Gravitational Wave Astronomy via Hypersharp Neutrino Transitions

R. S. Raghavan Virginia Tech

Gravitational-Wave Advanced Detector Workshop
May 11, 2009
Lago Mar Resort, Ft Lauderdale, Florida

Nuclear Resonance in Observation of Relativity Red Shifts

Red shift of photons at different Gravitational Potentials:

- 1. On the earth: $\Delta E/E = gh/c^2$ = 10^{-18} eV /cm vertical height diff. (g= acceleration due to earth gravity)
- 2. By Equivalence Principle red shift in lab Acceleration A
 : ΔΕ/Ε = A/c² (mode)
 = 10-21 eV /cm/s²

Both Effects due only to Special Relativity (time dilation)

Both effects observed (~1960)

Both effects used the sharp widths of Nuclear Gamma Rays by the detuning by the red shifts in resonance absorption in a resonator (absorber) tuned to the source emission

Resonance Absorption of γ-rays emitted by isomeric nuclear states

Energy width—decided by lifetime of the state $\Delta E = h/2\pi\tau \rightarrow longer$ the τ (isomeric level)

- \rightarrow sharper the $\Delta E/E$ of the emitted γ -ray
- Red Shifts are extremely SMALL→ Sharp γ-rays Nuclear Recoil Problem
- → Recoil eliminated in crystals if E_R<< θ_D → Mδssbauer Effect
- Typical Figs. Of Merit:
- Classic Nuclear resonance: 14.4 keV γ of ⁵⁷Fe
- Lifetime: $\tau = 100 \text{ ns} \rightarrow \Delta E/E \sim 10^{-12}$
- 1. Red Shift on earth measured in 22m height difference
- 2. Red Shift in Acc. Sys measured at tip of fast rotor Special Relativity OK!!

Effect of GR on nuclear resonance

So far unsuspected!

- •GR creates space distortion → length scale is changed
- → Typical Length Strain $h = \Delta \ell / \ell$ 10⁻²¹
- → Detectable via Michelson-Morley → LIGO, LISA
- •GW also changes wavelength/ frequency / energy of photons/neutrinos since number of waves/unit length changes when length scale changes
- → Detunes very sharp nuclear resonances
- → Can be detected by a suitably sharp resonance
- → New Approach to GW astronomy

SR vs GR Effect on Nuclear Resonance

- •GR effect even with source and absorber are at the same grav. potential or in unaccelerated systems (No effect in SR)
- •No Effect in the absence of GW—GW only known way to distort space in the Lab Scale on Earth
- Effect on Nuclear Resonance only in the presence of GW
- •Resonance effect if resonance $\Delta E/E \sim \Delta \ell/\ell \sim 10^{-21}$ or less
- •GW Strain from typical sources is periodic (also transient....)
- → Resonance effect is *modulation* of photon/neutrino energy Not resonance detuning by a constant energy shift as in SR

Signatures & Sensitivity

GW effect→ Energy *modulation* of radiation Modulation depends on Strain and Frequency of GW Anisotropy of GW → Directional dependence of modulation

- → locate source of GW
- →GW Astronomy
- → Typical effect $\Delta E/E \sim 10^{-21}$ need resonance sharpness of same order
- \rightarrow Best γ -resonances so far: $\Delta E/E \sim 5x10^{-13}$; (57Fe), 10^{-15} (67Zn)
- → Need new "HYPERSHARP" nuclear Resonance for GW

⇒Discovery of possibility of *Neutrino* Resonance with $\Delta E/E \sim 10^{-29}$ → HYPERSHARP!

Hypersharp Resonances—Neutrinos!

---how to reach < 10⁻²⁰? → Longer γ-ray lifetimes?

