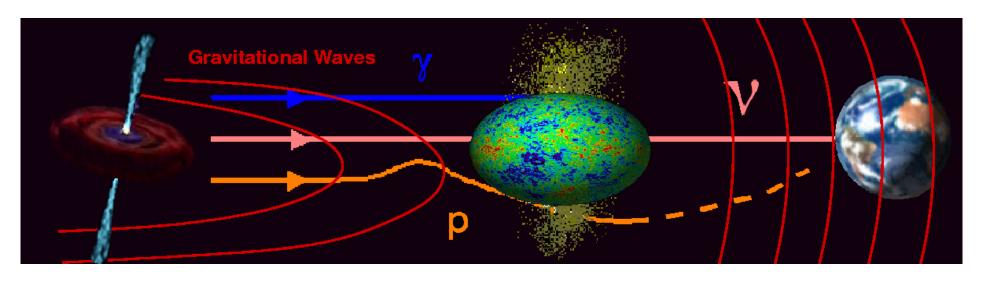


Towards joint searches of gravitational waves (GW) and high-energy neutrinos (HEN)

Eric Chassande-Mottin (CNRS, APC, France) for the GW+HEN group

References: http://gwhen-2009.org



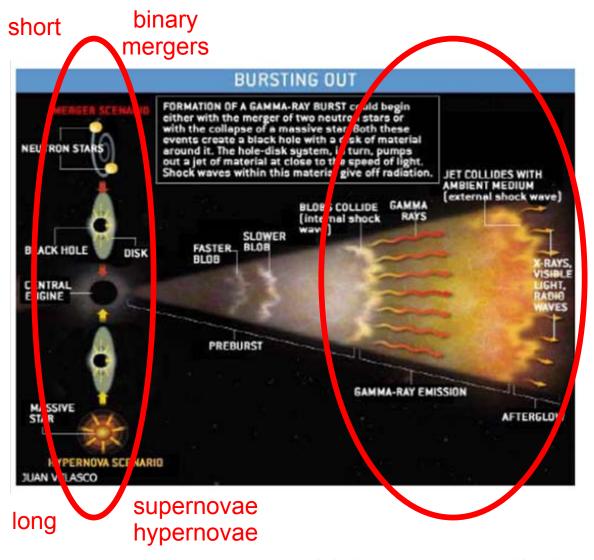
G0900590-v2

Gravitational waves and High Energy Neutrinos

GW and HEN as cosmic messengers

- no absorption/diffusion: travel "cosmological" distances as opposed to photons (dust, gaz, MW or IR background)
 - no deflection by magnetic fields: trace back (as opposed to charged cosmic rays)
 - weakly interacting: escape from dense objects

Potential GW+HEN sources


Requirements

- Massive, compact, relativistic
 (→ GW)
- Sudden <1s (→ LIGO/Virgo)
- Baryons (→ neutrino)
- Close/frequent enough

Galactic

- Soft γ repeater
- Micro quasar
- Extra-galactic
 - Long GRBs
 - Short GRBs
 - Low-lumin.GRBs

GW+HEN sources (1): GRBs

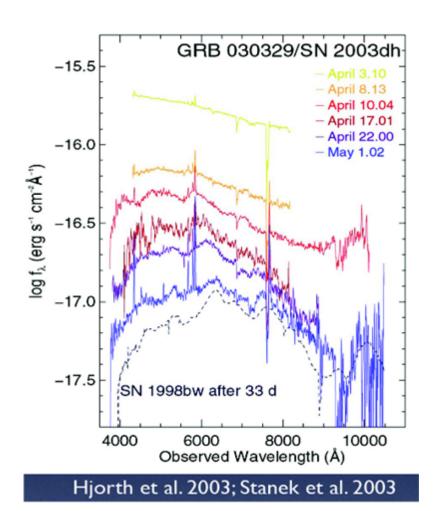
Fireball model: colliding relativistic shells

accel. electrons produce gamma rays by synchrotron

accel. protons interact and produce pions, which decay in high-energy neutrinos HEN

