that the link W4 is present on each channel.

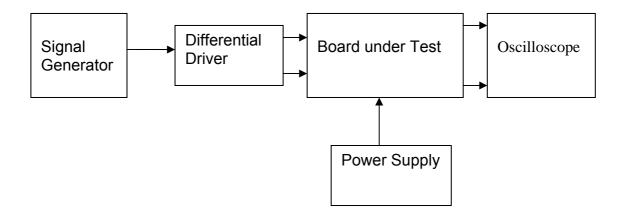
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V	√		
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	√


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	√		
6	Imon1N		18	\checkmark
7	Imon2N		19	√
8	Imon3N		20	$\sqrt{}$
9	Imon4N		21	\checkmark

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		\checkmark
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.048v	$\sqrt{}$	1.2 mV pk/pk
+15v TP4	+14.9v	$\sqrt{}$	2mV pk/pk
-15v TP6	-15.15v	$\sqrt{}$	7mV pk/pk

All Outputs smooth DC, no oscillation?	1	

Record Power Supply Currents

Supply	Current
+16.5v	0.505A
-16.5v	0.317A

If the supplies are correct, proceed to the next test.

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	1
Ch2	V	V	√
Ch3	V	V	√
Ch4	1	V	V

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	$\sqrt{}$
Ch2	V	V	$\sqrt{}$
Ch3	V	V	$\sqrt{}$
Ch4	V	V	$\sqrt{}$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	1	V
Ch2	1	V	V
Ch3	1	V	V
Ch4	1	1	1

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	\checkmark
Ch2	\checkmark
Ch3	$\sqrt{}$
Ch4	$\sqrt{}$

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.204v	Pin 1 to Pin 2	1.204v	$\sqrt{}$
2	1.204v	Pin 5 to Pin 6	1.204v	$\sqrt{}$
3	1.204v	Pin 9 to Pin 10	1.204v	$\sqrt{}$
4	1.204v	Pin 13 to Pin 14	1.204v	V

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.967v	Pin 3 to Pin 4	0.966v	$\sqrt{}$
2	0.967v	Pin 7 to Pin 8	0.967v	$\sqrt{}$
3	0.969v	Pin 11 to Pin 12	0.968v	
4	0.963v	Pin 15 to Pin 16	0.963v	

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.15v		1.0 to 1.3v	0.4 to 2.4dB	\checkmark
Ch2	1.15v		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.15v		1.0 to 1.3v	0.4 to 2.4dB	
Ch4	1.15v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.51v		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$
Ch2	0.51v		0.48 to 0.6v	-6.5 to -4.5dB	
Ch3	0.51v		0.48 to 0.6v	-6.5 to -4.5dB	
Ch4	0.51v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.133		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.4753		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.4735		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.4742		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.4697		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.167		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.167		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.167		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.166		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.1938		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.1937		1.0 to 1.3v	0.5 to 2.5dB	√
Ch3	1.1938		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.1936		1.0 to 1.3v	0.5 to 2.5dB	√

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	5mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	5mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	5mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	37mV		33 to 45mV	-30dB to -27dB	$\sqrt{}$
Ch2	36mV		33 to 45mV	-30dB to -27dB	
Ch3	35mV		33 to 45mV	-30dB to -27dB	
Ch4	37mV		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.293		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.294		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.292		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.296		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.4717		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.4729		0.46 to 0.49V	-7dB to -6dB	√
Ch3	0.4718		0.46 to 0.49V	-7dB to -6dB	√
Ch4	0.4722		0.46 to 0.49V	-7dB to -6dB	√

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.4729		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.4742		0.47 to 0.49V	-7dB to -6dB	
Ch3	0.4730		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.4736		0.47 to 0.49V	-7dB to -6dB	√

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	$\sqrt{}$	V	
Ch2	√ ·	V	
Ch3	√ ·	V	
Ch4	V	V	

Unit	.PUM6 P	Serial No	
Test Engineer	RMC		
Date			

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	Yes
•	

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.1722v	
-----------------------	--

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

|--|

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to tri	p?	1.3 seconds

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.490	24.5 mA
Ch2	0.495	24.75 mA
Ch3	0.494	24.7 mA
Ch4	0.489	24.4 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.649	32.45 mA	>16mA	
Ch2	0.653	32.65 mA	>16mA	
Ch3	0.651	32.55 mA	>16mA	
Ch4	0.648	32.4 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.747	37.35 mA	>16mA	√
Ch2	0.748	37.3 mA	>16mA	√
Ch3	0.746	37.3 mA	>16mA	√
Ch4	0.744	37.2 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.715	35.75 mA	>16mA	√
Ch2	0.747	37.35 mA	>16mA	√
Ch3	0.745	37.25 mA	>16mA	
Ch4	0.743	37.15 mA	>16mA	

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.193	9.65 mA
Ch2	0.195	9.75 mA
Ch3	0.194	9.70 mA
Ch4	0.192	9.60 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.419	20.95 mA	>16mA	
Ch2	0.420	21.00 mA	>16mA	
Ch3	0.419	20.95 mA	>16mA	
Ch4	0.414	20.70 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.726	36.30 mA	>16mA	
Ch2	0.726	36.30 mA	>16mA	
Ch3	0.725	35.25 mA	>16mA	
Ch4	0.723	36.15 mA	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.746	37.30 mA	>16mA	
Ch2	0.746	37.30 mA	>16mA	
Ch3	0.745	37.25 mA	>16mA	
Ch4	0.743	37.15 mA	>16mA	√

Unit	PUM6 P	Serial No	
Test Engineer .	RMC		
Date	9/12/10		

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.13	5.84	292 mA
Ch2	4.13	5.84	292 mA
Ch3	4.09	5.78	289 mA
Ch4	4.16	5.88	295 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.50	7.78	389 mA	>400mA	
Ch2	5.50	7.78	389 mA	>400mA	
Ch3	5.47	7.73	386 mA	>400mA	
Ch4	5.53	7.82	391 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.62	9.36	468 mA	>400mA	
Ch2	6.62	9.36	468 mA	>400mA	
Ch3	6.59	9.32	466 mA	>400mA	
Ch4	6.60	9.33	466 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.64	9.39	469 mA	>400mA	$\sqrt{}$
Ch2	6.64	9.39	469 mA	>400mA	$\sqrt{}$
Ch3	6.62.	9.36	468 mA	>400mA	√
Ch4	6.62	9.36	468 mA	>400mA	√

Unit	PUM6 P	Serial No	
Test Engineer	RMC		
Date	9/12/10		

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v	\checkmark			
-7v	V		$\sqrt{}$	1
-5v	$\sqrt{}$			
-1v	$\sqrt{}$			
0v	$\sqrt{}$			
1v	$\sqrt{}$			
5v	\checkmark		\checkmark	
7v	1	1	V	V
10v	1	V	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009	
PUM Driver Board Test Report			
R. M. Cutler, University of Birmingham			

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy **University of Birmingham**

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

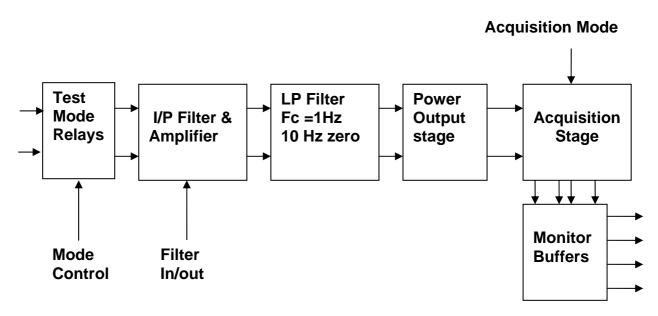
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit.....PUM 7P
Test EngineerRMC
Date13/12/10

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM 7P
Test Engineer	RMC
Date	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit......PUM 7P
Test EngineerRMC
Date13/12/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

IC10 and IC11 Changed to AD8671 on all channels.

RESET PULSE MOD

J7/2 Connected to J7/18 on 10/1/11

Links:

Check that the link W4 is present on each channel.

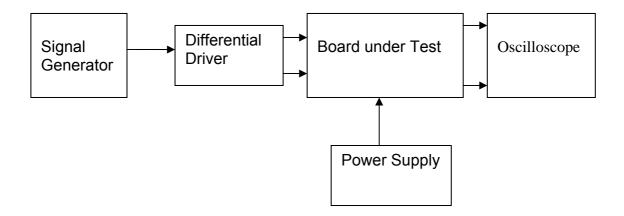
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM 7P
Test Engineer	RMC
Date	13/12/10

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	√
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM 7P
Test Engineer	RMC
Date	13/12/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.052v	$$	1mV
+15v TP4	14.939v	√	1mV
-15v TP6	-15.012v	√	6mV

All Outputs smooth DC, no oscillation?	

Record Power Supply Currents

Supply	Current
+16.5v	0.3A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

Unit......PUM 7P
Test EngineerRMC
Date13/12/10

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3		$\sqrt{}$	V
Ch4			1

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1		1	1
Ch2		1	1
Ch3		1	1
Ch4		1	1

ACQUISITION RELAYS

Channel	Indicator		OK?	
	ON	OFF		
Ch1	1	1	1	
Ch2	V	V	V	
Ch3	V	V	1	
Ch4	1	1	√	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	\checkmark
Ch2	\checkmark
Ch3	$\sqrt{}$
Ch4	$\sqrt{}$

Unit	PUM 7P
Test Engineer	RMC
Date	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.2069	Pin 1 to Pin 2	1.2065	√ ·
2	1.2066	Pin 5 to Pin 6	1.2050	V
3	1.2066	Pin 9 to Pin 10	1.2063	
4	1.2069	Pin 13 to Pin 14	1.2060	

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.985	Pin 3 to Pin 4	0.982	$\sqrt{}$
2	0.967	Pin 7 to Pin 8	0.966	$\sqrt{}$
3	0.967	Pin 11 to Pin 12	0.967	
4	0.965	Pin 15 to Pin 16	0.965	$\sqrt{}$

Unit.....PUM 7P
Test EngineerRMC
Date13/12/10

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2v		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.2v		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.2v		1.0 to 1.3v	0.4 to 2.4dB	
Ch4	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.133		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.133		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.480		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.479		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch3	0.479		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch4	0.477		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	1.177		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.176		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.176		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.176		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Si	mulation	Pass/Fail
Ch1	1.200		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.199		1.0 to 1.3v	0.5 to 2.5dB	
Ch3	1.199		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.199		1.0 to 1.3v	0.5 to 2.5dB	√

Unit......PUM 7P
Test EngineerRMC
Date13/12/10

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.2 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	37 mV		33 to 45mV	-30dB to -27dB	$\sqrt{}$
Ch2	34 mV		33 to 45mV	-30dB to -27dB	√
Ch3	34 mV		33 to 45mV	-30dB to -27dB	√
Ch4	36 mV		33 to 45mV	-30dB to -27dB	√

100Hz

	Output	-6dB	Simi	ulation	Pass/Fail
Ch1	0.292		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.292		0.275 to 0.32V	-12dB to -9dB	$\sqrt{}$

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.474		0.46 to 0.49V	-7dB to -6dB	√
Ch2	0.474		0.46 to 0.49V	-7dB to -6dB	V
Ch3	0.475		0.46 to 0.49V	-7dB to -6dB	V
Ch4	0.472		0.46 to 0.49V	-7dB to -6dB	V

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.476		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.475		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.476		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	√

Unit......PUM 7P
Test EngineerRMC
Date13/12/10

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode Distortion Free?
Ch1	\checkmark	\checkmark
Ch2		√
Ch3		√
Ch4	V	√

Unit.....PUM 7P
Test EngineerRMC
Date13/12/10

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	V
Very slowly increase the voltage, and a	bearyo the layed at which it trips
Very slowly increase the voltage, and o	bserve the level at which it trips.
Trip voltage?	1.19v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

|--|

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

3	
Time taken to trip?	1.2 seconds

Unit	PUM 7P
Test Engineer	RMC
Date	

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.495	24.75 mA
Ch2	0.492	24.6 mA
Ch3	0.494	24.7 mA
Ch4	0.493	24.6 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.651	32.55 mA	>16mA	$\sqrt{}$
Ch2	0.650	32.5 mA	>16mA	$\sqrt{}$
Ch3	0.650	32.5 mA	>16mA	
Ch4	0.650	32.5 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744	37.2 mA	>16mA	
Ch2	0.745	37.2 mA	>16mA	
Ch3	0.745	37.2 mA	>16mA	
Ch4	0.744	37.2 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744	37.2 mA	>16mA	√
Ch2	0.745	37.2 mA	>16mA	√
Ch3	0.755	37.7 mA	>16mA	√
Ch4	0.744	37.2 mA	>16mA	\checkmark

Unit	PUM 7P
Test Engineer	RMC
Date	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.194	9.7 mA
Ch2	0.195	9.75 mA
Ch3	0.195	9.75 mA
Ch4	0.194	9.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.42	21 mA	>16mA	√
Ch2	0.42	21 mA	>16mA	\checkmark
Ch3	0.42	21 mA	>16mA	√
Ch4	0.42	21 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.725	36.29 mA	>16mA	\checkmark
Ch2	0.726	36.3 mA	>16mA	V
Ch3	0.726	36.3 mA	>16mA	V
Ch4	0.724	36.2 mA	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744	37.2 mA	>16mA	
Ch2	0.745	37.25 mA	>16mA	√
Ch3	0.744	37.25 mA	>16mA	
Ch4	0.743	37.15 mA	>16mA	√

Unit	PUM 7P
Test Engineer	RMC
Date	13/12/10

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.10	5.8	289 mA
Ch2	4.10	5.8	289 mA
Ch3	4.01	5.67	283 mA
Ch4	4.08	5.77	288 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.48	7.74	387 mA	>400mA	
Ch2	5.48	7.74	387 mA	>400mA	
Ch3	5.48	7.74	387 mA	>400mA	
Ch4	5.45	7.70	385 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.44	9.1	455 mA	>400mA	\checkmark
Ch2	6.44	9.1	455 mA	>400mA	$\sqrt{}$
Ch3	6.43	9.09	454 mA	>400mA	V
Ch4	6.37	9.00	450 mA	>400mA	$\sqrt{}$

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.6	9.33	466 mA	>400mA	$\sqrt{}$
Ch2	6.6	9.33	466 mA	>400mA	$\sqrt{}$
Ch3	6.6	9.33	466 mA	>400mA	V
Ch4	6.56	9.27	463 mA	>400mA	V

Unit.....PUM 7P
Test EngineerRMC
Date13/12/10

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v			$\sqrt{}$	\checkmark
-7v	\checkmark	√	$\sqrt{}$	
-5v	\checkmark	√	$\sqrt{}$	
-1v	\checkmark		$\sqrt{}$	
0v	\checkmark		$\sqrt{}$	
1v	\checkmark		$\sqrt{}$	
5v	$\sqrt{}$	√	1	$\sqrt{}$
7v	$\sqrt{}$	V	V	$\sqrt{}$
10v	1	V	V	1

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009				
	PUM Driver Board Test Report					
R. M. Cutler, University of Birmingham						

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy **University of Birmingham**

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit.....PUM 8P
Test EngineerRMC
Date14/12/10

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

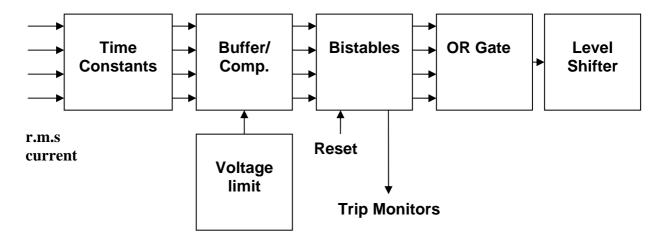
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit.....PUM 8P
Test EngineerRMC
Date14/12/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

IC10 and IC11 Changed to AD8671 on all channels.

RESET PULSE MOD

J7/2 Connected to J7/18 on 10/1/11

I inks:

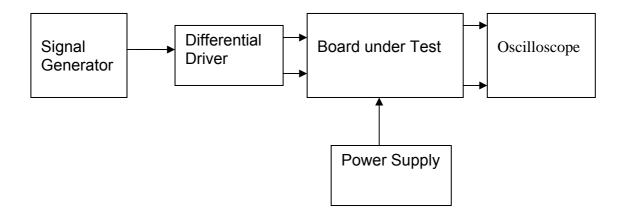
Check that the link W4 is present on each channel.

Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

4. Continuity Checks

J2					
	PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
	1	PD1P	Photodiode A+	1	$\sqrt{}$
	2	PD2P	Photodiode B+	2	$\sqrt{}$
	3	PD3P	Photodiode C+	3	$\sqrt{}$
	4	PD4P	Photodiode D+	4	$\sqrt{}$
	5	0V	$\sqrt{}$		
	6	PD1N	Photodiode A-	14	$\sqrt{}$
	7	PD2N	Photodiode B-	15	$\sqrt{}$
	8	PD3N	Photodiode C-	16	$\sqrt{}$
	9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	√		
6	Imon1N		18	\checkmark
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	
9	Imon4N		21	\checkmark

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	V
11	V- (TP2)	-17v Supply	V
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		V
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.0v	$\sqrt{}$	1.2 mV
+15v TP4	14.9v	√	1.3mV
-15v TP6	-15.0v	√	6 mV

All Outputs smooth DC, no oscillation?	1	

Record Power Supply Currents

Supply	Current
+16.5v	0.303A
-16.5v	0.242A

If the supplies are correct, proceed to the next test.

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3		$\sqrt{}$	V
Ch4			1

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1		1	1
Ch2		1	1
Ch3		1	1
Ch4		1	1

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	1	V	V
Ch2	1	V	V
Ch3	1	1	V
Ch4	1	1	1

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator	
	ON?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	$\sqrt{}$	
Ch4	$\sqrt{}$	

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.2096	Pin 1 to Pin 2	1.2098	$\sqrt{}$
2	1.2102	Pin 5 to Pin 6	1.2100	$\sqrt{}$
3	1.2095	Pin 9 to Pin 10	1.2098	$\sqrt{}$
4	1.2097	Pin 13 to Pin 14	1.2103	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.9609	Pin 3 to Pin 4	0.9606	$\sqrt{}$
2	0.9672	Pin 7 to Pin 8	0.9673	$\sqrt{}$
3	0.9649	Pin 11 to Pin 12	0.9647	
4	0.9645	Pin 15 to Pin 16	0.9645	V

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.15		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.15		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.15		1.0 to 1.3v	0.4 to 2.4dB	V
Ch4	1.15		1.0 to 1.3v	0.4 to 2.4dB	$\sqrt{}$

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.54		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.54		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.54		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.53		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.133		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.133		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.133		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.476		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.477		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.478		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.476		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.175		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.176		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.176		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.176		1.0 to 1.28v	0.34 to 2.34dB	√

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.199		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.199		1.0 to 1.3v	0.5 to 2.5dB	
Ch3	1.198		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.199		1.0 to 1.3v	0.5 to 2.5dB	√

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	6 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	6 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	6 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	34 mV		33 to 45mV	-30dB to -27dB	
Ch2	35 mV		33 to 45mV	-30dB to -27dB	
Ch3	33 mV		33 to 45mV	-30dB to -27dB	
Ch4	37 mV		33 to 45mV	-30dB to -27dB	√

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.295		0.275 to 0.32V	-12dB to -9dB	$\sqrt{}$
Ch2	0.293		0.275 to 0.32V	-12dB to -9dB	√
Ch3	0.292		0.275 to 0.32V	-12dB to -9dB	√
Ch4	0.293		0.275 to 0.32V	-12dB to -9dB	V

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.472		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.472		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.472		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.472		0.46 to 0.49V	-7dB to -6dB	\checkmark

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.473		0.47 to 0.49V	-7dB to -6dB	√
Ch2	0.473		0.47 to 0.49V	-7dB to -6dB	
Ch3	0.473		0.47 to 0.49V	-7dB to -6dB	
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mod Distortion Free?	de:
Ch1	V	\checkmark	
Ch2	$\sqrt{}$	\checkmark	
Ch3	$\sqrt{}$	\checkmark	
Ch4	$\sqrt{}$	\checkmark	

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	Yes
•	

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.17v	
---------------------	--

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.7 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip)?	1.5 seconds

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.493	24.65 mA
Ch2	0.489	24.45 mA
Ch3	0.494	24.7 mA
Ch4	0.492	24.6 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.650	32.5 mA	>16mA	\checkmark
Ch2	0.649	32.45 mA	>16mA	
Ch3	0.651	32.55 mA	>16mA	\checkmark
Ch4	0.649	32.45 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.746	37.3 mA	>16mA	√
Ch2	0.747	37.3 mA	>16mA	√
Ch3	0.745	37.2 mA	>16mA	√
Ch4	0.745	37.2 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745	37.2 mA	>16mA	√
Ch2	0.746	37.3 mA	>16mA	√
Ch3	0.744	37.2 mA	>16mA	√
Ch4	0.744	37.2 mA	>16mA	√

Unit	PUM 8P
Test Engineer	RMC
Date	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.193	9.65
Ch2	0.192	9.60
Ch3	0.194	9.70
Ch4	0.193	9.65

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.418	20.90	>16mA	√
Ch2	0.417	20.85	>16mA	\checkmark
Ch3	0.420	21.00	>16mA	\checkmark
Ch4	0.417	20.85	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.724	36.20	>16mA	\checkmark
Ch2	0.725	36.25	>16mA	\checkmark
Ch3	0.725	36.25	>16mA	\checkmark
Ch4	0.724	36.20	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744	37.20	>16mA	√
Ch2	0.745	37.25	>16mA	√
Ch3	0.743	37.15	>16mA	
Ch4	0.743	37.15	>16mA	√

Unit	PUM 8P
Test Engineer	RMC
Date	14/12/10

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.16	5.88	294 mA
Ch2	4.11	5.81	290 mA
Ch3	4.11	5.81	290 mA
Ch4	4.12	5.82	291 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.54	7.83	391 mA	>400mA	
Ch2	5.55	7.84	392 mA	>400mA	
Ch3	5.49	7.76	388 mA	>400mA	
Ch4	5.50	7.77	388 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.60	9.33	466 mA	>400mA	√
Ch2	6.58	9.30	465 mA	>400mA	\checkmark
Ch3	6.57	9.29	464 mA	>400mA	√
Ch4	6.57	9.28	464 mA	>400mA	\checkmark

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.62	9.36	468 mA	>400mA	
Ch2	6.61	9.34	467 mA	>400mA	
Ch3	6.62	9.36	468 mA	>400mA	V
Ch4	6.61	9.34	467 mA	>400mA	V

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable	Ch2 stable	Ch3 stable	Ch4 stable
-10v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
-7v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
-5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
-1v	V	V	V	V
0v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
1v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
7v	V	V	V	V
10v	V	V	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009		
PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham				

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

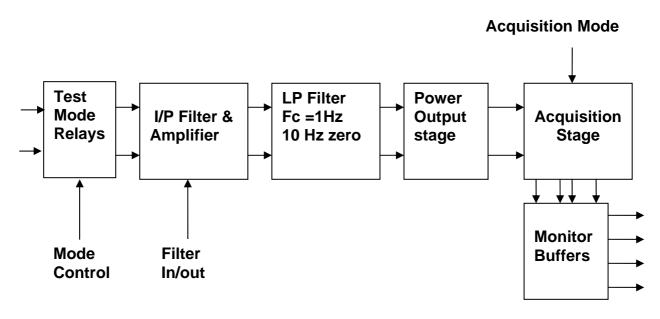
Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

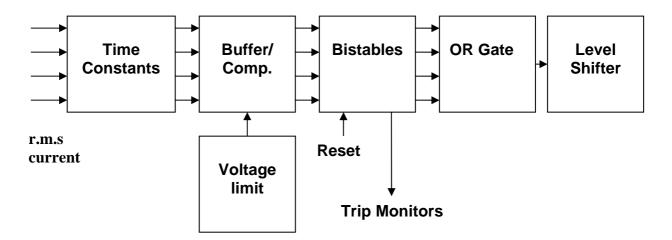
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM 9P
Test Engineer	RMC
Date	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

IC10 and IC11 Changed to AD8671 on all channels.

RESET PULSE MOD
J7/2 Connected to J7/18 on 10/1/11

Links:

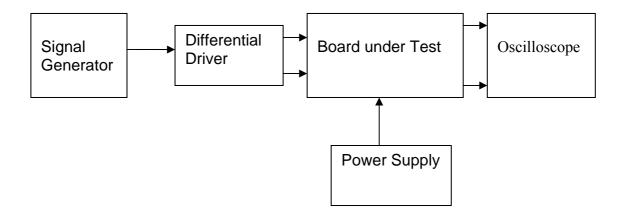
Check that the link W4 is present on each channel.

Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V	$\sqrt{}$		
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	\checkmark
8	Imon3N		20	$\sqrt{}$
9	Imon4N		21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		√
25	0V (TP3)		\ \ \

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM 9P
Test Engineer	RMC
Date	20/12/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.030v	$\sqrt{}$	1.2 mV
+15v TP4	14.968v		1.3 mV
-15v TP6	-15.107v		6 mV

All Outputs smooth DC, no oscillation?	OK

Record Power Supply Currents

Supply	Current
+16.5v	0.246 A
-16.5v	0.306 A

If the supplies are correct, proceed to the next test.

Unit	PUM 9P
Test Engineer	RMC
Date	20/12/10

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	
Ch2	V	V	
Ch3	V	V	
Ch4	1	$\sqrt{}$	$\sqrt{}$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1		V	
Ch2		V	
Ch3		V	
Ch4		V	

ACQUISITION RELAYS

Channel	Indica	ator	OK?	
	ON	OFF		
Ch1	V	1	1	
Ch2	V	1	1	
Ch3	V	1	V	
Ch4	1	1		

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	$\sqrt{}$
Ch2	$\sqrt{}$
Ch3	$\sqrt{}$
Ch4	$\sqrt{}$

Unit	PUM 9P
Test Engineer	RMC
Date	20/12/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.199v	Pin 1 to Pin 2	1.198	$\sqrt{}$
2	1.200	Pin 5 to Pin 6	1.199	$\sqrt{}$
3	1.200	Pin 9 to Pin 10	1.198	$\sqrt{}$
4	1.200	Pin 13 to Pin 14	1.199	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.160	Pin 3 to Pin 4	1.161	$\sqrt{}$
2	1.160	Pin 7 to Pin 8	1.160	$\sqrt{}$
3	1.160	Pin 11 to Pin 12	1.160	
4	1.161	Pin 15 to Pin 16	1.161	

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.2		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.2		1.0 to 1.3v	0.4 to 2.4dB	
Ch4	1.2		1.0 to 1.3v	0.4 to 2.4dB	$\sqrt{}$

1Hz

	Output	-6dB	Sim	Simulation	
Ch1	0.55		0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.55		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch3	0.55		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch4	0.55		0.48 to 0.6v	-6.5 to -4.5dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.130		0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.130		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.471		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.473		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.473		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.474		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.165		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.165		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch3	1.165		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch4	1.166		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.190		1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch2	1.191		1.0 to 1.3v	0.5 to 2.5dB	
Ch3	1.191		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.191		1.0 to 1.3v	0.5 to 2.5dB	√

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	Simulation	
Ch1	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.0 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	35 mV		33 to 45mV	-30dB to -27dB	
Ch2	36 mV		33 to 45mV	-30dB to -27dB	√
Ch3	35 mV		33 to 45mV	-30dB to -27dB	√
Ch4	35 mV		33 to 45mV	-30dB to -27dB	1

100Hz

	Output	-6dB	Simi	ulation	Pass/Fail
Ch1	0.292		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.294		0.275 to 0.32V	-12dB to -9dB	$\sqrt{}$
Ch3	0.295		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.295		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.47		0.46 to 0.49V	-7dB to -6dB	
Ch2	0.47		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.47		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.47		0.46 to 0.49V	-7dB to -6dB	

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.474		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.476		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.475		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	

Unit	PUM 9P
Test Engineer	RMC
Date	20/12/10

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f=1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	$\sqrt{}$	$\sqrt{}$	
Ch2	V	V	
Ch3	V	V	
Ch4		V	

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.18v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

|--|

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

-	
Time taken to trip?	1.2 seconds

Unit	PUM 9P
Test Engineer	RMC
Date	

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)
Ch1	0.484	24.2 mA
Ch2	0.493	24.6 mA
Ch3	0.495	24.7 mA
Ch4	0.489	24.4 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.644	32.2 mA	>16mA	
Ch2	0.651	32.5 mA	>16mA	
Ch3	0.651	32.5 mA	>16mA	
Ch4	0.647	32.3 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.743	37.1 mA	>16mA	
Ch2	0.746	37.3 mA	>16mA	
Ch3	0.745	37.2 mA	>16mA	
Ch4	0.743	37.1 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.743	37.15 mA	>16mA	
Ch2	0.746	37.3 mA	>16mA	
Ch3	0.744	37.2 mA	>16mA	
Ch4	0.742	37.1 mA	>16mA	

Unit	PUM 9P
Test Engineer	RMC
Date	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.189	9.45
Ch2	0.194	9.7
Ch3	0.195	9.7
Ch4	0.192	9.6

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.413	20.65	>16mA	
Ch2	0.412	20.6	>16mA	
Ch3	0.412	20.6	>16mA	
Ch4	0.417	20.85	>16mA	1

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.722	36.1	>16mA	
Ch2	0.725	36.25	>16mA	
Ch3	0.724	36.2	>16mA	
Ch4	0.722	36.1	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.741	36.0	>16mA	
Ch2	0.745	37.25	>16mA	
Ch3	0.743	37.15	>16mA	
Ch4	0.741	36.0	>16mA	

Unit	PUM 9P
Test Engineer	RMC
Date	

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12	5.82	291 mA
Ch2	4.14	5.85	292 mA
Ch3	4.15	5.87	293 mA
Ch4	4.14	5.85	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.50	7.78	389 mA	>400mA	
Ch2	5.52	7.80	390 mA	>400mA	
Ch3	5.52	7.80	390 mA	>400mA	
Ch4	5.50	7.78	389 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.61	9.34	467 mA	>400mA	
Ch2	6.61	9.34	467 mA	>400mA	
Ch3	6.61	9.34	467 mA	>400mA	
Ch4	6.58	9.30	465 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.63	9.37	468 mA	>400mA	
Ch2	6.63	9.37	468 mA	>400mA	
Ch3	6.62	9.36	468 mA	>400mA	$\sqrt{}$
Ch4	6.59	9.32	466 mA	>400mA	√

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v				V
-7v			V	V
-5v			V	V
-1v				
0v				V
1v				
5v			V	V
7v				V
10v			V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

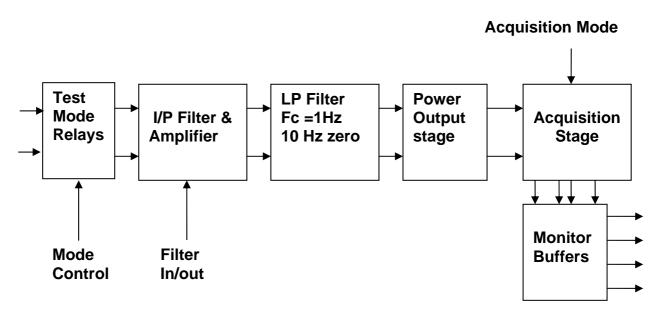
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

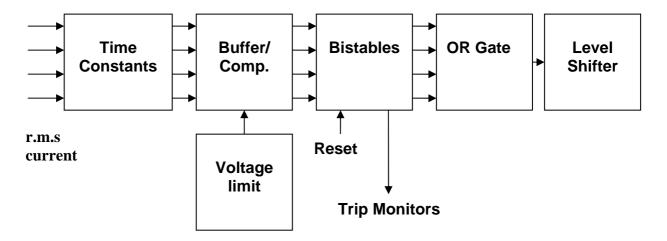
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM10P
Test Engineer	RMC
Date	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit.....PUM10P
Test EngineerRMC
Date22/12/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

C10 and IC11 Changed to AD8671 on all channels.

RESET PULSE MODJ7/2 Connected to J7/18 on 10/1/11

Links:

Check that the link W4 is present on each channel.

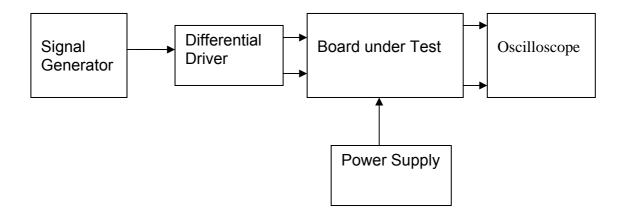
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM10P
Test Engineer	RMC
Date	22/12/10

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	√		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	√
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM10P		
Test Engineer	RMC		
Date	22/12/10		

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.016v	$$	1mV
+15v TP4	14.93v	√	1mV
-15v TP6	-14.89v	√	5mV

All Outputs smooth DC, no oscillation?	1	

Record Power Supply Currents

Supply	Current
+16.5v	0.305 A
-16.5v	0.245 A

If the supplies are correct, proceed to the next test.

