

DFG / SFB TR 7

Mechanical loss measurements at low temperatures of coating and bulk materials

<u>Ch. Schwarz</u>¹, R. Nawrodt^{1,2}, S. Kroker¹, D. Heinert¹, S. Reid², I. Martin², E. Chalkley², R. Neubert¹, W. Vodel¹, A. Tünnermann³, S. Rowan², J. Hough², P. Seidel¹

¹Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany

²University of Glasgow, Institute for Gravitational Research, Kelvinbuilding, University Avenue, G12 8QQ Glasgow, Scotland

³Friedrich-Schiller-Universität Jena, Institut für Angewandte Physik, Albert-Einstein-Straße 15, D-07745 Jena, Germany

Overview

- Measuring technique
- Cryogenic loss measurement setup
- Temperature dependence of the Q-factor / loss of bulk materials
- Cantilever setup and coating and suspension investigantions

Measuring Technique

Optimisation of the crystals orientation

silicon (111) ∅ 150 x 96 mm (~ 4.1 kg)

Optimisation of the crystals orientation

Ringdown time dependence of the modeshapes orientation angle within the the suspension wire loop

Requirements for cryogenic loss measurements

- low pressure to avoid pressure damping
- wide temperature range
- long term stability in:
 - > temperature (± 0.2 K for hours)
 - > seismic isolation
- low external damping due to the suspension

Environment for Bulk Material Research

Suitable for loss measurements on bulk material !!!

G0900640-v1

Christian Schwarz 14th May 2009 - Ft. Lauderdale

Results for the mechanical loss of crystalline quartz

- blue, red and yellow peaks identified as result of impurity atoms (aluminium and alkali atoms) [Martin 1984, Fraser 1964, ...]
- green peak explained by thermoelastic and phonon-phonon damping

G0900640-v1

Dissipation peaks due to impurities in silicon bulk materials

dips between 100 and 300K

Cantilever Coating Research

Cantilever setup for the "large" cryostat

- 1 massive base plate
 2 cantilever clamping blocks
 3 excitation structure mount
- 4 cantilever

Measurement procedure:

Excitation

Ringdown

Wait

· losses at the thermoelastic limit

comparison between an one side polished and a two side polished cantilever

1st results of (e-beam) tantala coated cantilevers

G0900640-v1

Christian Schwarz

1st results of tantala coated cantilevers

500 nm tantala deposited by e-beam evaporation

Mechanical loss comparision of two thermal oxide layers (170nm and 400 nm)

Conclusions

- 2 experimental setups for loss measurements on bulk materials and cantilever
- results for the temperature dependence of the mechanical loss of various bulk materials
- Significant difference between optimized and sligthly deadjusted bulk suspension setups
- for silicon further investigations on doping levels and crystalls orientation are needed but take a long time
- cantilever setup allows measurements at the thermoelastic limit
- further measurements with changed surface paramters are needed

