Advanced Gravitational Wave Interferometers: Status and Technology of Second Generation Detectors

Gregory Harry

Massachusetts Institute of Technology

12th Marcel Grossmann Meeting Paris France July 13, 2009

LIGO-G0900675-v3

Advanced Detector Overview

LIGO	Advanced LIGO: 4 km interferometers in Washington and Louisiana USA; 3 detectors
	Advanced Virgo: 3 km interferometer near Pisa Italy; low frequency seismic wall
LCGT	Large Cryogenic Gravitational Telescope (LCGT): 3 km interferometer in Kamioka Japan; underground, cryogenic
	GEO High Frequency (HF): 600 m interferometer near Hannover Germany; squeezed light, focused on high frequency
ACIGA	AIGO: proposed 4 km interferometer in Western Australia

2

First Generation Accomplishments

- Reached design sensitivity
 - ~ 10 W laser, shot noise limited
 - Seismic isolation, suspensions
 - (Close to) thermal noise limits

GEO 600 Suspension

- Demonstrated important technologies
 - Signal recycling, interferometer controls
 - Monolithic suspensions
- Data provided real astrophysics
 - Crab pulsar not spinning down from GW
 - GRB070201 was not neutron star inspiral
 - Stochastic limit beat Big Bang Nucleosynthesis

Goals for Advanced Detectors

- Detections of gravitational waves
 - Gravitational wave astronomy
- Sensitivity and reach
 - ~150-200 Mpc binary neutron stars
 - ~10 better than first generation
- Wider bandwidth than first generation
 - Down to ~10 Hz
 - Tunability at higher frequencies
- Network of comparable detectors
 - Europe and North America
 - High sensitivity Asian plus southern hemisphere detectors

Astronomical Reach of Second Generation Detectors

Credit: R.Powell, B.Berger

Enhanced LIGO/Virgo+

Adv. Virgo/Adv. LIGO/LCGT

Virgo/LIGO

Sensitivity Limitations

- Seismic noises

 Seismic noise
 Gravity gradients
- Thermal noises
 - Suspensions
 - Coatings
 - Substrates
- Quantum noises
 - Shot noise
 - Radiation pressure

Second Generation Improvements in Noise and Bandwidth

Seismic Noise Solutions

Superattenuator

Superattenuator

- First generation in Virgo
- Advanced Virgo, LCGT
- Multi stage passive isolation
- Geometric anti-spring
 - Suspension Point Interferometer
- LCGT, possible in others
- Reduce seismic noise at top of suspension

- Active Isolation
- Advanced LIGO
- Possibly AIGO
- Feedback controlled

Research: Excess and non-Gaussian noise from environment

Gravity Gradient Solutions

Underground detector

- Symmetry from ground above /below reduces gradients ~ 10
- Seismic noise down by ~10⁴
- LCGT to be 100-200 m below ground in Kamioka mine Underground Noise Reduction

Research: Reduce seismic effects of equipment, finding suitable underground sites

Adaptive Filtering

- Array of seismometers used to fit out noise
- Under consideration for enhancements to other detectors

Suspension Thermal Noise Solutions

Cryogenic Sapphire Ribbons

- LCGT, 15-20 K suspensions
- Lower temperature reduces thermal noise directly
- Low thermoelastic noise
- Sapphire-sapphire bond

Monolithic Suspensions

Monolithic Fused Silica Fibers

- First generation in GEO 600
- Advanced LIGO, Advanced Virgo, AIGO, GEO HF
- Silicate bond connections
 - Shear: Advanced LIGO, GEO HF
 - Compression: Advanced Virgo?
- See G. Hammond and H. Vocca talk
 Research: Excess and non-Gaussian noise from bonds and welds

Coating Thermal Noise Solutions

- Larger laser spots ~ 6 cm
- Improved material; titania doped tantala
 - Advanced LIGO, Advanced Virgo, AIGO
- Optimized design, minimizes high mechanical loss material