Unit	PUM10P
Test Engineer	RMC
Date	22/12/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	$\sqrt{}$

TEST RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V	√	V
Ch3	V	√	V
Ch4	V	√	V

ACQUISITION RELAYS

Channel	Indica	Indicator		
	ON	OFF		
Ch1	V	V	√	
Ch2	V	V		
Ch3	V	V		
Ch4	√	√	1	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	√ ·
Ch3	√
Ch4	

Unit	PUM10P
Test Engineer	RMC
Date	22/12/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.20	Pin 1 to Pin 2	1.20	$\sqrt{}$
2	1.20	Pin 5 to Pin 6	1.20	V
3	1.20	Pin 9 to Pin 10	1.20	V
4	1.20	Pin 13 to Pin 14	1.20	V

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16	Pin 3 to Pin 4	1.16	$\sqrt{}$
2	1.16	Pin 7 to Pin 8	1.16	$\sqrt{}$
3	1.16	Pin 11 to Pin 12	1.16	$\sqrt{}$
4	1.16	Pin 15 to Pin 16	1.16	$\sqrt{}$

Unit.....PUM10P
Test EngineerRMC
Date22/12/10

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.18v		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.18v		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.18v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.15v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.5v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.131		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.130		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.474		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.475		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch3	0.475		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch4	0.476		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.168		1.0 to 1.28v	0.34 to 2.34dB	√
Ch2	1.169		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.169		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.169		1.0 to 1.28v	0.34 to 2.34dB	

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.192		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.192		1.0 to 1.3v	0.5 to 2.5dB	√
Ch3	1.192		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.192		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM10P
Test EngineerRMC
Date22/12/10

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	40		33 to 45mV	-30dB to -27dB	$\sqrt{}$
Ch2	40.2		33 to 45mV	-30dB to -27dB	√
Ch3	40.2		33 to 45mV	-30dB to -27dB	√
Ch4	40.2		33 to 45mV	-30dB to -27dB	√

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.293		0.275 to 0.32V	-12dB to -9dB	$\sqrt{}$
Ch2	0.295		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.295		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.295		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.473		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.474		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.472		0.46 to 0.49V	-7dB to -6dB	V

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.474		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.475		0.47 to 0.49V	-7dB to -6dB	√
Ch3	0.474		0.47 to 0.49V	-7dB to -6dB	√
Ch4	0.475		0.47 to 0.49V	-7dB to -6dB	V

Unit	PUM10P
Test Engineer	RMC
Date	5/1/11

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{}$	$\sqrt{}$
Ch2	V	√
Ch3	V	√
Ch4	V	√

Unit	PUM10P
Test Engineer	RMC
Date	5/1/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.192v	
----------------------	--

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.3 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1 second

Unit	PUM10P
Test Engineer	RMC
Date	22/12/10

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.489	24.4 mA
Ch2	0.492	24.6 mA
Ch3	0.493	24.65 mA
Ch4	0.488	24.4 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.648	32.4 mA	>16mA	V
Ch2	0.651	32.5 mA	>16mA	V
Ch3	0.651	32.5 mA	>16mA	V
Ch4	0.647	32.3 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745	37.25 mA	>16mA	\checkmark
Ch2	0.747	37.35 mA	>16mA	
Ch3	0.747	37.35 mA	>16mA	
Ch4	0.744	37.2 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745	37.25 mA	>16mA	\checkmark
Ch2	0.746	37.3 mA	>16mA	\checkmark
Ch3	0.746	37.3 mA	>16mA	\checkmark
Ch4	0.743	37.1 mA	>16mA	\checkmark

Unit	PUM10P
Test Engineer	RMC
Date	22/12/10

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)	
Ch1	0.192	9.6 mA	
Ch2	0.194	9.7 mA	
Ch3	0.194	194 9.7 mA	
Ch4	0.193	9.65 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.417	20.85 mA	>16mA	
Ch2	0.420	21.0 mA	>16mA	√
Ch3	0.420	21.0 mA	>16mA	1
Ch4	0.418	20.9 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.724	37.7 mA	>16mA	$\sqrt{}$
Ch2	0.726	36.3 mA	>16mA	$\sqrt{}$
Ch3	0.725	36.25 mA	>16mA	$\sqrt{}$
Ch4	0.723	36.15 mA	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.743	37.15 mA	>16mA	
Ch2	0.745	37.25 mA	>16mA	
Ch3	0.745	37.25 mA	>16mA	
Ch4	0.742	37.1 mA	>16mA	

Unit	PUM10P
Test Engineer	RMC
Date	22/12/10

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.13	5.84	292 mA
Ch2	4.15	5.86	293 mA
Ch3	4.16	5.88	294 mA
Ch4	4.14	5.85	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.52	7.80	390 mA	>400mA	
Ch2	5.53	7.82	391 mA	>400mA	
Ch3	5.54	7.83	391.5 mA	>400mA	
Ch4	5.52	7.80	390 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.61	9.34	467 mA	>400mA	
Ch2	6.61	9.34	467 mA	>400mA	
Ch3	6.63	9.37	468 mA	>400mA	
Ch4	6.60	9.33	466 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.63	9.37	468 mA	>400mA	
Ch2	6.64	9.39	469 mA	>400mA	
Ch3	6.65	9.40	470 mA	>400mA	V
Ch4	6.63	9.33	466 mA	>400mA	$\sqrt{}$

Unit	PUM10P
Test Engineer	RMC
Date	5/1/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v		V	$\sqrt{}$	
-7v	$\sqrt{}$	V	1	V
-5v	$\sqrt{}$	V		
-1v				$\sqrt{}$
0 v				$\sqrt{}$
1v	$\sqrt{}$			$\sqrt{}$
5v	\checkmark	$\sqrt{}$		\checkmark
7v	$\sqrt{}$	V	$\sqrt{}$	√
10v	$\sqrt{}$	V	1	1

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

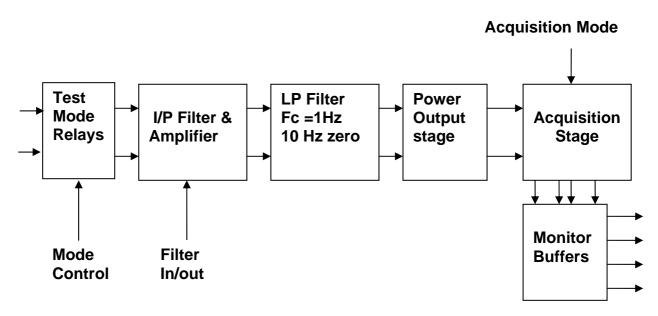
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit.....PUM11P
Test EngineerRMC
Date5/1/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

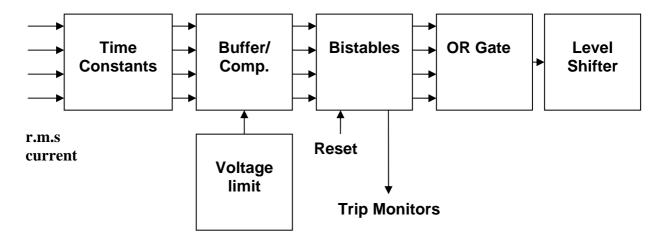
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM11P
Test Engineer	RMC
Date	5/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit.....PUM11P
Test EngineerRMC
Date5/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

C10 and IC11 Changed to AD8671 on all channels.

RESET PULSE MOD

J7/2 Connected to J7/18 on 10/1/11

Links:

Check that the link W4 is present on each channel.

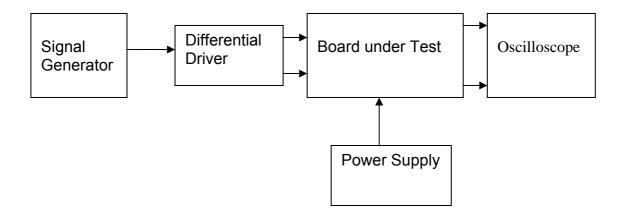
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit.....PUM11P
Test EngineerRMC
Date5/1/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	√
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+	4	
5	0V			
6	PD1N	Photodiode A-	14	V
7	PD2N	Photodiode B-	15	√
8	PD3N	Photodiode C-	16	√
9	PD4N	Photodiode D-	17	√


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	√		_
6	Imon1N		18	\checkmark
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	$\sqrt{}$
9	Imon4N		21	$\sqrt{}$

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM11P
Test Engineer	RMC
Date	5/1/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.037v	$\sqrt{}$	1mv pk/pk
+15v TP4	14.93v	√	1mv pk/pk
-15v TP6	-15.07v	√	1mv pk/pk

All Outputs smooth DC, no oscillation?	٦	

Record Power Supply Currents

Supply	Current
+16.5v	0.309A
-16.5v	0.247A

If the supplies are correct, proceed to the next test.

Unit	PUM11P
Test Engineer	RMC
Date	5/1/11

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indica	OK?	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3		$\sqrt{}$	V
Ch4			1

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	1	V
Ch2	V	1	V
Ch3	V	1	V
Ch4	V	1	V

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	1	1	1
Ch2	V	V	1
Ch3	V	V	1
Ch4	1	1	1

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	
Ch3	
Ch4	

Unit	PUM11P
Test Engineer	RMC
Date	5/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.21v	Pin 1 to Pin 2	1.21v	$\sqrt{}$
2	1.21v	Pin 5 to Pin 6	1.21v	$\sqrt{}$
3	1.21v	Pin 9 to Pin 10	1.21v	$\sqrt{}$
4	1.21v	Pin 13 to Pin 14	1.21v	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.975v	Pin 3 to Pin 4	0.974v	$\sqrt{}$
2	0.972v	Pin 7 to Pin 8	0.972v	$\sqrt{}$
3	0.976v	Pin 11 to Pin 12	0.976v	
4	0.972v	Pin 15 to Pin 16	0.972v	$\sqrt{}$

Unit.....PUM11P
Test EngineerRMC
Date5/1/11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.05v		1.0 to 1.3v	0.4 to 2.4dB	$\sqrt{}$
Ch2	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	1.2v		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.15v		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.55v		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch2	0.54v		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch3	0.54v		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch4	0.53v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.132		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.133		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.130		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.132		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.473		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.475		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.475		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.477		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.17		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.17		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.17		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.17		1.0 to 1.28v	0.34 to 2.34dB	√

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.193		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.193		1.0 to 1.3v	0.5 to 2.5dB	
Ch3	1.193		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.1929		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM11P
Test EngineerRMC
Date5/1/11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.4 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	7 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	40		33 to 45mV	-30dB to -27dB	$\sqrt{}$
Ch2	40		33 to 45mV	-30dB to -27dB	√
Ch3	39.6		33 to 45mV	-30dB to -27dB	√
Ch4	39.8		33 to 45mV	-30dB to -27dB	√

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.294		0.275 to 0.32V	-12dB to -9dB	
Ch2	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.291		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.294		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.473		0.46 to 0.49V	-7dB to -6dB	√
Ch2	0.473		0.46 to 0.49V	-7dB to -6dB	√
Ch3	0.473		0.46 to 0.49V	-7dB to -6dB	√
Ch4	0.474		0.46 to 0.49V	-7dB to -6dB	V

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.474		0.47 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.474		0.47 to 0.49V	-7dB to -6dB	√
Ch3	0.474		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.463		0.47 to 0.49V	-7dB to -6dB	

Unit	PUM11P
Test Engineer	RMC
Date	5/1/11

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1		V	
Ch2	√	V	
Ch3	√	V	
Ch4	√	√	

Unit	PUM11P
Test Engineer	RMC
Date	6/1/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	V	
Very slowly increase the voltage, and observe the level at which it trips.		
very slowly increase the voltage, and observe the level at which it thps.		
Trip voltage?	1.16v	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 2.3 seconds

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

3	
Time taken to trip?	1.2 seconds

Unit	PUM11P
Test Engineer	RMC
Date	6/1/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.494 v	24.7 mA
Ch2	0.492 v	24.6 mA
Ch3	0.493 v	24.65 mA
Ch4	0.488 v	24.4 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.651 v	32.55 mA	>16mA	
Ch2	0.650 v	32.5 mA	>16mA	
Ch3	0.652 v	32.6 mA	>16mA	
Ch4	0.657 v	32.8 mA	>16mA	

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745 v	37.25 mA	>16mA	√
Ch2	0.746 v	37.3 mA	>16mA	√
Ch3	0.746 v	37.3 mA	>16mA	√
Ch4	0.743 v	37.1 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744 v	37.2 mA	>16mA	\checkmark
Ch2	0.745 v	37.25 mA	>16mA	\checkmark
Ch3	0.746 v	37.3 mA	>16mA	\checkmark
Ch4	0.742 v	37.1 mA	>16mA	

Unit	PUM11P
Test Engineer	RMC
Date	6/1/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.193 v	9.65 mA
Ch2	0.193 v	9.65 mA
Ch3	0.194 v	9.70 mA
Ch4	0.189 v	9.45 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.418 v	20.9 mA	>16mA	\checkmark
Ch2	0.419 v	20.95 mA	>16mA	\checkmark
Ch3	0.420 v	21.00 mA	>16mA	\checkmark
Ch4	0.412 v	20.6 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.724 v	36.2 mA	>16mA	V
Ch2	0.725 v	36.2 mA	>16mA	V
Ch3	0.725 v	36.2 mA	>16mA	V
Ch4	0.722 v	36.1 mA	>16mA	\checkmark

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744 v	37.2 mA	>16mA	\checkmark
Ch2	0.744 v	37.2 mA	>16mA	\checkmark
Ch3	0.745 v	37.2 mA	>16mA	\checkmark
Ch4	0.742 v	37.1 mA	>16mA	

Unit	PUM11P
Test Engineer	RMC
Date	6/1/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12 v	5.82 v	291 mA
Ch2	4.14 v	5.85 v	290 mA
Ch3	4.11 v	5.81 v	290 mA
Ch4	4.14 v	5.85 v	290 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.50 v	7.78 v	389 mA	>400mA	
Ch2	5.52 v	7.80 v	390.3 mA	>400mA	
Ch3	5.50 v	7.78 v	389 mA	>400mA	
Ch4	5.52 v	7.80 v	390.3 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.62 v	9.36 v	468 mA	>400mA	√
Ch2	6.62 v	9.36 v	468 mA	>400mA	√
Ch3	6.61 v	9.34 v	467 mA	>400mA	√
Ch4	6.60 v	9.33 v	466 mA	>400mA	\checkmark

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.64 v	9.39 v	469 mA	>400mA	$\sqrt{}$
Ch2	6.64 v	9.39 v	469 mA	>400mA	
Ch3	6.64 v	9.39 v	469 mA	>400mA	V
Ch4	6.62 v	9.36 v	468 mA	>400mA	√

Unit.....PUM11P
Test EngineerRMC
Date6/1/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v			V	V
-7v			V	V
-5v			V	V
-1v			V	V
0v			V	V
1v			$\sqrt{}$	V
5v			V	V
7v	√	√	V	V
10v		V	V	V

Residual 2 mV at 100 kHz – possibly pick up.

LIGO Laboratory / LIGO Scientific Collaboration

PUM Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

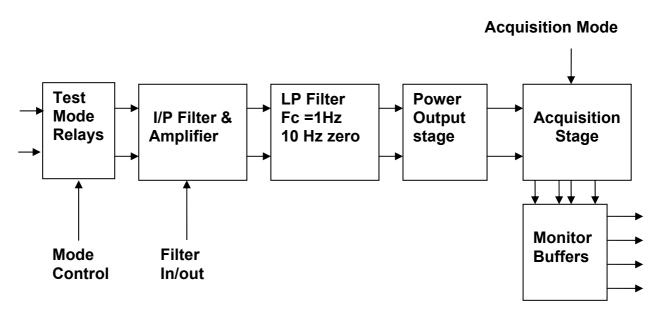
Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit.....PUM12P
Test EngineerRMC
Date6/1/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

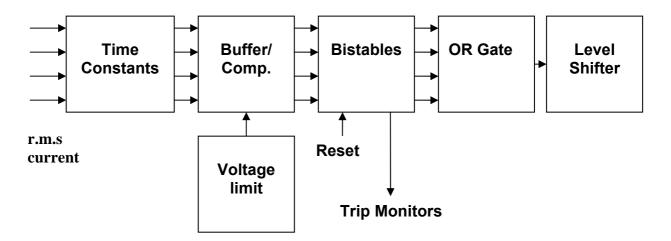
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	TTI	EL302RD	
Power supply	Farnell	LT30-1	
Oscilloscope	Tektronix	2225	
Function	Agient	33250A	
Generator			

Unit.....PUM12P
Test EngineerRMC
Date6/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

C10 and IC11 Changed to AD8671 on all channels.