But long lifetimes result from high EM multipolarity—high conversion of atomic electrons → fewphotons

→ Beta decay—weak interaction guarantees long lifetimes But...3-body beta decay→continuous spectrum.... not lines!!

e.g., tritium decay
$${}^{3}H \rightarrow {}^{3}He + e^{-} + \tilde{v}_{e}$$

Need new ideas

"Bound State" or 2-body β-decay—J Bahcall(1962)

- → Beta electron is captured in an atomic orbit instead of into the continuum
- \rightarrow ³H \rightarrow neutral ³He (with e⁻ in 1s orbit) + $\tilde{v}_e \rightarrow$ 2-body decay
- → Monoenergetic Neutrino LINES!
- \rightarrow BB decay branching in T decay = 0.54%
- \rightarrow Line NEUTRINO \rightarrow resonance transitions like γ -rays.
- → Neutrinos from tritium ($\tau \sim 17 \ years$) will be Hypersharp
 - --if all other relevant aspects are in place !

Detecting the Tritium Antineutrino line \tilde{v}_e

Induced Orbital Electron Capture (Mikaelyan 1968)

Reverse of BB decay:

$$\tilde{v}_e + ^3He + e^- (1s \text{ orbital}) \rightarrow T$$

- → Resonance capture of T antineutrinos
- → Really low threshold → E, min = 18.6 keV

Basic neutrino emission & capture scheme

T
$$\leftrightarrow$$
 ³He+ \tilde{v}_e

Emitted neutrino exactly in resonance (if no recoil).

$$E_{v \text{ emit}}(BB) = Q + B; E_{abs}(EC) = Q - B$$

Binding energy B added in emission

is exactly enough for additional energy needed for EC.

→ Condition for Resonance Capture satisfied

LINEWIDTH

- → Determines the line sharpness
- → Resonance cross section via the resonance density of incident beam

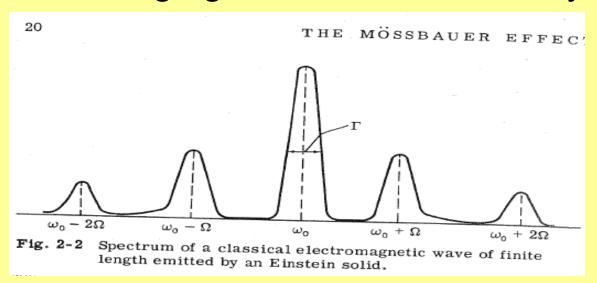
$$\rightarrow \sigma = \sigma_o / (\Delta E/\Gamma) \Gamma$$
 r- natural width (~10⁻²⁴ eV).

For hypersharp, i.e. with natural linewidth $\Delta E = \Gamma$

- $\sigma = \sigma_o \rightarrow$ "geometrical cross section" (independent of radiation, energy etc) ~10⁻¹⁷ cm²
- →HUGE for neutrinos (typically 10⁻⁴⁵ cm² at this energy)

LW -> Prime moverss for the quest for natural linewidth in resonance transitions.

LINE BROADENING


Resonance lines broadened beyond Γ by solid state interactions—
fluctuations of energy (homogeneous broadening) and distributed (nonunique) energies (inhomogeneous) broadening

Linewidth estimates for **short lived** (usual) ME cases taken from other techniques—generally fluctuation times ~kHz to MHz inhomegenity of similar energy spread applied to microsecond ME levels.

--Couold the linewidth physics be different for long life times? Normally, i.e. with ME experience, the answer is NO

Linewidth ↔ Nuclear Lifetime Connection?—YES! Motional averaging! Lesson from theory of ME itself

Lattice vibrations modulate the energy of γ -ray (Shapiro1960). Central unshifted line (ME line) emitted with natural width Γ Sidebands $E_o \pm n\Omega$ (also with Γ); Ω are the phonon frequencies. Condition for ME: $\rightarrow \Gamma << \Omega$ i.e. lifetime of emitting level longer than typical lattice vibrational time $1/\Omega \sim 10^{-14}$ sec

→solid state interactions also MOTIONALLY averaged if the level llifetime τ >> fluctuation times → **Hypersharp lines**

FM Approach to Motionally Averaged linewidth

Theoretical treatment of ME lineshape that explicitly includes role of the nuclear lifetime: ---_(Salkola & Stenholm)_

The line shape is an FM series:

$$A \propto \frac{1}{\Gamma} \sum_{k=-\infty}^{k=+\infty} J_k^2(\eta) \frac{1}{[(\delta/\Gamma) - k\xi]^2 + 1}$$

Jk(x) are Bessel functions,

η = Ωo/Ω [Ωo is the energy spread of fluctuation Ω= frequency

 $\xi = \Omega / \Gamma$, δ is the external detuning for scanning the line shape.

