LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

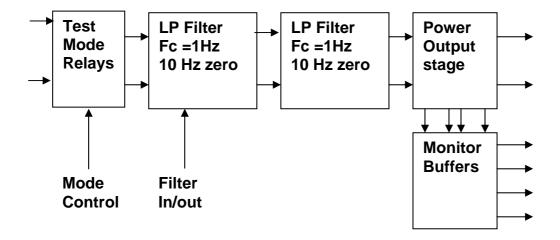
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP46P	Serial No	
Test Engineer	Xen		
Date	9/3/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP46P	.Serial No
	Xen	
Date	9/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP46P	.Serial No
Test Engineer	Xen	
Date	9/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, replaced U3.

Links:

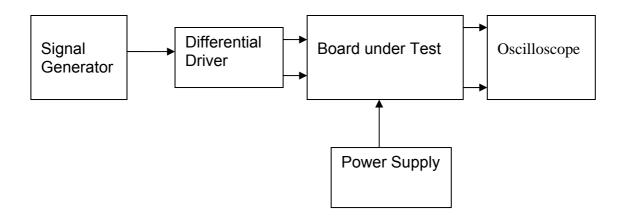
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	.Q TOP46P	.Serial No
	Xen	
Date	9/3/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	V
3	Imon3P	7	
4	Imon4P	8	
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP46P	.Serial No
	Xen	
Date	9/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.01	1mV	
+15v TP4	14.91	1mV	
-15v TP6	-15.06	5mV	V

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP46P	.Serial No
	Xen	
Date	9/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	$\sqrt{}$

Test Switches

Channel	Indio	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	$Q_{}$	_TOP46P	Serial No	
Test Engineer				
Date				

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	√
Ch2	3.35	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.66	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.46	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.46	0.4v to 0.5v	√

Unit	Q_TOP46P	Serial No
	Xen	
Date	.9/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	\checkmark

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP46P	.Serial No
	Xen	
Date	9/3/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.207	Pin 1 to Pin 2	1.205	
2	1.16-1.28	1.206	Pin 5 to Pin 6	1.205	
3	1.16-1.28	1.206	Pin 9 to Pin 10	1.205	
4	1.16-1.28	1.206	Pin 13 to Pin 14	1.205	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.398	Pin 7 to Pin 8	0.398	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP46P	Serial No	
Test Engineer	Xen		
Date	9/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	V	-24.3	V	-24.3	V	-24.3	
-7v	-17.2	V	-17.0	V	-17.1	V	-17.1	V
-5v	-12.3	V	-12.2	V	-12.2	V	-12.3	V
-1v	-2.41	V	-2.4	V	-2.41	V	-2.41	
0v	0	V	0	V	0	V	0	V
1v	2.42	V	2.42	V	2.42	$\sqrt{}$	2.42	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.1	V
10v	24.3	V	24.3	V	24.3	V	24.5	√

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP46P	Serial No	
	Xen		
Date	9/3/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Climping?	$\sqrt{}$	V	$\sqrt{}$	\checkmark
Clipping?	•	,	,	,

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.58	$\sqrt{}$
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

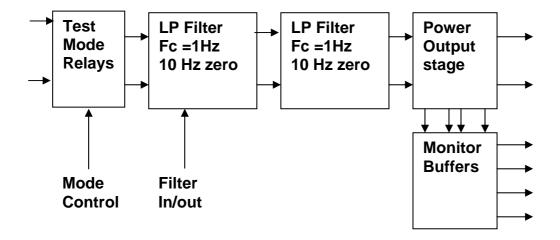
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP1P	Serial No
Test Engineer		
Date	21/1/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 10dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP1P	Serial No	
Test Engineer.			
Date	21/1/10		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP1P	Serial No	
Test Engineer			
Date	21/1/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