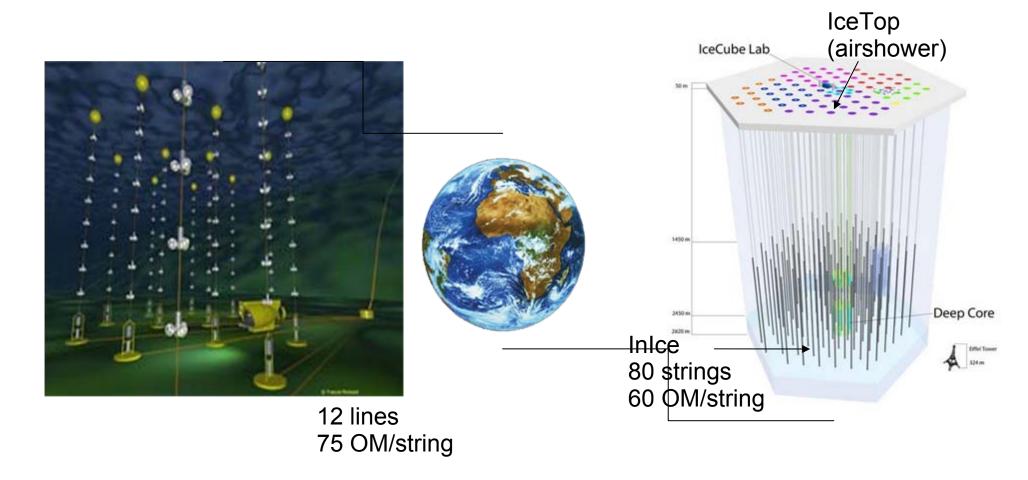
GW

high-energy radiation γ+ν G0900590-v2


GW+HEN sources (2): "failed" GRBs

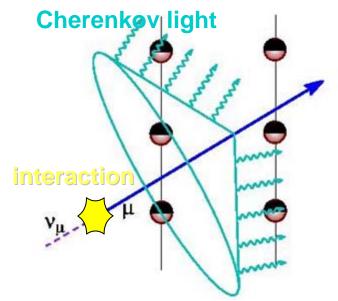
- Why GRB jets are relativistic? (compactness pb)
- non-relativistic: optical depth due to absorption $\gamma\gamma \to e^- e^+ >> 1$ includ. relativistic effects, optical depth is x $\Gamma^{-2-2\alpha}$ (Lorentz fact.) optically thin if $\Gamma = O(100)$, required to see flash of γ -rays
- Baryon (heavy) pollution → mildly relativistic jet Γ = O(1) optically thick, photon don't escape! No GRB. ("failed") more baryons means more neutrinos
- Events hidden from conventional telescopes accessible only to GW+HEN observation unknown rate, could be large

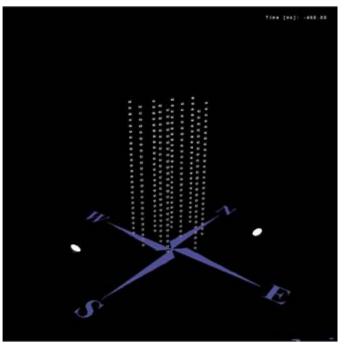
Ref: Ando & Beacom, PRL 2005


GW+HEN sources (3): connection between SN and GRB?

	SN	"Failed" GRB	GRB
Energy	10 ⁵¹ erg	10 ⁵¹ erg	10 ⁵¹ erg
Rate/gal	~10 ⁻² yr ⁻¹	10 ⁻⁵ –10 ⁻² yr ⁻¹	~10 ⁻⁵ yr ⁻¹
Г	~	~3–100	~100–103
ken from Ando (2	Barion rich Nonrelativistic Frequent	Similar kinetic energy	Baryon poor Relativistic jets Rare

missing link between SN and GRB?


HEN telescopes



ANTARES (mediterranean sea)

IceCube (south pole)

HEN detection principle

- neutrino → muon → cherenkov → photomultiplier
- muon track reconstruction based on local flash coincidences compatible with the Cherenkov light front
- sensitive in a broad region about TeV
- reconstruct neutrino direction with typical error lcecube ~ 1 degree
 ANTARES ~ .3 degree
- look downward
 lceCube northern sky
 ANTARES southern sky
- foregrounds: atmospheric muons (cosmic rays),
 atmospheric neutrinos → look for statistical excess

Common data sets

2007

LIGO Virgo S5/VSR1 ANTARES 5 strings

IceCube 22 strings

2009

eLIGO Virgo+ S6/VSR2 ANTARES 12 strings

IceCube 59 strings

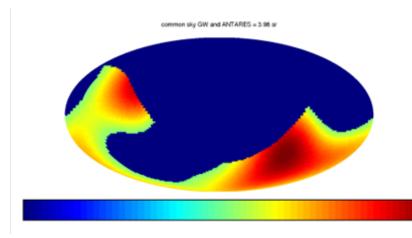
2015

aLIGO adVirgo

Km3net?

Ice Ray?

2020?

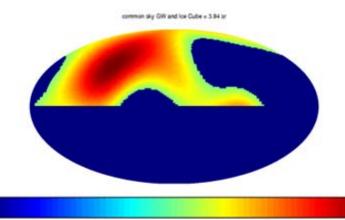

Einstein telescope & LISA

No official data exchange agreement yet

time

Feasibility: basic ingredients

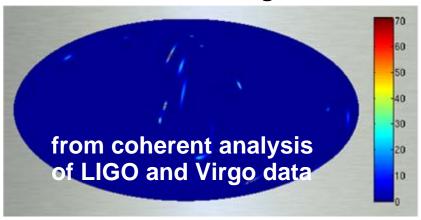
ANTARES & GW det.



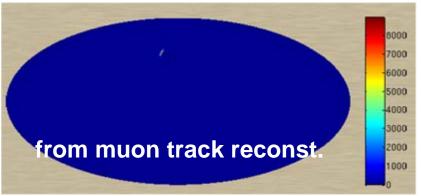
ky coverage

- ANTARES and IceCube sky complementary
- Each have ~30 % common sky with GW det.

Resolution of source localization



- ANTARES has sub-degree error box
- IceCube has ~ degree error box
- GW network has few degree error box (see presentations by A Searle & S Klimenko)


Project for a joint analysis

LIGO & Virgo

- GW and HEN = same search style few small signal buried in background noise
- rationale for a coincidence search: independent detectors: prob. of accidental coincidence (backgrounds) is **very low** if coinc. observed, high confidence in detection

ANTARES and/or Icecube

- first studies initiated within LIGO/Virgo and Icecube and independently within ANTARES
- time coinc.: model dep., use several time win
- spatial coinc. : overlap post. sky maps

Y. Aso et al. APS'08 arXiv:0711:0107v2 Pradier arXiv:0807.2567v1

Conclusions

- First investigations in view of GW and HEN coincidences
- Individuate scenarios for potential joint sources
- Common data sets are/will be available
- Collaborative efforts with IceCube and ANTARES being set-up, pathfinder for advanced detectors
- Propose procedure for the time/spatial coincidence of GW and HEN events

small FAR, allow to relax threshold, dig into backgd noise

 Synergy/complementarity with other multi-messenger projects (GW + γ-ray, low-energy neutrinos, optical followup, ...)