→ Central line and \sidebands of index ±k, all with the natural width.

Broadening arises from overlap of $k = \pm 1$ peaks separated by ξ linewidths from central line. $\rightarrow k = \pm 1$ overlap small if ξ is LARGE $\rightarrow \Omega/\Gamma$ is large \rightarrow Line approaches natural width as Γ becomes very small (as in T)

- → Long lived states naturally emit HYPERSHARP radiation with natural linewidth
 - → Counterintuitive from normal ME experience with short lived states

G0900621-v1

Generalized Hypersharp Fraction

Motional averaging—pervasive; includes the basic ME itself

→ Efficiency of motionally averaged sharp line emission can be generalized to include the ME.

A hypersharp fraction (not just recoilless fraction):

$$H = J_0^2 (\langle x \rangle / \lambda) \prod_K J_0^2 (\Delta_K / \Omega_K)$$

where K runs over the different types of fluctuations with width $\Delta_{\rm K}$ and rate $\Omega_{\rm K}$ specific hypersharp fraction J_0^2 ($\Delta_{\rm K}/\Omega_{\rm K}$). The recoilless fraction f = J_0^2 (<x>/ λ) is just the first term

Resonance Energy Self-compensation

Perturbing interactions create energy SHIFTS specific to T, He E_T ≠ E_{He} Atomic (B's already considered)

- Chemical bonding (T and He chemically different)
- Lattice → vibrational energy, at T≠ 0
 - → second order Doppler shift (SOD)
 - → Zero Point Energy ZPE
- Dipolar interaction in rigid lattice of spins
- Magnetic shielding-- Site dependent "chemical" /other shifts
- Gravitational broadening in the lattice—source vs absorber
- Earths field effect in source absorber
- Spin $\frac{1}{2}$ of T and 3He \rightarrow Q =0 \rightarrow random electric interactions absent
- Motional averaging via vibrating r affects also the net shifts \rightarrow hypersharp $\pm \Delta(E_T E_{He})$.
- Energy gain in Emission is COMPENSATED EXACTLY in absorption

Technology--- Embedding T and He in solids -- "Tritium Trick"

T and He are gases--How to embed T and He in solids → Metal tritides

- → Tritium gas reacts with metals and alloys and forms metal tritides (PdT, TiT, NbT...)
- → embeds T in lattice uniformly in the bulk
- → Tritium decays and He grows—distributed uniforml → (Tritium Trick (TT))
- T and He lattice Sites in TT—
- Unique? Identical for T, He? –YES if Nb is the matrix
- →Unique Discovery!

Recoil free fractions in local Potential Wells

In Nb TIS the sizes of T and He result in local deformations that create potential wells in which T and He oscillate.

- → Simple picture—T and He ignore the general lattice.
- → Recoil free fractions from local excited vibrational states E_i, not general lattice excitations outside well. (No Debye Model!)
- \rightarrow Then f = exp-[E_R (=62 meV)(Σ 1/E_i)]
- \rightarrow f = f(T)f(He) ~1.5%.
- → The dynamics of T and He in their potential wells implies that all random interactions with the rest of the lattice are bypassed—IMPORTANT feature

Detection of \tilde{v}_e Resonance by \tilde{v}_e Activation

Source T and absorber ³He made by tritium trick.

Resonance signal is the \tilde{v}_e induced activity of betas (R β).

The TT method implies T content in the absorber will create a background (Tβ). A chief design goal is to maximize Rβ/Tβ. The background due to T in absorber can be minimized by replacing T with H via efficient xchange process.

The source and absorber are set in the same cryogenic bath at temperatures << 200K.

The resonance activation signal, R β of 18.6 keV betas grows with time m (∞ t / τ _) while the background T β decays (∞ exp-t/ τ), thus the rate deviation from the exponential decay is the signature of the resonance.