RESET PULSE MOD

J7/2 Connected to J7/18 on 10/1/11

Links:

Check that the link W4 is present on each channel.

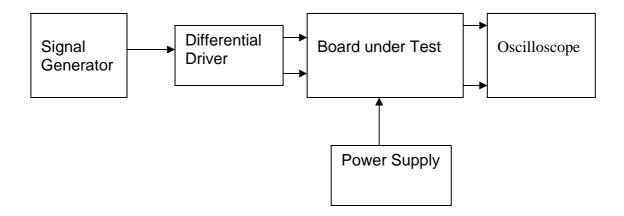
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V	$\sqrt{}$		
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	
7	Imon2N		19	
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	V
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04 v	$\sqrt{}$	1 mV
+15v TP4	14.9 v	$\sqrt{}$	1 mV
-15v TP6	-15.1 v	$\sqrt{}$	5 mV

All Outputs smooth DC, no oscillation?	1	

Note – all noise measurements were made differentially wrt 0v as excessive common mode pick up was present, even when everything was switched off.

Record Power Supply Currents

Supply	Current
+16.5v	0.43 A
-16.5v	0.23 A

If the supplies are correct, proceed to the next test.

Unit	PUM12P
Test Engineer	RMC
Date	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		1	
Ch2		1	V
Ch3		V	V
Ch4		1	V

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	1	1	1
Ch2	V	1	1
Ch3	V	1	1
Ch4	1	1	1

ACQUISITION RELAYS

Channel	Indicator ON OFF		OK?
Ch1	1	1	$\sqrt{}$
Ch2	V	1	
Ch3	V	1	
Ch4	V	1	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	
Ch3	
Ch4	√ √

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.20 v	Pin 1 to Pin 2	1.20 v	
2	1.20 v	Pin 5 to Pin 6	1.20 v	
3	1.20 v	Pin 9 to Pin 10	1.20 v	$\sqrt{}$
4	1.20 v	Pin 13 to Pin 14	1.20 v	

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.968 v	Pin 3 to Pin 4	0.968 v	$\sqrt{}$
2	0.965 v	Pin 7 to Pin 8	0.965 v	$\sqrt{}$
3	0.968 v	Pin 11 to Pin 12	0.968 v	V
4	0.969 v	Pin 15 to Pin 16	0.969 v	

Unit.....PUM12P
Test EngineerRMC
Date6/1/11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2 v		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.2 v		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.17 v		1.0 to 1.3v	0.4 to 2.4dB	
Ch4	1.2 v		1.0 to 1.3v	0.4 to 2.4dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5 v		0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.5 v		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch3	0.5 v		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch4	0.5 v		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.129		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.132		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.474		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.470		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.477		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.479		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.166		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.166		1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.167		1.0 to 1.28v	0.34 to 2.34dB	√
Ch4	1.167		1.0 to 1.28v	0.34 to 2.34dB	V

	Output	-6dB	Si	mulation	Pass/Fail
Ch1	1.189		1.0 to 1.3v	0.5 to 2.5dB	
Ch2	1.190		1.0 to 1.3v	0.5 to 2.5dB	V
Ch3	1.189		1.0 to 1.3v	0.5 to 2.5dB	V
Ch4	1.190		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM12P
Test EngineerRMC
Date6/1/11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	6 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.5 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	39 mV		33 to 45mV	-30dB to -27dB	
Ch2	39 mV		33 to 45mV	-30dB to -27dB	V
Ch3	39 mV		33 to 45mV	-30dB to -27dB	V
Ch4	39 mV		33 to 45mV	-30dB to -27dB	V

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.290		0.275 to 0.32V	-12dB to -9dB	
Ch2	0.293		0.275 to 0.32V	-12dB to -9dB	1
Ch3	0.291		0.275 to 0.32V	-12dB to -9dB	1
Ch4	0.290		0.275 to 0.32V	-12dB to -9dB	V

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.470		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.470		0.46 to 0.49V	-7dB to -6dB	

	Output	-6dB	Simi	ulation	Pass/Fail
Ch1	0.472		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.473		0.47 to 0.49V	-7dB to -6dB	
Ch3	0.473		0.47 to 0.49V	-7dB to -6dB	
Ch4	0.472		0.47 to 0.49V	-7dB to -6dB	√

Unit	PUM12P
Test Engineer	RMC
Date	

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f=1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	√	V
Ch2	√	V
Ch3	√	V
Ch4	√	

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$
•	

Very slowly increase the voltage, and observe the level at which it trips.

	Trip voltage?	1.18v
--	---------------	-------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.2 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

7	
Time taken to trip?	1.2 seconds

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.491	24.55 mA
Ch2	0.490	24.5 mA
Ch3	0.493	24.65 mA
Ch4	0.488	24.4 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.649	32.45 mA	>16mA	
Ch2	0.649	32.45 mA	>16mA	
Ch3	0.650	32.5 mA	>16mA	√
Ch4	0.646	32.3 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745	37.25 mA	>16mA	
Ch2	0.746	37.3 mA	>16mA	
Ch3	0.745	37.25 mA	>16mA	
Ch4	0.743	37.15 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.744	37.2 mA	>16mA	
Ch2	0.745	37.25 mA	>16mA	
Ch3	0.744	37.2 mA	>16mA	
Ch4	0.743	37.15 mA	>16mA	

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.193	9.65 mA
Ch2	0.191	9.55 mA
Ch3	0.195	9.75 mA
Ch4	0.193	9.65 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.418	20.9 mA	>16mA	\checkmark
Ch2	0.415	20.75 mA	>16mA	$\sqrt{}$
Ch3	0.421	21.5 mA	>16mA	$\sqrt{}$
Ch4	0.419	20.95 mA	>16mA	

1 KHz

· · · · · ·					
	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail	
Ch1	0.724	36.2 mA	>16mA	V	
Ch2	0.724	36.2 mA	>16mA	V	
Ch3	0.724	36.2 mA	>16mA	V	
Ch4	0.723	36.15 mA	>16mA	V	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.743	37.15 mA	>16mA	√
Ch2	0.744	37.2 mA	>16mA	√
Ch3	0.743	37.15 mA	>16mA	√
Ch4	0.742	37.1 mA	>16mA	√

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.09	5.78	289 mA
Ch2	4.13	5.84	292 mA
Ch3	4.11	5.81	290 mA
Ch4	4.09	5.78	289 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.49	7.76	388 mA	>400mA	
Ch2	5.52	7.80	390.3 mA	>400mA	
Ch3	5.50	7.77	388 mA	>400mA	
Ch4	5.49	7.76	388 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.60	9.33	466 mA	>400mA	
Ch2	6.58	9.30	465 mA	>400mA	
Ch3	6.62	9.36	468 mA	>400mA	
Ch4	6.60	9.33	466 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.63	9.37	468 mA	>400mA	
Ch2	6.63	9.37	468 mA	>400mA	
Ch3	6.64	9.39	469 mA	>400mA	V
Ch4	6.53	9.23	461 mA	>400mA	V

Unit	PUM12P
Test Engineer	RMC
Date	6/1/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$
-7v			$\sqrt{}$	
-5v			$\sqrt{}$	
-1v			$\sqrt{}$	
0v			$\sqrt{}$	
1v			$\sqrt{}$	
5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
7v	$\sqrt{}$	V	V	$\sqrt{}$
10v	$\sqrt{}$	V	V	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009	
PUM Driver Board Test Report			
R. M. Cutler, University of Birmingham			

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

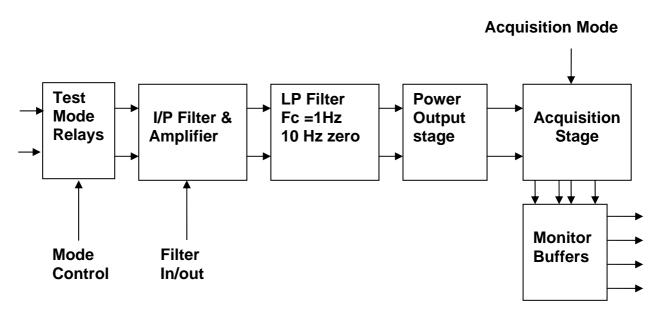
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit......PUM13P
Test EngineerRMC
Date31/1/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

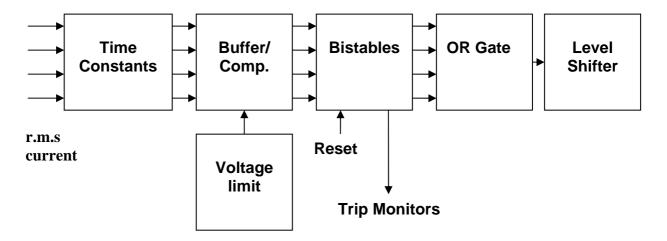
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM13P
Test Engineer	RMC
Date	31/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit.....PUM13P
Test EngineerRMC
Date31/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Reset pulse wire link added between pin 2 and pin 18 on J7

IC14, ch1 & IC14 ch2 changed

IC7 Ch1 changed

Links:

Check that the link W4 is present on each channel.

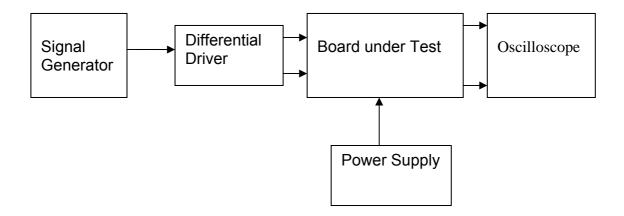
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM13P
Test Engineer	RMC
Date	31/1/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+	4	\checkmark
5	0V	√		
6	PD1N	Photodiode A-	14	√
7	PD2N	Photodiode B-	15	√
8	PD3N	Photodiode C-	16	√
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	√		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	V
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		
23	0V (TP3)		V
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM13P
Test Engineer	RMC
Date	

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.04 v	\checkmark	2 mV
+15v TP4	+14.79 v	$\sqrt{}$	2 mV
-15v TP6	-15.08 v	$\sqrt{}$	6 mV

All Outputs smooth DC, no oscillation?	V	

Record Power Supply Currents

Supply	Current
+16.5v	0.293 A
-16.5v	0.232 A

If the supplies are correct, proceed to the next test.

Unit	PUM13P
Test Engineer	RMC
Date	31/1/11

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

TEST RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V	√	V
Ch3	V	√	V
Ch4	V	√	V

ACQUISITION RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	V	
Ch2	V	V	
Ch3	√	V	V
Ch4	1	V	√

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	√
Ch2	\checkmark
Ch3	√
Ch4	√

Unit	PUM13P
Test Engineer	RMC
Date	31/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.201	Pin 1 to Pin 2	1.200	$\sqrt{}$
2	1.201	Pin 5 to Pin 6	1.201	$\sqrt{}$
3	1.201	Pin 9 to Pin 10	1.200	$\sqrt{}$
4	1.200	Pin 13 to Pin 14	1.200	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.965	Pin 3 to Pin 4	0.966	V
2	0.969	Pin 7 to Pin 8	0.969	V
3	0.965	Pin 11 to Pin 12	0.965	V
4	0.967	Pin 15 to Pin 16	0.967	$\sqrt{}$

Unit.....PUM13P
Test EngineerRMC
Date31/1/11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.16		1.0 to 1.3v	0.4 to 2.4dB	V
Ch2	1.16		1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	1.16		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.16		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.51		0.48 to 0.6v	-6.5 to -4.5dB	\checkmark
Ch2	0.49		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.49		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.49		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.13		0.12 to 0.15v	-16.5 to -18.5dB	\checkmark
Ch2	0.13		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.13		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.13		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.47		0.42 to 0.52v	-5.5 to -7.5dB	√
Ch2	0.47		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.47		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.47		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.16		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch2	1.16		1.0 to 1.28v	0.34 to 2.34dB	√
Ch3	1.16		1.0 to 1.28v	0.34 to 2.34dB	√
Ch4	1.16		1.0 to 1.28v	0.34 to 2.34dB	√

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.19		1.0 to 1.3v	0.5 to 2.5dB	V
Ch3	1.19		1.0 to 1.3v	0.5 to 2.5dB	V
Ch4	1.19		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM13P
Test EngineerRMC
Date1/2/11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	7.0 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	7.0 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	7.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	7.0 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	7.5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	8.0 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	8.0 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	8.0 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.035		33 to 45mV	-30dB to -27dB	
Ch2	0.035		33 to 45mV	-30dB to -27dB	
Ch3	0.035		33 to 45mV	-30dB to -27dB	
Ch4	0.036		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.292		0.275 to 0.32V	-12dB to -9dB	√
Ch2	0.291		0.275 to 0.32V	-12dB to -9dB	$\sqrt{}$
Ch3	0.292		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.291		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Simulation Pass		Pass/Fail
Ch1	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch2	0.472		0.46 to 0.49V	-7dB to -6dB	V
Ch3	0.473		0.46 to 0.49V	-7dB to -6dB	V
Ch4	0.471		0.46 to 0.49V	-7dB to -6dB	

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.473		0.47 to 0.49V	-7dB to -6dB	√
Ch3	0.473		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.471		0.47 to 0.49V	-7dB to -6dB	√

Unit	PUM13P
Test Engineer	RMC
Date	

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode Distortion Free?
Ch1	$\sqrt{}$	\checkmark
Ch2	√	
Ch3	√	√
Ch4	√	√ ·

Channel 1 was initially distorted. Ch 1 IC 7 was replaced, which solved this problem.

Unit	PUM13P
Test Engineer	RMC
Date	17/2/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$
•	

Very slowly increase the voltage, and observe the level at which it trips.

|--|

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	3.2 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1.2 seconds

Unit	PUM13P
Test Engineer	RMC
Date	17/2/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.494	24.7 mA
Ch2	0.494	24.7 mA
Ch3	0.497	24.8 mA
Ch4	0.501	25.0 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.653	32.65 mA	>16mA	\checkmark
Ch2	0.654	32.70 mA	>16mA	\checkmark
Ch3	0.656	32.80 mA	>16mA	\checkmark
Ch4	0.658	32.90 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	
Ch2	0.752	37.6 mA	>16mA	
Ch3	0.752	37.6 mA	>16mA	
Ch4	0.752	37.6 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	V
Ch2	0.752	37.6 mA	>16mA	V
Ch3	0.752	37.6 mA	>16mA	V
Ch4	0.751	37.5 mA	>16mA	

Unit	PUM13P
Test Engineer	RMC
Date	17/2/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.194	9.7 mA
Ch2	0.194	9.7 mA
Ch3	0.195	9.75 mA
Ch4	0.197	9,85 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.420	21.0 mA	>16mA	\checkmark
Ch2	0.421	21.0 mA	>16mA	\checkmark
Ch3	0.421	21.0 mA	>16mA	\checkmark
Ch4	0.424	21.2 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	>16mA	\checkmark
Ch2	0.731	36.5 mA	>16mA	V
Ch3	0.730	36.5 mA	>16mA	V
Ch4	0.731	36.5 mA	>16mA	\checkmark

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	>16mA	\checkmark
Ch2	0.750	37.5 mA	>16mA	\checkmark
Ch3	0.750	37.5 mA	>16mA	\checkmark
Ch4	0.750	37.5 mA	>16mA	V

Unit	PUM13P
Test Engineer	RMC
Date	17/2/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.15	5.86	293 mA
Ch2	4.14	5.85	292 mA
Ch3	4.16	5.88	294 mA
Ch4	4.13	5.84	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.55	7.84	392 mA	>400mA	
Ch2	5.56	7.86	393 mA	>400mA	
Ch3	5.57	7.87	394 mA	>400mA	
Ch4	5.54	7.83	391 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	>400mA	√
Ch2	6.70	9.47	473 mA	>400mA	√
Ch3	6.68	9.44	472 mA	>400mA	√
Ch4	6.67	9.43	471 mA	>400mA	\checkmark

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	>400mA	$\sqrt{}$
Ch2	6.73	9.51	475 mA	>400mA	
Ch3	6.71	9.49	474 mA	>400mA	V
Ch4	6.70	9.47	473 mA	>400mA	V

Unit	PUM13P
Test Engineer	RMC
Date	17/2/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v		V		V
-7v		√		V
-5v		√		$\sqrt{}$
-1v		√		$\sqrt{}$
0v		√		$\sqrt{}$
1v		√		$\sqrt{}$
5v		V		V
7v	√	V	$\sqrt{}$	V
10v	√	V	$\sqrt{}$	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009
PUM Driver Board Test Report		
R. M. Cutler, University of Birmingham		

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

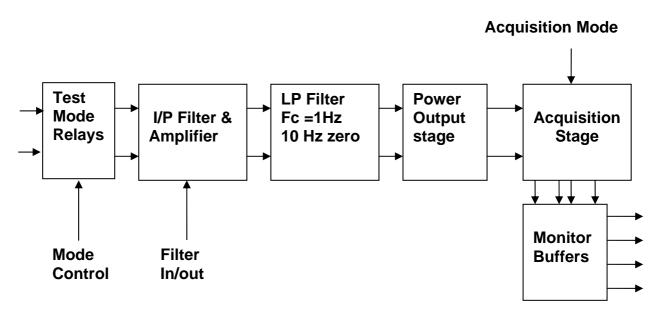
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

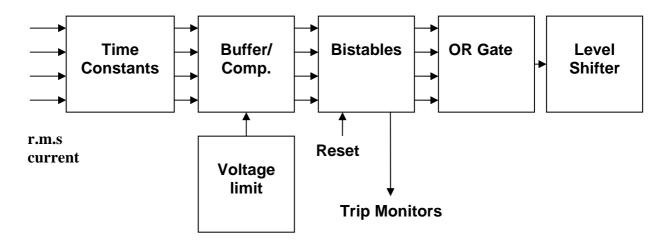
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Links:

Check that the link W4 is present on each channel.