 Advanced LIGO, AIGO
- See E. Black's talk Friday

Expected Coating Thermal Noise

Tantala/silica coating, 20 K mirrors

 LCGT
 Research: Material properties at cryogenic temperatures, non-Gaussian noise at high optical power, further improvements, scatter – See M. Smith talk

Substrate Thermal Noise Solutions

Sapphire

- AIGO, room temperature
- LCGT, cryogenic, 20 K mirrors
 - Very low thermoelastic noise
 - High thermal conductivity

Lessened parametric instabilities

Fused Silica Substrate

Sapphire Mirror

Continued use from first generation

Fused Silica

- Not a limiting noise source
- Advanced LIGO, Advanced Virgo, GEO HF
- See S. Hild talk

Research: Excess and non-Gaussian noise from refrigerators/heat links, charge buildup on dielectric optics₁₀

Quantum Noise Solutions I

Higher Power Laser

- 150-200 W in all detectors
- Reduces high frequency shot noise
 Increase radiation pressure
- Can cause thermal lensing

High Power Laser Prototype AEI

11

Moving a 40 kg optic with LIGO ERGO arm Larger Test Masses

- ~ 40 kg in Advanced LIGO, Advanced Virgo, AIGO
- 30 kg in LCGT
- Reduces low frequency radiation pressure

Research: Parametric instabilities (reduced risk with sapphire), thermal compensation (plans to mitigate with ring heaters/projected CO₂ lasers, see M. di Paola Emilo talk)

Quantum Noise Solutions II

Signal Recycling

- First generation use in GEO 600 – All detectors second generation
- Additional mirror at output port
 - Allows for some tuning of noise

DC Readout

- No shot noise from sidebands
- Eliminates some technical noises

Signal Recycling Tunings

Squeezed Light

- Reduce both shot noise and radiation pressure
- Planned for GEO HF, possible enhancement in others

Research: Keeping optical losses low enough for squeezing 12

Network of Detectors

Network Benefits

- Greater sky coverage
 - Southern hemisphere important
- Better determination of gravitational waves speed

- Improved signal-to-noise ratio
- Determination of polarization
 - At least three detectors
- Better localization on sky
 - Identify host galaxies
- Greater uptime

Status of Advanced LIGO

- Funded in April 2008
- In procurement/fabrication
- Installation in 2011-2014

- Prototyping in progress
 MIT (LASTI)
 - Caltech (40 m, TNI)
 - Hanford/Livingston (enhanced LIGO, possible squeezing tests at Hanford)
- First science data ~2015

Status of Advanced Virgo

- Proposal submitted
- Expect reply soon
- Hope for funding early fall 2009

- Virgo+ prototyping many technologies
- Monolithic suspension upgrade in 2010
- Expect to finish installation 2014
- First science data ~2015
- See P. Puppo talk

Status of LCGT

- Proposal submitted

 Funding requested for 2010
- Construction to begin 2010
- CLIO, 100 m prototype
 - Underground at Kamioka
 - Plan for cooling soon
 - See M. Ohashi talk

- Expect installation to be complete in 2014
- First science data ~ 2017

Status of GEO HF

- Funded by Max Planck Society with support from STFC in UK
- Plans for 2009

- Squeezing installation
- See A. Khalaidovski talk

GEO 600

- Plans for 2010
 - Higher laser power
 - Thermal compensation
 - Higher bandwidth signal recycling
- Science data with other detectors ~ 2015
- See H. Lueck talk

Status of AIGO

- Submit proposal soon
- Advisory panels in place
- Gingin site chosen

 Already used for 80 m prototype

- Advanced LIGO base
 - Australian technology where appropriate
- International partners
 - GEO : laser
 - LIGO: designs
 - India: possible support
- See D. Blair and C. Zhao talks

Conclusions

- First generation detectors successful
- Many second generation detectors being built, developed, and planned
- Able to do gravitational astronomy
- Range of technologies to improve sensitivity
 - Active and passive isolation, underground
 - Monolithic silica and sapphire suspensions
 - Improved coating and substrate materials, cryogenics
 - Higher laser power, signal recycling, squeezing
- Network of detectors with comparable sensitivity operating ~2015