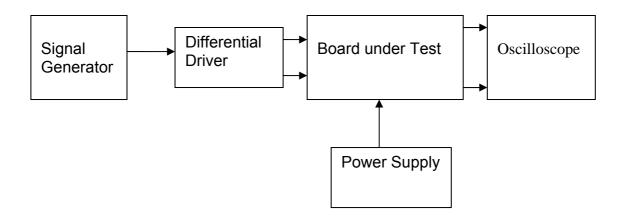
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP1P	Serial No	
Test Engine	erXen		
Date	21/1/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V	\checkmark	
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B- 15		
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	
2	Imon2P		6	
3	Imon3P		7	$\sqrt{}$
4	Imon4P		8	
	5	0V	√	
6	Imon1N		18	
7	Imon2N		19	
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP1P	Serial No	
Test Engineer			
Date	21/1/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

i to oo a roganatto. Oatpato.					
Regulator	Output voltage	Output noise	Nominal +/- 0.5v?		
+12v TP5	11.95	1mV			
+15v TP4	14.96	1mV	V		
-15v TP6	-14.98	5mV	V		

All Outputs smooth DC, no oscillation?		
--	--	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP1P	Serial No
Test Engineer		
Date	21/1/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	$\sqrt{}$	V	V
Ch4	V	V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4			V

Unit	Q_TOP1P	Serial No	
Test Engineer	Xen		

Date21/1/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	
Ch2	0.66	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	\checkmark
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	V

Unit	Q_TOP1P	Serial No	
Test Engineer	Xen		
Date	21/1/10		

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.25	3v to 3.4v	
Ch3	3.3	3v to 3.4v	√
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP1P	Serial No	
Test Engineer	Xen		
Date	21/1/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 Ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.205	Pin 1 to Pin 2	1.205	$\sqrt{}$
2	1.16-1.28	1.205	Pin 5 to Pin 6	1.205	$\sqrt{}$
3	1.16-1.28	1.205	Pin 9 to Pin 10	1.205	\checkmark
4	1.16-1.28	1.205	Pin 13 to Pin 14	1.205	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.398	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.398	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz with dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	V
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP1P	Serial No
Test Engine	erXen	
Date	21/1/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	$\sqrt{}$	-24.5	
-7v	-17.1	V	-17.2	V	-17.2	$\sqrt{}$	-17.2	
-5v	-12.2	V	-12.3	V	-12.3	$\sqrt{}$	-12.3	V
-1v	-2.41	V	-2.4	V	-2.42	$\sqrt{}$	-2.42	V
0v	0	V	0	V	0	$\sqrt{}$	0	V
1v	2.42	V	2.42	V	2.42	\checkmark	2.42	
5v	12.2	V	12.2	V	12.2	$\sqrt{}$	12.2	
7v	17.2	V	17.0	V	17.1	$\sqrt{}$	17.0	V
10v	24.5	V	24.5	V	24.5	V	24.5	√

Unit	Q_TOP1P	Serial No
Test Engineer .	Xen	
Date	21/1/10	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the outputs in dBs at 10Hz on adjacent channels. Record maximum output and the frequency at which this occurs (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2	-127dB	-114dB	525Hz
Channel 2	Channel 1	-140dB	-113dB	363Hz
Channel 2	Channel 3	-136dB	-113dB	871Hz
Channel 3	Channel 2	-133dB	-111dB	457Hz
Channel 3	Channel 4	-139dB	-111dB	661Hz
Channel 4	Channel 3	-126dB	-109dB	347Hz

Unit	Q TOP1P	Serial No
	Xen	
Date	21/1/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	√
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.55	$\sqrt{}$
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

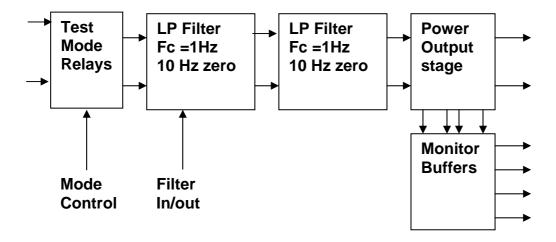
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP1P	.Serial No
Test Engineer	.Xen	
Date	.28/1/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP1P	.Serial No
Test Engineer		
Date	28/1/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q_TOP1P	Serial No	
Test Engineer	Xen		
Date	28/1/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