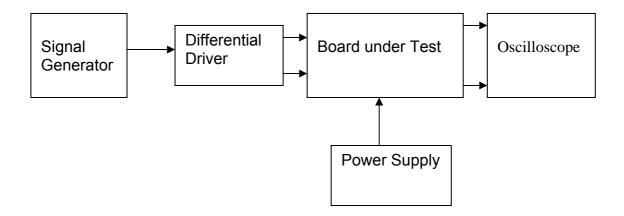
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM14P
Test Engineer	RMC
Date	1/2/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	Photodiode A+ 1 √	
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	$\sqrt{}$		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	√
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	V
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM14P
Test Engineer	RMC
Date	1/2/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.048	$\sqrt{}$	2 mV
+15v TP4	+14.935	$\sqrt{}$	2 mV
-15v TP6	-15.017	$\sqrt{}$	6 mV

All Outputs smooth DC, no oscillation?	٦	

Record Power Supply Currents

Supply	Current
+16.5v	0.309 A
-16.5v	0.248 A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indica	OK?	
	ON	OFF	
Ch1	V	V	1
Ch2	V	V	√
Ch3	V	V	√
Ch4	1	V	V

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1		1	1
Ch2		1	1
Ch3		1	1
Ch4		1	1

ACQUISITION RELAYS

Channel	Indica	Indicator		
	ON	OFF		
Ch1	1	1	V	
Ch2	V	1	1	
Ch3	V	1	1	
Ch4	1	1	1	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	
Ch3	
Ch4	

Unit	PUM14P
Test Engineer	RMC
Date	1/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.20	Pin 1 to Pin 2	1.20	
2	1.20	Pin 5 to Pin 6	1.20	
3	1.20	Pin 9 to Pin 10	1.20	
4	1.20	Pin 13 to Pin 14	1.20	V

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.966	Pin 3 to Pin 4	0.965	V
2	0.966	Pin 7 to Pin 8	0.965	V
3	0.967	Pin 11 to Pin 12	0.966	
4	0.963	Pin 15 to Pin 16	0.962	

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.13		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.16		1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	1.16		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.16		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.48		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch2	0.49		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.59		0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.53		0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.13		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.13		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.13		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.13		0.12 to 0.15v	-16.5 to -18.5dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.473		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.473		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.472		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.473		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	1.166		1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.166		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch3	1.165		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch4	1.166		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$

	Output	-6dB	Sir	mulation	Pass/Fail
Ch1	1.19		1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch2	1.19		1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch3	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch4	1.19		1.0 to 1.3v	0.5 to 2.5dB	√

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5.5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.6 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	5.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	5 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	5.3 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	37 mV		33 to 45mV	-30dB to -27dB	\checkmark
Ch2	37 mV		33 to 45mV	-30dB to -27dB	
Ch3	36 mV		33 to 45mV	-30dB to -27dB	
Ch4	35 mV		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.283		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.294		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.295		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.46 to 0.49V	-7dB to -6dB	
Ch2	0.473		0.46 to 0.49V	-7dB to -6dB	√
Ch3	0.472		0.46 to 0.49V	-7dB to -6dB	√
Ch4	0.473		0.46 to 0.49V	-7dB to -6dB	√

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.47 to 0.49V	-7dB to -6dB	√
Ch2	0.474		0.47 to 0.49V	-7dB to -6dB	√
Ch3	0.473		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	√

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1		V	
Ch2	√	V	
Ch3	√	V	
Ch4	√	√	

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.185v	
----------------------	--

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.5 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1.2 seconds

Unit	PUM14P
Test Engineer	RMC
Date	1/2/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.495	24.75 mA
Ch2	0.499	24.95 mA
Ch3	0.502	25.10 mA
Ch4	0.496	24.80 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.654	32.7 mA	>16mA	
Ch2	0.657	32.8 mA	>16mA	
Ch3	0.658	32.9 mA	>16mA	√
Ch4	0.655	32.75 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	>16mA	
Ch2	0.75	37.5 mA	>16mA	
Ch3	0.75	37.5 mA	>16mA	
Ch4	0.75	37.5 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	>16mA	\checkmark
Ch2	0.75	37.5 mA	>16mA	\checkmark
Ch3	0.75	37.5 mA	>16mA	\checkmark
Ch4	0.75	37.5 mA	>16mA	

Unit	PUM14P
Test Engineer	RMC
Date	1/2/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.195	9.75 mA
Ch2	0.196	9.80 mA
Ch3	0.197	9.85 mA
Ch4	0.195	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.42	21 mA	>16mA	
Ch2	0.42	21 mA	>16mA	√
Ch3	0.42	21 mA	>16mA	
Ch4	0.42	21 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.73	36.5 mA	>16mA	
Ch2	0.73	36.5 mA	>16mA	
Ch3	0.73	36.5 mA	>16mA	
Ch4	0.73	36.5 mA	>16mA	$\sqrt{}$

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	>16mA	
Ch2	0.75	37.5 mA	>16mA	
Ch3	0.75	37.5 mA	>16mA	
Ch4	0.75	37.5 mA	>16mA	V

Unit	PUM14P
Test Engineer	RMC
Date	

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.17	5.89	294 mA
Ch2	4.18	5.91	295 mA
Ch3	4.16	5.88	294 mA
Ch4	4.20	5.94	297 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.58	7.89	394 mA	>400mA	
Ch2	5.58	7.89	394 mA	>400mA	
Ch3	5.57	7.87	393 mA	>400mA	
Ch4	5.60	7.92	396 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473 mA	>400mA	√
Ch2	6.70	9.47	473 mA	>400mA	√
Ch3	6.70	9.47	473 mA	>400mA	√
Ch4	6.69	9.46	473 mA	>400mA	

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.71	9.49	474 mA	>400mA	$\sqrt{}$
Ch2	6.72	9.5	475 mA	>400mA	$\sqrt{}$
Ch3	6.72	9.5	475 mA	>400mA	√
Ch4	6.72	9.5	475 mA	>400mA	√

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable	Ch4 stable ?
-10v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
-7v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
-5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
-1v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
0v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
1v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
7v	V	V	V	V
10v	V	V	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

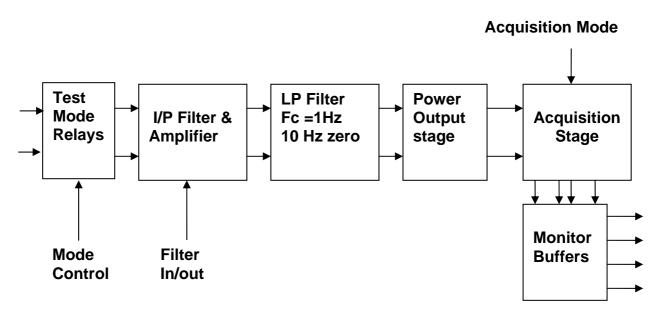
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

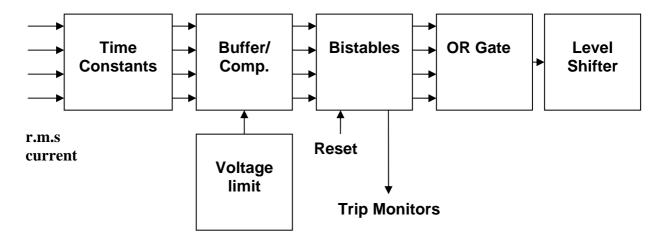
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM15P
Test Engineer	RMC
Date	1/2/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Wire added to ink J7 pin 2 to the reset pulse

Links:

Check that the link W4 is present on each channel.

Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

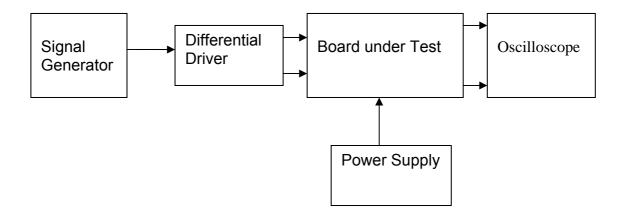
Unit	PUM15P
Test Engineer	RMC
Date	1/2/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	
5	0V	√		
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	V

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	\checkmark
5	0V		_
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	$\sqrt{}$
9	Imon4N	21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		

7

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM15P
Test Engineer	RMC
Date	1/2/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.002	$\sqrt{}$	2 mV
+15v TP4	+14.935	$\sqrt{}$	2 mV
-15v TP6	-15.016	$\sqrt{}$	6 mV

All Outputs smooth DC, no oscillation?	1	
7 • • • • •		

Some pick up present on all regulators: 15 MHz, 2 mV

Record Power Supply Currents

Supply	Current
+16.5v	0.301 A
-16.5v	0.240 A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		$\sqrt{}$	
Ch2		$\sqrt{}$	V
Ch3		$\sqrt{}$	V
Ch4			V

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{}$	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

ACQUISITION RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	√	
Ch3	V	√	
Ch4	√	√	1

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator		
	ON?		
Ch1	\checkmark		
Ch2			
Ch3	√		
Ch4	√		

Unit	PUM15P
Test Engineer	RMC
Date	1/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.201	Pin 1 to Pin 2	1.201	$\sqrt{}$
2	1.201	Pin 5 to Pin 6	1.201	\checkmark
3	1.201	Pin 9 to Pin 10	1.201	V
4	1.201	Pin 13 to Pin 14	1.201	V

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.969	Pin 3 to Pin 4	0.968	$\sqrt{}$
2	0.965	Pin 7 to Pin 8	0.966	V
3	0.968	Pin 11 to Pin 12	0.968	V
4	0.970	Pin 15 to Pin 16	0.970	V

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.13		1.0 to 1.3v	0.4 to 2.4dB	\checkmark
Ch2	1.13		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.16		1.0 to 1.3v	0.4 to 2.4dB	
Ch4	1.13√		1.0 to 1.3v	0.4 to 2.4dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.49		0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.49		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch3	0.53		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch4	0.53		0.48 to 0.6v	-6.5 to -4.5dB	V

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.134		0.12 to 0.15v	-16.5 to -18.5dB	√
Ch2	0.135		0.12 to 0.15v	-16.5 to -18.5dB	√
Ch3	0.134		0.12 to 0.15v	-16.5 to -18.5dB	√
Ch4	0.134		0.12 to 0.15v	-16.5 to -18.5dB	√

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.479		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.481		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.477		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.479		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.17		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch2	1.17		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch3	1.17		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch4	1.17		1.0 to 1.28v	0.34 to 2.34dB	\checkmark

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2		1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch2	1.2		1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch3	1.2		1.0 to 1.3v	0.5 to 2.5dB	\checkmark
Ch4	1.2		1.0 to 1.3v	0.5 to 2.5dB	$\sqrt{}$

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	37 mV		33 to 45mV	-30dB to -27dB	\checkmark
Ch2	36 mV		33 to 45mV	-30dB to -27dB	
Ch3	37 mV		33 to 45mV	-30dB to -27dB	
Ch4	35 mV		33 to 45mV	-30dB to -27dB	\checkmark

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.292		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.294		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch3	0.294		0.275 to 0.32V	-12dB to -9dB	√
Ch4	0.282		0.275 to 0.32V	-12dB to -9dB	\checkmark

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.475		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.476		0.46 to 0.49V	-7dB to -6dB	√
Ch3	0.476		0.46 to 0.49V	-7dB to -6dB	√
Ch4	0.476		0.46 to 0.49V	-7dB to -6dB	\checkmark

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.476		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.477		0.47 to 0.49V	-7dB to -6dB	\checkmark
Ch3	0.477		0.47 to 0.49V	-7dB to -6dB	\checkmark
Ch4	0.477		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$

Unit	PUM15P
Test Engineer	RMC
Date	2/2/11

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{}$	\checkmark
Ch2	$\sqrt{}$	\checkmark
Ch3	$\sqrt{}$	\checkmark
Ch4	$\sqrt{}$	\checkmark

Unit	PUM15P
Test Engineer	RMC
Date	2/2/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	1	
------------	---	--

Very slowly increase the voltage, and observe the level at which it trips.

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 2.3 seconds

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 1.2 seconds

Unit	PUM15P
Test Engineer	RMC
Date	2/2/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.503	25.1 mA
Ch2	0.498	24.9 mA
Ch3	0.493	24.6 mA
Ch4	0.493	24.6 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.658	32.6 mA	>16mA	\checkmark
Ch2	0.656	32.8 mA	>16mA	√
Ch3	0.653	31.7 mA	>16mA	√
Ch4	0.653	31.7 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	√
Ch2	0.750	37.5 mA	>16mA	√
Ch3	0.750	37.5 mA	>16mA	√
Ch4	0.751	37.5 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	√
Ch2	0.750	37.5 mA	>16mA	√
Ch3	0.750	37.5 mA	>16mA	√
Ch4	0.751	37.5 mA	>16mA	√

Unit	PUM15P
Test Engineer	RMC
Date	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.198	9.45 mA
Ch2	0.197	9.85 mA
Ch3	0.194	9.70 mA
Ch4	0.194	9.70 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.425	21.25 mA	>16mA	V
Ch2	0.424	21.20 mA	>16mA	V
Ch3	0.420	21.00 mA	>16mA	V
Ch4	0.421	21.05 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	>16mA	$\sqrt{}$
Ch2	0.729	36.45 mA	>16mA	
Ch3	0.730	36.50 mA	>16mA	
Ch4	0.730	36.50 mA	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	37.45 mA	>16mA	\checkmark
Ch2	0.748	37.40 mA	>16mA	$\sqrt{}$
Ch3	0.749	37.45 mA	>16mA	√
Ch4	0.750	37.50 mA	>16mA	√

Unit	PUM15P
Test Engineer	RMC
Date	2/2/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12	5.83	291 mA
Ch2	4.15	5.87	293 mA
Ch3	4.15	5.87	293 mA
Ch4	4.11	5.81	290 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.53	7.82	391 mA	>400mA	
Ch2	5.55	7.85	392 mA	>400mA	
Ch3	5.56	7.86	393 mA	>400mA	
Ch4	5.53	7.82	391 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	>400mA	√
Ch2	6.68	9.44	472 mA	>400mA	√
Ch3	6.68	9.44	472 mA	>400mA	√
Ch4	6.67	9.43	471 mA	>400mA	\checkmark

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	>400mA	$\sqrt{}$
Ch2	6.71	9.49	474 mA	>400mA	
Ch3	6.71	9.49	474 mA	>400mA	V
Ch4	6.71	9.49	474 mA	>400mA	V

Unit	PUM15P
Test Engineer	RMC
Date	2/2/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	V	V	V	V
-7v	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
-5v	V	V	V	V
-1v	V	V	V	V
0v	V	V	V	V
1v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
5v	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
7v	V	V	V	V
10v	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009
PUM Driver Board Test Report		
R. M. Cutler, University of Birmingham		

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

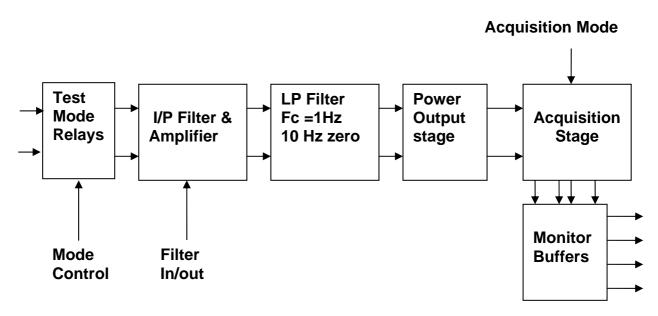
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit......PUM16P
Test EngineerRMC
Date7/2/2011

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

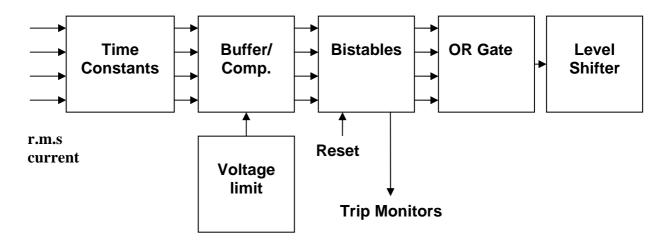
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM16P
Test Engineer	RMC
Date	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link in place (J7/2 to 18)

Links:

Check that the link W4 is present on each channel.