Т	³ He	Rβ	Τβ
10 Ci	0.3 pg	165 Hz Δt =100 d	38 Hz

Detection of GW

- 1. The GW perodically The GW produces a *periodic* strain that *modulates* the $\tilde{v}e$ line energy by $\pm hE$, at a rate f with the frequency f of the GW source.
- 2. The line energy is thus averaged in the same way as by motional averaging in the lattice.. The line splits into a central line and sidebands by the modulation parameters $\eta = [hEv/f]$ and $\xi = [f/\Gamma]$.
- 3. The fractional intensities are given by the $J_0^2(\eta)$ for the central line (resonance signal) and $J_1^2(\eta)$ for the first sideband at $\pm \delta = \pm \xi$ linewidths.
- 4. The dependence on η in particular, sets the conditions of **detectability** of GW. Most of the GW sources produce space time strains 10-23 < h < 10-20 with frequencies 10-4 < f < 103 Hz1.
- Qualitatively, high frequency GW (η→ 0) tend to average out the GW effect (as with lattice vibrations) and result in the *unperturbed* maximum. This sets the limits on **sensitivity** on the other side

Quantitative Detection by Countermodulation

- Since the GW perturbation is a modulation of the neutrino energy, quantitative detection can be based on a **countermodulating** drive on each absorber which creates variable acceleration (in frequency and **phase**) that can lock on in anti-resonance to the ve resonance signal rate in that absorber.
- The signal rate varies from the background to fully retuned resonance, measuring J_0^4 (Ev*h/f*)= J_0^4 (3x1019 *h/f*) (taking into account the source+absorber in the final resonance signal).
- In addition, one can scan for the first *sideband* intensity J_1^4 (3x1019 *h*/f) and its position δ given by $\xi = (f/I) = (6.6x108 f)$ linewidths (with $\Gamma \sim 10-24$ eV) The measured data on η and ξ can lead to a determination of h and f independently

Figures of merit for GW sensitivity

- 1. The minimum detectable resonance effect is set by the (3σ) statistical precision $\sim 10^{-3}$ of the background T β in a live time of 1 day.
- 2. At the high η end, J_0^4 (3x1019 (h/f)) = J_0^4 (10) ~4x10-3, thus, the limit $3x10^{10} (h/f) < 10 \rightarrow h/f < 3x10^{-19}$ applies for a detectable signal.
- 3. In a multidetector array which is sensitive to different relative directions the limit figures apply to the absorber that sees the maximum strain; the off-axis absorbers see less strain,
- 4. As $\eta \rightarrow 0$ the resonance signal approaches 1, the full value and the resonance line is **decoupled from the GW**.
- 5. A qualitative "detunability" can be set with $\eta \sim 0.3$ for which $J_0^4 \sim 0.9$, thus $(3x10^{19} \text{ h/f}) > 0.3$ or $h/f > 10^{-20}$. At $h \sim 10^{-20}$. the GW will begin to detune the ve resonance if f < 1 Hz.
- 6. GW sources with smaller strains can be detected by detuning only if the frequency is lower.
- 7. These limits of detectability and detunability demarcate the optimal range as:

 $f < 1Hz and h/f < 3x10^{-19}$

Summary

- 1. A novel approach to GW astronomy based on hypersharp ve resonance may be possible.
- 2. A GW telescope with a central source of T and a multi-detector He absorber array is proposed.
- 3. The method is suited to sources in the range of strain/frequency ratios 10-20 < h/f < 3x10-19 which covers low frequency objects presently targeted by LISA18.
- 4. A Hulse-Taylor like binary source[i] with $h/f \sim 10^{-22} / 10^{-4}$ but **1000 times farther** away (the GW weakens as $h \propto 1/r$) can be detected even if $f \sim 10^{-5}$ Hz.
- 5. These ideas thus lay the foundation for a new laboratory-scale all-sky, all-live, telescopic observatory for detecting and characterizing GW sources farther than ever.

Ref. for Hypersharp Neutrinos.

R. S. Raghavan, Phys. Rev. Lett. **102**, 091804 (2009)