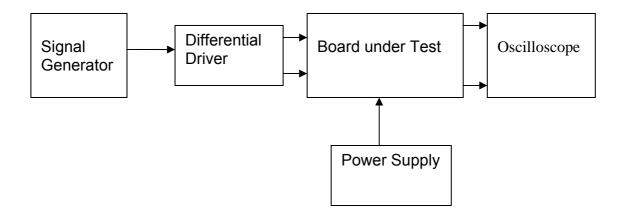
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION To J1 PIN		OK?
1	PD1P	Photodiode A+	Photodiode A+ 1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+ 4		\checkmark
5	0V	$\sqrt{}$		_
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	$\sqrt{}$		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	√
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	V
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		V
23	0V (TP3)		
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.08 v	√	2 mV
+15v TP4	+14.96 v	√	2.5 mV
-15v TP6	-1501 v	√	7 mV

All Outputs smooth DC, no oscillation?	٦	

Record Power Supply Currents

Supply	Current
+16.5v	0.312 A
-16.5v	0.251 A

If the supplies are correct, proceed to the next test.

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indica	Indicator		
	ON	OFF		
Ch1	V	V	√	
Ch2	V	V	√	
Ch3	V	V	√	
Ch4	V		√	

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	1	V
Ch2	V	1	V
Ch3	V	1	V
Ch4	V	1	V

ACQUISITION RELAYS

Channel	Indica	OK?	
	ON	OFF	
Ch1	√	V	√
Ch2	V	V	V
Ch3	V		√
Ch4	√	1	√

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	V
Ch2	V
Ch3	
Ch4	

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.001	Pin 1 to Pin 2	1.001	$\sqrt{}$
2	1.001	Pin 5 to Pin 6	1.001	$\sqrt{}$
3	1.001	Pin 9 to Pin 10	1.001	$\sqrt{}$
4	1.001	Pin 13 to Pin 14	1.001	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.806	Pin 3 to Pin 4	0.806	$\sqrt{}$
2	0.808	Pin 7 to Pin 8	0.808	$\sqrt{}$
3	0.806	Pin 11 to Pin 12	0.805	√
4	0.804	Pin 15 to Pin 16	0.804	$\sqrt{}$

Unit......PUM16P
Test EngineerRMC
Date7/2/2011

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.1		1.0 to 1.3v	0.4 to 2.4dB	\checkmark
Ch2	1.1		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.1		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.1		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch2	0.5		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch3	0.5		0.48 to 0.6v	-6.5 to -4.5dB	V
Ch4	0.5		0.48 to 0.6v	-6.5 to -4.5dB	V

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.130		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.131		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.130		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.130		0.12 to 0.15v	-16.5 to -18.5dB	√

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.470		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch2	0.470		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch3	0.474		0.42 to 0.52v	-5.5 to -7.5dB	\checkmark
Ch4	0.473		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	1.16		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch2	1.16		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch3	1.16		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch4	1.16		1.0 to 1.28v	0.34 to 2.34dB	√

	Output	-6dB	Si	mulation	Pass/Fail
Ch1	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch3	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch4	1.19		1.0 to 1.3v	0.5 to 2.5dB	√

Unit.....PUM16P
Test EngineerRMC
Date7/2/2011

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.3 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	35 mV		33 to 45mV	-30dB to -27dB	√
Ch2	35 mV		33 to 45mV	-30dB to -27dB	\checkmark
Ch3	35 mV		33 to 45mV	-30dB to -27dB	
Ch4	34 mV		33 to 45mV	-30dB to -27dB	√

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.289		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.289		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch3	0.291		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch4	0.293		0.275 to 0.32V	-12dB to -9dB	\checkmark

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.472		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch3	0.472		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch4	0.472		0.46 to 0.49V	-7dB to -6dB	√

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.47 to 0.49V	-7dB to -6dB	V
Ch2	0.473		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.473		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.473		0.47 to 0.49V	-7dB to -6dB	V

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{}$	\checkmark
Ch2	√	V
Ch3	√	V
Ch4	√	√

Unit......PUM16P
Test EngineerRMC
Date7/2/2011

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.185 v	
-----------------------	--

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.4 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to tri	p?	1.3 seconds

Unit	PUM16P
Test Engineer	RMC
Date	

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)	
Ch1	0.501	25 mA	
Ch2	0.500	25 mA	
Ch3	0.498	24.9 mA	
Ch4	0.496	24.8 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.657	32.8 mA	>16mA	V
Ch2	0.657	32.8 mA	>16mA	V
Ch3	0.656	32.8 mA	>16mA	V
Ch4	0.656	32.8 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	
Ch2	0.750	37.5 mA	>16mA	
Ch3	0.751	37.5 mA	>16mA	
Ch4	0.751	37.5 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	\checkmark
Ch2	0.750	37.5 mA	>16mA	\checkmark
Ch3	0.750	37.5 mA	>16mA	\checkmark
Ch4	0.751	37.5 mA	>16mA	\checkmark

Unit	PUM16P
Test Engineer	RMC
Date	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)	
Ch1	0.501	25.0 mA	
Ch2	0.500	25.0 mA	
Ch3	0.498	24.9 mA	
Ch4	0.496	24.8 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.657	32.85 mA	>16mA	
Ch2	0.657	32.85 mA	>16mA	
Ch3	0.656	32.8 mA	>16mA	
Ch4	0.655	32.75 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	\checkmark
Ch2	0.751	37.5 mA	>16mA	V
Ch3	0.750	37.5 mA	>16mA	V
Ch4	0.752	37.6 mA	>16mA	\checkmark

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	√
Ch2	0.750	37.5 mA	>16mA	√
Ch3	0.750	37.5 mA	>16mA	√
Ch4	0.752	37.6 mA	>16mA	\checkmark

Unit	PUM16P
Test Engineer	RMC
Date	

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12	5.82	291 mA
Ch2	4.12	5.82	291 mA
Ch3	4.15	5.86	293 mA
Ch4	4.17	5.89	295 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.53	7.82	391 mA	>400mA	
Ch2	5.54	7.83	391 mA	>400mA	
Ch3	5.56	7.86	393 mA	>400mA	
Ch4	5.58	7.89	394 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.41	470 mA	>400mA	√
Ch2	6.68	9.44	472 mA	>400mA	√
Ch3	6.68	9.44	472 mA	>400mA	√
Ch4	6.69	9.46	473 mA	>400mA	\checkmark

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	>400mA	$\sqrt{}$
Ch2	6.72	9.50	475 mA	>400mA	
Ch3	6.72	9.50	475 mA	>400mA	V
Ch4	6.73	9.51	476 mA	>400mA	V

Unit	PUM16P
Test Engineer	RMC
Date	7/2/2011

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v		V		V
-7v		V		V
-5v		√		$\sqrt{}$
-1v		√		$\sqrt{}$
0v		√		$\sqrt{}$
1v		√		$\sqrt{}$
5v		V		V
7v	√	V	$\sqrt{}$	V
10v	√	V	$\sqrt{}$	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

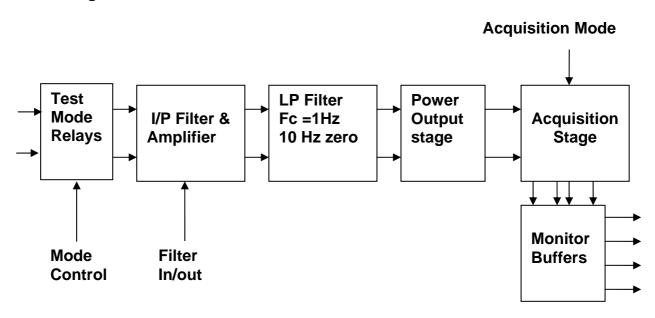
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/


http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit......PUM17P
Test EngineerRMC
Date9/2/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

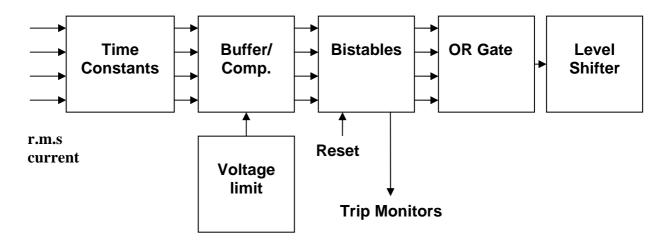
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit.....PUM17P
Test EngineerRMC
Date9/2/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit......PUM1√7P
Test EngineerRMC
Date9/2/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link in place (J7/2 to 18)

Links:

Check that the link W4 is present on each channel.

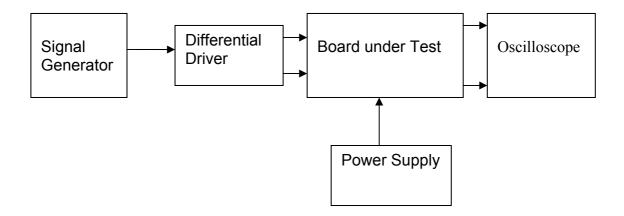
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
5	0V			
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	√
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	
9	Imon4N		21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.01 v	$\sqrt{}$	2 mV
+15v TP4	14.79 v		2 mV
-15v TP6	-15.08		7 mV

All Ou	utputs smooth DC, no oscillation?	V	

Some pick up

Record Power Supply Currents

Supply	Current
+16.5v	0.303 A
-16.5v	0.242 A

If the supplies are correct, proceed to the next test.

Unit.....PUM17P
Test EngineerRMC
Date9/2/11

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	V		V

ACQUISITION RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	$\sqrt{}$	V	
Ch3		V	
Ch4	√		

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	V
Ch3	√
Ch4	

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.199	Pin 1 to Pin 2	1.198	V
2	0.199	Pin 5 to Pin 6	1.198	V
3	0.199	Pin 9 to Pin 10	1.198	$\sqrt{}$
4	0.199	Pin 13 to Pin 14	1.198	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.963	Pin 3 to Pin 4	0.963	$\sqrt{}$
2	0.965	Pin 7 to Pin 8	0.965	$\sqrt{}$
3	0.963	Pin 11 to Pin 12	0.963	√
4	0.965	Pin 15 to Pin 16	0.965	$\sqrt{}$

Unit......PUM17P
Test EngineerRMC
Date9/2/11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.2		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.2		1.0 to 1.3v	0.4 to 2.4dB	V
Ch3	1.2		1.0 to 1.3v	0.4 to 2.4dB	V
Ch4	1.2		1.0 to 1.3v	0.4 to 2.4dB	V

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.5		0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.53		0.48 to 0.6v	-6.5 to -4.5dB	
Ch3	0.53		0.48 to 0.6v	-6.5 to -4.5dB	
Ch4	0.56		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.132		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.136		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.133		0.12 to 0.15v	-16.5 to -18.5dB	√

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.475		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.472		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.475		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.476		0.42 to 0.52v	-5.5 to -7.5dB	√

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.17		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch2	1.17		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch3	1.17		1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.17		1.0 to 1.28v	0.34 to 2.34dB	√

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.19		1.0 to 1.3v	0.5 to 2.5dB	
Ch3	1.19		1.0 to 1.3v	0.5 to 2.5dB	
Ch4	1.19		1.0 to 1.3v	0.5 to 2.5dB	

Unit.....PUM17P
Test EngineerRMC
Date9/2/11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.3 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6 mV		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6 mV		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	36.5		33 to 45mV	-30dB to -27dB	\checkmark
Ch2	34.4		33 to 45mV	-30dB to -27dB	$\sqrt{}$
Ch3	34.5		33 to 45mV	-30dB to -27dB	
Ch4	35.8		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.293		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.292		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.292		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.473		0.46 to 0.49V	-7dB to -6dB	
Ch2	0.474		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.473		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.474		0.46 to 0.49V	-7dB to -6dB	√

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.474		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.474		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.474		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.474		0.47 to 0.49V	-7dB to -6dB	V

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{}$	$\sqrt{}$
Ch2	√	
Ch3	√	
Ch4	√	

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	
Very slowly increase the voltage, and c	observe the level at which it trips.
Trip voltage?	1.17

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.5 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1 second

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.494	24.7 mA
Ch2	0.492	24.6 mA
Ch3	0.490	24.5 mA
Ch4	0.494	24.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.654	32.7 mA	>16mA	
Ch2	0.652	32.6 mA	>16mA	
Ch3	0.651	32.5 mA	>16mA	
Ch4	0.655	32.7 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	>16mA	
Ch2	0.75	37.5 mA	>16mA	
Ch3	0.75	37.5 mA	>16mA	
Ch4	0.75	37.5 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	>16mA	
Ch2	0.75	37.5 mA	>16mA	
Ch3	0.749	37.4 mA	>16mA	
Ch4	0.75	37.5 mA	>16mA	V

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.194	9.7 mA
Ch2	0.192	9.6 mA
Ch3	0.192	9.6 mA
Ch4	0.196	9.8 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.421	21.0 mA	>16mA	$\sqrt{}$
Ch2	0.418	20.9 mA	>16mA	$\sqrt{}$
Ch3	0.419	20.9 mA	>16mA	$\sqrt{}$
Ch4	0.423	21.1 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.730	36.5 mA	>16mA	
Ch2	0.729	36.4 mA	>16mA	
Ch3	0.729	36.4 mA	>16mA	
Ch4	0.729	36.4 mA	>16mA	$\sqrt{}$

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	36.4 mA	>16mA	
Ch2	0.749	36.4 mA	>16mA	
Ch3	0.748	37.4 mA	>16mA	
Ch4	0.749	36.4 mA	>16mA	

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.16	5.88	294 mA
Ch2	4.14	5.85	292 mA
Ch3	4.16	5.88	294 mA
Ch4	4.14	5.85	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.57	7.88	394 mA	>400mA	
Ch2	5.56	7.86	393 mA	>400mA	
Ch3	5.57	7.88	394 mA	>400mA	
Ch4	5.55	7.85	392 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.68	9.44	472 mA	>400mA	$\sqrt{}$
Ch2	6.68	9.44	472 mA	>400mA	$\sqrt{}$
Ch3	6.68	9.44	472 mA	>400mA	
Ch4	6.67	9.44	472 mA	>400mA	$\sqrt{}$

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.71	9.49	474 mA	>400mA	$\sqrt{}$
Ch2	6.71	9.49	474 mA	>400mA	$\sqrt{}$
Ch3	6.71	9.49	474 mA	>400mA	V
Ch4	6.70	9.47	473 mA	>400mA	V

Unit.....PUM17P
Test EngineerRMC
Date9/2/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v				$\sqrt{}$
-7v				$\sqrt{}$
-5v				$\sqrt{}$
-1v				
0v				
1v				
5v		V		
7v		√		
10v		√		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009			
	PUM Driver Board Test Report				
R. M. Cutler, University of Birmingham					

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

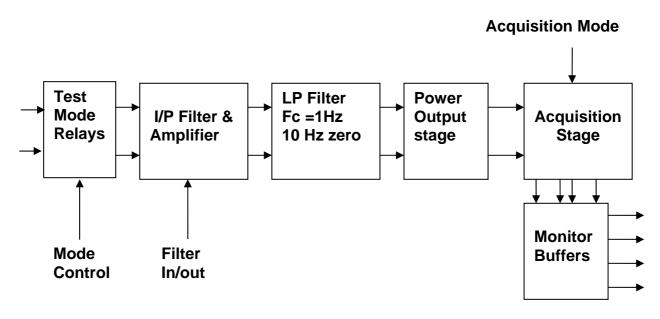
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit......PUM18P
Test EngineerRMC
Date10.2.11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

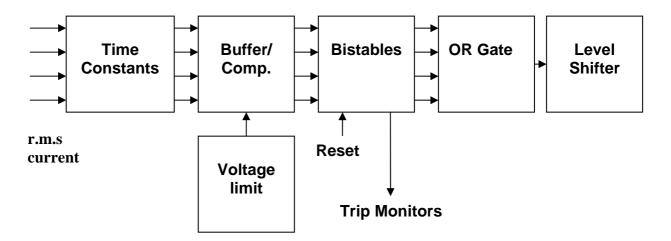
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link in place (J7/2 to 18)

Links:

Check that the link W4 is present on each channel.

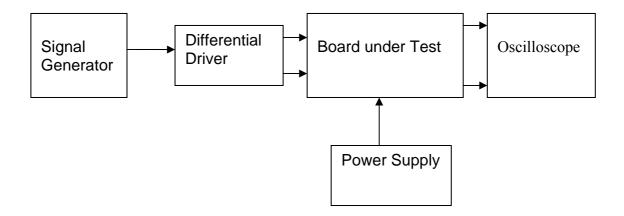
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V	$\sqrt{}$		
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{}$
2	Imon2P		6	$\sqrt{}$
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	$\sqrt{}$
5	0V	$\sqrt{}$		
6	Imon1N		18	$\sqrt{}$
7	Imon2N		19	$\sqrt{}$
8	Imon3N		20	√
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√ V
24	0V (TP3)		V
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	11.99	$\sqrt{}$	1.2 mV
+15v TP4	14.96	$\sqrt{}$	1.3 mV
-15v TP6	-14.96	$\sqrt{}$	7 mV

All Outputs smooth DC, no oscillation?	V	
7 th Catpate officeth Bo, no coomation.	'	

Record Power Supply Currents

Supply	Current
+16.5v	0.304
-16.5v	0.244

If the supplies are correct, proceed to the next test.

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1			V
Ch2			V
Ch3			V
Ch4			

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	V		V

ACQUISITION RELAYS

Channel	Indica	Indicator		
	ON	OFF		
Ch1	V	√	√ V	
Ch2		V		
Ch3		V		
Ch4	√	1	$\sqrt{}$	

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	√ ·
Ch3	√
Ch4	

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.20	Pin 1 to Pin 2	1.20	$\sqrt{}$
2	1.20	Pin 5 to Pin 6	1.20	$\sqrt{}$
3	1.20	Pin 9 to Pin 10	1.20	$\sqrt{}$
4	1.20	Pin 13 to Pin 14	1.20	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.965	Pin 3 to Pin 4	0.964	
2	0.964	Pin 7 to Pin 8	0.964	V
3	0.966	Pin 11 to Pin 12	0.966	√
4	0.965	Pin 15 to Pin 16	0.965	

Unit......PUM18P
Test EngineerRMC
Date10.2.11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.16		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.16		1.0 to 1.3v	0.4 to 2.4dB	V
Ch3	1.16		1.0 to 1.3v	0.4 to 2.4dB	V
Ch4	1.20		1.0 to 1.3v	0.4 to 2.4dB	V

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.53		0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.55		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$
Ch3	0.54		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$
Ch4	0.55		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.131		0.12 to 0.15v	-16.5 to -18.5dB	$\sqrt{}$
Ch2	0.130		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.130		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.133		0.12 to 0.15v	-16.5 to -18.5dB	√

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.475		0.42 to 0.52v	-5.5 to -7.5dB	
Ch2	0.473		0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.474		0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.475		0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.165		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch2	1.165		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch3	1.165		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch4	1.165		1.0 to 1.28v	0.34 to 2.34dB	

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.19		1.0 to 1.3v	0.5 to 2.5dB	√
Ch2	1.19		1.0 to 1.3v	0.5 to 2.5dB	
Ch3	1.19		1.0 to 1.3v	0.5 to 2.5dB	√ V
Ch4	1.19		1.0 to 1.3v	0.5 to 2.5dB	

Unit.....PUM18P
Test EngineerRMC
Date10.2.11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5 mV		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5 mV		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	7.0		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6.7		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.4		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.4		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sir	mulation	Pass/Fail
Ch1	35.7		33 to 45mV	-30dB to -27dB	\checkmark
Ch2	35.0		33 to 45mV	-30dB to -27dB	
Ch3	33.9		33 to 45mV	-30dB to -27dB	
Ch4	35.1		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.292		0.275 to 0.32V	-12dB to -9dB	
Ch2	0.292		0.275 to 0.32V	-12dB to -9dB	√
Ch3	0.294		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.294		0.275 to 0.32V	-12dB to -9dB	√

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.470		0.46 to 0.49V	-7dB to -6dB	\checkmark
Ch2	0.471		0.46 to 0.49V	-7dB to -6dB	
Ch3	0.475		0.46 to 0.49V	-7dB to -6dB	
Ch4	0.475		0.46 to 0.49V	-7dB to -6dB	√

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.471		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.472		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.475		0.47 to 0.49V	-7dB to -6dB	
Ch4	0.475		0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f=1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{}$	$\sqrt{}$
Ch2		
Ch3	√	
Ch4	√	√

Unit......PUM18P
Test EngineerRMC
Date10.2.11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage?	1.18 v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 2.2 seconds

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip?	1.25 seconds

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.495	24.75 mA
Ch2	0.498	24.90 mA
Ch3	0.493	23.65 mA
Ch4	0.491	24.55 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.654	32.7 mA	>16mA	$\sqrt{}$
Ch2	0.656	32.8 mA	>16mA	$\sqrt{}$
Ch3	0.653	32.6 mA	>16mA	$\sqrt{}$
Ch4	0.651	32.5 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	
Ch2	0.750	37.5 mA	>16mA	
Ch3	0.749	37.4 mA	>16mA	
Ch4	0.750	37.5 mA	>16mA	V

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	$\sqrt{}$
Ch2	0.750	37.5 mA	>16mA	$\sqrt{}$
Ch3	0.749	37.3 mA	>16mA	$\sqrt{}$
Ch4	0.750	37.5 mA	>16mA	$\sqrt{}$

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo/20	
Ch1	0.195	9.75 mA
Ch2	0.196	9.80 mA
Ch3	0.194	9.70 mA
Ch4	0.193	9.65 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.423	21.15 mA	>16mA	
Ch2	0.423	21.15 mA	>16mA	
Ch3	0.421	21.05 mA	>16mA	√
Ch4	0.419	20.95 mA	>16mA	√

1 KHz

•	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail	
Ch1	0.729	36.45 mA	>16mA	√	
Ch2	0.729	36.45 mA	>16mA	√	
Ch3	0.729	36.45 mA	>16mA	√	
Ch4	0.729	36.45 mA	>16mA	V	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	>16mA	
Ch2	0.749	37.4 mA	>16mA	
Ch3	0.748	37.4 mA	>16mA	
Ch4	0.750	37.5 mA	>16mA	

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.161	5.88	294 mA
Ch2	4.157	5.87	293 mA
Ch3	4.147	5.86	293 mA
Ch4	4.154	5.87	293 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.56	7.86	393 mA	>400mA	
Ch2	5.56	7.86	393 mA	>400mA	
Ch3	5.55	7.85	392 mA	>400mA	
Ch4	5.55	7.85	392 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	>400mA	
Ch2	6.67	9.43	471 mA	>400mA	
Ch3	6.67	9.43	471 mA	>400mA	
Ch4	6.66	9.41	471 mA	>400mA	$\sqrt{}$

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473 mA	>400mA	$\sqrt{}$
Ch2	6.69	9.46	473 mA	>400mA	$\sqrt{}$
Ch3	6.69	9.46	473 mA	>400mA	√
Ch4	6.68	9.44	472 mA	>400mA	√

Unit	PUM18P
Test Engineer	RMC
Date	10.2.11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v				V
-7v	V	V	V	V
-5v				$\sqrt{}$
-1v				$\sqrt{}$
0v				$\sqrt{}$
1v				$\sqrt{}$
5v	V	V	V	V
7v				V
10v	V	V	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291	Advanced LIGO UK	December 2009	
	PUM Driver Board Test Report		
R. M. Cutler, University of Birmingham		mingham	

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

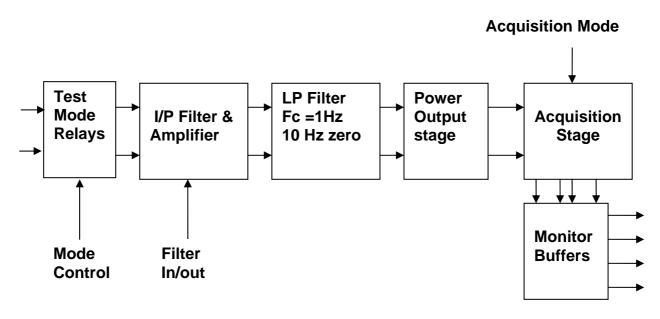
Department of Physics University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit......PUM19P
Test EngineerRMC
Date14/2/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- 12.3 Acquisition Mode
- 13. DC Stability

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

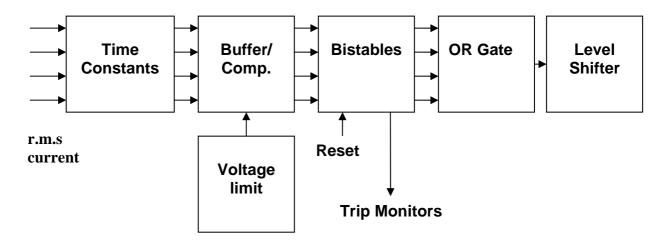
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link in place (J7/2 to 18)

Ch2 IC7 faulty: replaced.

Links:

Check that the link W4 is present on each channel.

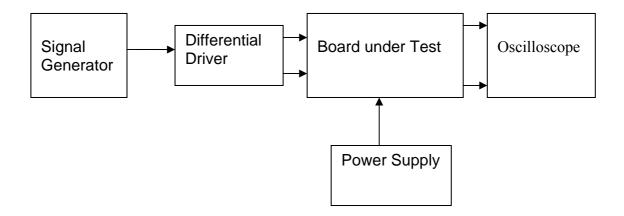
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
5	0V	$\sqrt{}$		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	√
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	$\sqrt{}$
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		
6	Imon1N	18	$\sqrt{}$
7	Imon2N	19	$\sqrt{}$
8	Imon3N	20	√
9	Imon4N	21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.011	$\sqrt{}$	1.5 mV
+15v TP4	14.832	$\sqrt{}$	2 mV
-15v TP6	-15.107	$\sqrt{}$	7 mV

All Outputs smooth DC, no oscillation?	V	

Some pickup present

Record Power Supply Currents

Supply	Current
+16.5v	0.315
-16.5v	0.254

If the supplies are correct, proceed to the next test.

Unit	PUM19P
Test Engineer	RMC
Date	

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indica	Indicator	
	ON	OFF	
Ch1	V	V	√
Ch2	V	V	V
Ch3	$\sqrt{}$	V	
Ch4			V

TEST RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1			V
Ch2			V
Ch3			V
Ch4			V

ACQUISITION RELAYS

Channel	Indica	Indicator	
	ON	OFF	
Ch1			V
Ch2			V
Ch3			
Ch4	V		V

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	V
Ch2	V
Ch3	V
Ch4	√

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.200	Pin 1 to Pin 2	1.200	$\sqrt{}$
2	1.200	Pin 5 to Pin 6	1.200	$\sqrt{}$
3	1.200	Pin 9 to Pin 10	1.200	$\sqrt{}$
4	1.200	Pin 13 to Pin 14	1.200	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.96	Pin 3 to Pin 4	0.96	$\sqrt{}$
2	0.96	Pin 7 to Pin 8	0.96	
3	0.96	Pin 11 to Pin 12	0.96	$\sqrt{}$
4	0.96	Pin 15 to Pin 16	0.96	

Unit......PUM19P
Test EngineerRMC
Date14/2/11

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.17		1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.17		1.0 to 1.3v	0.4 to 2.4dB	
Ch3	1.17		1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.17		1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.52		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$
Ch2	0.52		0.48 to 0.6v	-6.5 to -4.5dB	
Ch3	0.51		0.48 to 0.6v	-6.5 to -4.5dB	
Ch4	0.53		0.48 to 0.6v	-6.5 to -4.5dB	$\sqrt{}$

10Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	0.132		0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.130		0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.131		0.12 to 0.15v	-16.5 to -18.5dB	√

100Hz

	Output	-6dB	Simulation		Pass/Fail
Ch1	0.470		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch2	0.472		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch3	0.478		0.42 to 0.52v	-5.5 to -7.5dB	$\sqrt{}$
Ch4	0.475		0.42 to 0.52v	-5.5 to -7.5dB	V

1 KHz

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.165		1.0 to 1.28v	0.34 to 2.34dB	\checkmark
Ch2	1.165		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch3	1.166		1.0 to 1.28v	0.34 to 2.34dB	$\sqrt{}$
Ch4	1.166		1.0 to 1.28v	0.34 to 2.34dB	

	Output	-6dB	Simulation		Pass/Fail
Ch1	1.189		1.0 to 1.3v	0.5 to 2.5dB	
Ch2	1.189		1.0 to 1.3v	0.5 to 2.5dB	V
Ch3	1.189		1.0 to 1.3v	0.5 to 2.5dB	V
Ch4	1.188		1.0 to 1.3v	0.5 to 2.5dB	

Unit.....PUM19P
Test EngineerRMC
Date14/2/11

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	5.4		0.3 to 0.4mV	-70dB to -65dB	
Ch2	5.5		0.3 to 0.4mV	-70dB to -65dB	
Ch3	5.5		0.3 to 0.4mV	-70dB to -65dB	
Ch4	5.4		0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	6.64		3.3 to 4.2mV	-50dB to -45dB	
Ch2	6.57		3.3 to 4.2mV	-50dB to -45dB	
Ch3	6.61		3.3 to 4.2mV	-50dB to -45dB	
Ch4	6.47		3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	-6dB	Sir	mulation	Pass/Fail
Ch1	39.6		33 to 45mV	-30dB to -27dB	
Ch2	39.4		33 to 45mV	-30dB to -27dB	
Ch3	39.7		33 to 45mV	-30dB to -27dB	
Ch4	39.2		33 to 45mV	-30dB to -27dB	

100Hz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.294		0.275 to 0.32V	-12dB to -9dB	\checkmark
Ch2	0.291		0.275 to 0.32V	-12dB to -9dB	
Ch3	0.293		0.275 to 0.32V	-12dB to -9dB	
Ch4	0.290		0.275 to 0.32V	-12dB to -9dB	

1 KHz

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.472		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	0.473		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch3	0.470		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch4	0.472		0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$

	Output	-6dB	Sim	ulation	Pass/Fail
Ch1	0.474		0.47 to 0.49V	-7dB to -6dB	
Ch2	0.475		0.47 to 0.49V	-7dB to -6dB	V
Ch3	0.471		0.47 to 0.49V	-7dB to -6dB	V
Ch4	0.472		0.47 to 0.49V	-7dB to -6dB	

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f=1 KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	√	
Ch2	√	
Ch3	V	
Ch4	√	

Unit......PUM19P
Test EngineerRMC
Date14/2/11

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, press the reset button on the test box or turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	V	
•	•	

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage? 1.19v

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

	Time taken to trip?	2.5 seconds
--	---------------------	-------------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to tri	p?	1.5 seconds

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.495	24.75 mA
Ch2	0.493	24.65 mA
Ch3	3 0.495 24.75 mA	
Ch4	0.494	24.70 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.653	32.65 mA	>16mA	
Ch2	0.653	32.65 mA	>16mA	
Ch3	0.654	32.70 mA	>16m A	
Ch4	0.654	32.70 mA	>16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	
Ch2	0.751	37.5 mA	>16mA	
Ch3	0.751	37.5 mA	>16mA	
Ch4	0.750	37.5 mA	>16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	>16mA	
Ch2	0.751	37.5 mA	>16mA	
Ch3	0.751	37.5 mA	>16mA	
Ch4	0.750	37.5 mA	>16mA	

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	o r.m.s lo r.m.s (Vo/20)	
Ch1	0.193	9.65 mA	
Ch2	0.193	9.65 mA	
Ch3	0.196	9.80 mA	
Ch4	0.195	9.75 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.418	20.9 mA	>16mA	\checkmark
Ch2	0.420	21.0 mA	>16mA	
Ch3	0.424	21.2 mA	>16mA	
Ch4	0.422	21.1 mA	>16mA	√

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.4 mA	>16mA	<u> </u>
Ch2	0.730	36.5 mA	>16mA	√
Ch3	0.730	36.5 mA	>16mA	√
Ch4	0.730	36.5 mA	>16mA	

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	>16mA	
Ch2	0.750	37.5 mA	>16mA	
Ch3	0.749	37.4 mA	>16mA	
Ch4	0.749	37.4 mA	>16mA	V

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.16	5.88	294 mA
Ch2	4.15	5.57	293 mA
Ch3	4.16	5.88	294 mA
Ch4	4.13	5.84	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.56	7.86	393 mA	>400mA	
Ch2	5.56	7.86	393 mA	>400mA	
Ch3	5.56	7.86	393 mA	>400mA	
Ch4	5.54	7.83	391 mA	>400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	>400mA	$\sqrt{}$
Ch2	6.68	9.44	472 mA	>400mA	$\sqrt{}$
Ch3	6.67	9.43	471 mA	>400mA	$\sqrt{}$
Ch4	6.68	9.44	472 mA	>400mA	$\sqrt{}$

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	>400mA	$\sqrt{}$
Ch2	6.72	9.50	475 mA	>400mA	
Ch3	6.70	9.47	473 mA	>400mA	
Ch4	6.71	9.49	474 mA	>400mA	

Unit	PUM19P
Test Engineer	RMC
Date	14/2/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable	Ch3 stable	Ch4 stable
-10v	$\sqrt{}$			$\sqrt{}$
-7v	V	V	V	V
-5v				
-1v	V	V	V	V
0v				
1v				
5v	V	V	V	V
7v	V			V
10v	V	V	V	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900291-V2 Advanced LIGO UK **June 2010 PUM Driver Board Test Report** R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research **University of Glasgow**

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk

Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk

Department of Physics University of Strathclyde

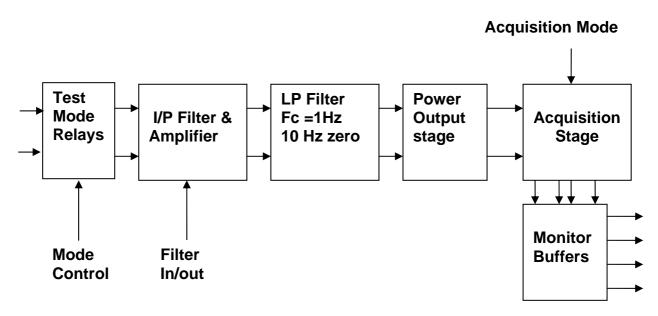
Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


Unit	PUM1P	Serial No
Test Engineer .	RMC	
Date	20/12/09	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- **8.1 Amplifier Monitors**
- **8.2 Coil Monitors**
- 9. Filter Frequency Response Test
- 10. Distortion
- 11. Trip Circuit tests
- 12 Load Tests
- 12.1 Noisy Mode
- 12.2 Low noise Mode
- **12.3 Acquisition Mode**

1. Description

Block diagram

Description

Each PUM Driver board consists of four identical channels and the power regulators which provide regulated power to the four channels.

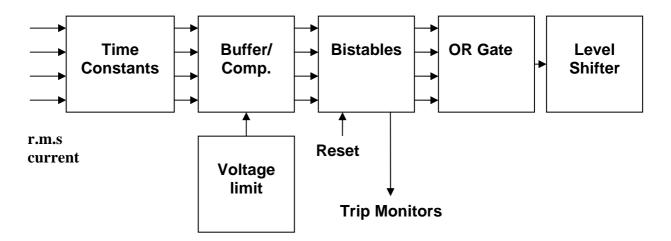
Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block has a gain of 1.2.

The third block contains a low pass filter with a corner frequency of 0.5 Hz, followed by a complimentary zero at 5 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 0.5 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 5 Hz, after which the characteristic levels off. This filter may be switched in and out by command as required under relay control.

The third block also contains a high pass section which increases the gain at high frequencies to give the required dynamic range at high frequencies.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is wired to have unity gain, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The current limit is set of the driver is set to 0. 5A


The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

Unit	PUM1P	Serial No
Test Engineer .	RMC	
Date	20/12/09	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Scope	Tektronix	2225	
PSU	Farnell	LT30-1	
PSU	Farnell	LT30-2	
Calibrator	Time	1044	

Unit	PUM1P	Serial No
Test Engineer .	RMC	
Date	20/12/09	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links

Check that the link W4 is present on each channel.

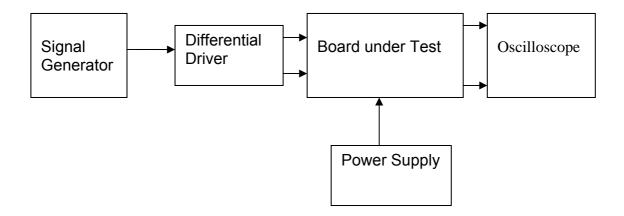
Connect the test lead to ground pins 1,3,5 and 7 on P3, the Monitor Input 16 way header.

Unit	PUM1P	Serial No
Test Engineer .	RMC	
Date	20/12/09	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	√
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V √		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL			To J1 PIN	OK?
1	Imon1P			5	√
2	Imon2P			6	
3	Imon3P			7	
4	Imon4P			8	
	5	0V	1		
6	Imon1N			18	
7	Imon2N			19	
8	Imon3N			20	V
9	Imon4N			21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	PUM1PSerial	No
Test Engineer	RMC	
Date	20/12/09	

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Ensure that the test ribbon cable is connected to P3, and that pins 1,3,5 and 7 are grounded.

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Press the reset button on the test box.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.0v	$\sqrt{}$	1mV p/p
+15v TP4	14.9v	√	1mV p/p
-15v TP6	-15.145v	√	5mV p/p

All Outputs smooth DC, no oscillation?	OK

Record Power Supply Currents

Supply	Current
+16.5v	0.55A
-16.5v	-0.25A

If the supplies are correct, proceed to the next test.

Unit	PUM1PSerial No	
Test Engineer	RMC	
Date	20/12/09	

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	1	V	√
Ch2	1	V	$\sqrt{}$
Ch3	1	V	$\sqrt{}$
Ch4	1	V	V

TEST RELAYS √

Channel	Indicator		OK?
	ON	OFF	
Ch1			V
Ch2			V
Ch3			V
Ch4			V

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	1	V	1
Ch2	1	V	1
Ch3	1	1	V
Ch4	1	1	1

Press the Reset button on the test box. Ensure that the "Not Tripped" indicators are on.

NOT TRIPPED indicators

Channel	Indicator
	ON?
Ch1	
Ch2	
Ch3	
Ch4	

Unit	PUM1PSerial No	
Test Engineer	RMC	
Date	20/12/00	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP10 and TP12.

Measure the current monitor outputs and compare with the voltage between the outputs of R29 and R130. Repeat for each channel.

A ribbon cable grounding pins 1, 3, 5 and 7 is necessary in the r.m.s header socket. Press the Reset button on the test box.

Ensure that the "Not Tripped" lights are on.

8.1 Voltage Monitors

Ch.	Output: TP10 to TP12	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.200	Pin 1 to Pin 2	1.200	$\sqrt{}$
2	1.200	Pin 5 to Pin 6	1.200	$\sqrt{}$
3	1.200	Pin 9 to Pin 10	1.200	$\sqrt{}$
4	1.200	Pin 13 to Pin 14	1.200	$\sqrt{}$

8.2 Current monitors

Ch.	Output between R29 and R130	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.187	Pin 3 to Pin 4	1.187	$\sqrt{}$
2	1.187	Pin 7 to Pin 8	1.187	$\sqrt{}$
3	1.187	Pin 11 to Pin 12	1.187	
4	1.187	Pin 15 to Pin 16	1.187	√

Unit	PUM1PSerial No	
Test Engineer	RMC	
Date	20/12/09	

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filter and test the response using the signal generator. With a 1Vrms input signal between TP1 and TP2, measure the output between TP10 and TP12. Alternatively, use the Dynamic Signal analyser.

0.1Hz

	Output	Simulation		Pass/Fail
Ch1	1.l2V	1.0 to 1.3v	0.4 to 2.4dB	
Ch2	1.I2V	1.0 to 1.3v	0.4 to 2.4dB	√
Ch3	1.I2V	1.0 to 1.3v	0.4 to 2.4dB	√
Ch4	1.I2V	1.0 to 1.3v	0.4 to 2.4dB	√

1Hz

	Output	Simulation		Pass/Fail
Ch1	0.56v	0.48 to 0.6v	-6.5 to -4.5dB	
Ch2	0.53v	0.48 to 0.6v	-6.5 to -4.5dB	√
Ch3	0.53v	0.48 to 0.6v	-6.5 to -4.5dB	√
Ch4	0.53v	0.48 to 0.6v	-6.5 to -4.5dB	√

10Hz

	Output	Simulation		Pass/Fail
Ch1	0.13v	0.12 to 0.15v	-16.5 to -18.5dB	
Ch2	0.13v	0.12 to 0.15v	-16.5 to -18.5dB	
Ch3	0.13v	0.12 to 0.15v	-16.5 to -18.5dB	
Ch4	0.13v	0.12 to 0.15v	-16.5 to -18.5dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
Ch1	0.468v	0.42 to 0.52v	-5.5 to -7.5dB	√
Ch2	0.479v	0.42 to 0.52v	-5.5 to -7.5dB	
Ch3	0.475v	0.42 to 0.52v	-5.5 to -7.5dB	
Ch4	0.474v	0.42 to 0.52v	-5.5 to -7.5dB	

1 KHz

	Output	Simulation		Pass/Fail
Ch1	1.16v	1.0 to 1.28v	0.34 to 2.34dB	
Ch2	1.16v	1.0 to 1.28v	0.34 to 2.34dB	
Ch3	1.16v	1.0 to 1.28v	0.34 to 2.34dB	
Ch4	1.16v	1.0 to 1.28v	0.34 to 2.34dB	√

	Output	Simulation		Pass/Fail
Ch1	1.19v	1.0 to 1.3v	0.5 to 2.5dB	1
Ch2	1.19v	1.0 to 1.3v	0.5 to 2.5dB	√
Ch3	1.19v	1.0 to 1.3v	0.5 to 2.5dB	V
Ch4	1.19v	1.0 to 1.3v	0.5 to 2.5dB	V

Unit	PUM1PSerial No
Test Engineer	RMC
Date	20/12/09

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

0.1Hz

	Output	Simulation		Pass/Fail
Ch1	12mV	0.3 to 0.4mV	-70dB to -65dB	
Ch2	12mV	0.3 to 0.4mV	-70dB to -65dB	
Ch3	12mV	0.3 to 0.4mV	-70dB to -65dB	
Ch4	12mV	0.3 to 0.4mV	-70dB to -65dB	

1Hz

	Output	Simulation		Pass/Fail
Ch1	12mV	3.3 to 4.2mV	-50dB to -45dB	
Ch2	12mV	3.3 to 4.2mV	-50dB to -45dB	
Ch3	12mV	3.3 to 4.2mV	-50dB to -45dB	
Ch4	12mV	3.3 to 4.2mV	-50dB to -45dB	

10Hz

	Output	Simulation		Pass/Fail
Ch1	27mV	33 to 45mV	-30dB to -27dB	
Ch2	30mV	33 to 45mV	-30dB to -27dB	
Ch3	28mV	33 to 45mV	-30dB to -27dB	
Ch4	30mV	33 to 45mV	-30dB to -27dB	

100Hz

	Output	Simu	lation	Pass/Fail
Ch1	291.7mV	0.275 to 0.32V	-12dB to -9dB	
Ch2	291.5mV	0.275 to 0.32V	-12dB to -9dB	V
Ch3	290.2mV	0.275 to 0.32V	-12dB to -9dB	V
Ch4	292.4mV	0.275 to 0.32V	-12dB to -9dB	V

1 KHz

	Output	Simulation		Pass/Fail
Ch1	473mV	0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch2	473mV	0.46 to 0.49V	-7dB to -6dB	
Ch3	474mV	0.46 to 0.49V	-7dB to -6dB	
Ch4	473mV	0.46 to 0.49V	-7dB to -6dB	$\sqrt{}$

	Output	Sim	Simulation	
Ch1	474mV	0.47 to 0.49V	-7dB to -6dB	\checkmark
Ch2	474mV	0.47 to 0.49V	-7dB to -6dB	$\sqrt{}$
Ch3	475mV	0.47 to 0.49V	-7dB to -6dB	
Ch4	473mV	0.47 to 0.49V	-7dB to -6dB	

Unit	PUM1PSerial No	
Test Engineer	RMC	
Date	20/12/09	

11. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{}$	$\sqrt{}$
Ch2	V	√
Ch3	V	√
Ch4	V	√

Unit	PUM1P	.Serial No	 	
Test Engineer	RMC			
Date	20/12/09			

12. Trip Circuit Tests

A test cable may be used for these tests, consisting of a ribbon cable which plugs into the 16 way header P3. It is convenient to common pins 1, 3, 5, 7, and apply a test voltage to them.

Alternatively an external test box may be used, enabling each input to be tested in turn.

Apply a test voltage to the inputs, and observe the OP400 outputs. An exponential rise in the outputs will be observed. When the logic threshold is reached, the bistable will become set, causing the OR gate output TP25 to go to logic 1. The collector of Q1 will go to high causing the trip pins on each of the drivers to be pulled down to the negative rail, switching them off,

Connect the test lead.

Observe TP25. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Set the precision voltage source to 1v, representing an r.m.s current of 150mA, and connect it to the ribbon cable input. Observe TP25 for several minutes. It should not go high.

Stays low?	$\sqrt{}$
------------	-----------

Very slowly increase the voltage, and observe the level at which it trips.

Trip voltage?	1.2V
---------------	------

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 1.66v representing 250mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 2.5 seconds

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Remove the voltage source, set it to 2.66v representing 400mA. Reconnect it, measuring how long it is before TP25 goes high.

Time taken to trip? 2 seconds

Unit	PUM1PSerial No
Test Engineer	RMC
Date	20/12/09

12 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

12.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.234v	11.7mA
Ch2	0.234v	11.7mA
Ch3	0.235v	11.75mA
Ch4	0.234v	11.7mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.401v	20.0mA	16mA	V
Ch2	0.402v	20.0mA	16mA	V
Ch3	0.405v	20.2mA	16mA	V
Ch4	0.403v	20.1mA	16mA	V

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.724v	36.2mA	16mA	
Ch2	0.724v	36.2mA	16mA	
Ch3	0.724v	36.2mA	16mA	
Ch4	0.72v	36.0mA	16mA	√

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.765v	38.25mA	16mA	\checkmark
Ch2	0.765v	38.25mA	16mA	\checkmark
Ch3	0.765v	38.25mA	16mA	\checkmark
Ch4	0.764v	37.5mA	16mA	\checkmark

Unit	<mark>PUM1PSerial No</mark>	
Test Engineer	RMC	
Date	20/12/09	

12.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	90.22 mV	4.51mA		
Ch2	92.5 mV	4.625 mA		
Ch3	92.5 mV	4.625 mA		
Ch4	90 mV	4.5 mA		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	255 mV	12.75 mA	16mA	
Ch2	258 mV	12.9 mA	16mA	
Ch3	260 mV	13.0 mA	16mA	
Ch4	258 mV	12.9 mA	16mA	

1 KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	702 mV	35.1mA	16mA	\checkmark
Ch2	702 mV	35.1mA	16mA	\checkmark
Ch3	703 mV	35.1mA	16mA	\checkmark
Ch4	700 mV	35.0 mA	16mA	\checkmark

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	760 mV	38 mA	16mA	√
Ch2	730 mV	36.5 mA	16mA	√
Ch3	760 mV	38 mA	16mA	√
Ch4	750 mV	37.5 mA	16mA	√

Unit	PUM1PSerial No
Test Engineer	RMC
Date	20/12/09

12.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the board running with a 10v input for long, especially if the heat sink is not fitted.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	4.12	5.82	291mA		
Ch2	4.12	5.82	291mA		
Ch3	4.10	5.80	289mA		
Ch4	4.17	5.89	294mA		

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.62	7.94	397mA	400mA	
Ch2	5.62	7.94	397mA	400mA	
Ch3	5.62	7.94	397mA	400mA	
Ch4	5.66	8.00	400mA	400mA	

1 KHz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.68	9.44	372mA	400mA	√
Ch2	6.68	9.44	372mA	400mA	√
Ch3	6.69	9.46	372mA	400mA	√
Ch4	6.70	9.475	373mA	400mA	\checkmark

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.83	9.66	482.9mA	400mA	$\sqrt{}$
Ch2	6.83	9.66	482.9mA	400mA	$\sqrt{}$
Ch3	6.83	9.66	482.9mA	400mA	$\sqrt{}$
Ch4	6.74	9.53	476.0mA	400mA	V