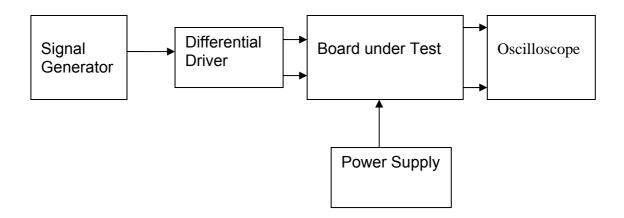
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP1P	Serial No	
Test Engine	erXen		
Date	28/1/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	V
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	V
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	$\sqrt{}$
	5	0V	$\sqrt{}$	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	$\sqrt{}$
9	Imon4N		21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP1P	Serial No
Test Engineer	Xen	
Date	28/1/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	
+15v TP4	14.91	1mV	
-15v TP6	-14.97	5mV	V

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP1P	.Serial No
Test Engineer	.Xen	
Date	.28/1/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	√	V	V
Ch2	V		
Ch3	V		$\sqrt{}$
Ch4	√	√	

Unit	Q TOP1P	Serial No	
Test Engineer	Xen		
Date	28/1/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	V
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	$\sqrt{}$
Ch2	4.85	4.7 to 5v	$\sqrt{}$
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.35	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	\checkmark

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP1P	Serial No
Test Engineer		
Date	.28/1/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	
Ch2	3.2	3v to 3.4v	V
Ch3	3.2	3v to 3.4v	V
Ch4	3.2	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.46	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output Specification		Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP1P	Serial No	
Test Engineer	Xen		
Date	28/1/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	$\sqrt{}$
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	$\sqrt{}$
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	V
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP1P	Serial No
Test Engine	eerXen	
Date	28/1/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.2	V	-17.2	V	-17.2	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	V
-1v	-2.42	V	-2.42	V	-2.42	V	-2.42	
0v	0	V	0	$\sqrt{}$	0	V	0	$\sqrt{}$
1v	2.42	V	2.42	V	2.41	V	2.42	V
5v	12.0	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.1	V	17.0	V	17.1	V
10v	24.3	V	24.5	V	24.3	V	24.5	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP1P	Serial No
	neerXen	
Date	28/1/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.57	
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.57	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

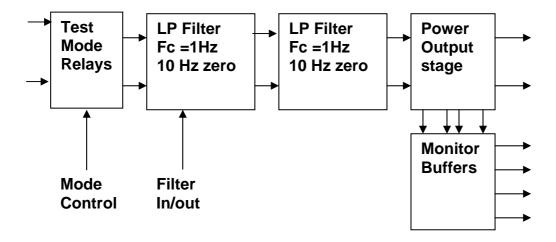
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP3P	Serial No
Test Engineer		
Date	.28/1/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP3P	.Serial No
Test Engineer		
Date	28/1/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP3P	Serial No	
Test Engineer			
Date	28/1/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

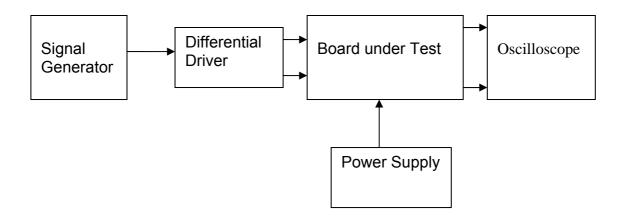
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q TOP3P	Serial No
	eerXen	
Date	28/1/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+ 4		√
	5	0V √		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B- 15		
8	PD3N	Photodiode C- 16		√
9	PD4N	Photodiode D-	17	√


J5

PIN	SIGNAL			To J1 PIN	OK?
1	Imon1P			5	\checkmark
2	Imon2P			6	\checkmark
3	Imon3P			7	\checkmark
4	Imon4P			8	$\sqrt{}$
	5	0V		$\sqrt{}$	
6	Imon1N			18	\checkmark
7	Imon2N			19	\checkmark
8	Imon3N			20	$\sqrt{}$
9	Imon4N		•	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		$\sqrt{}$

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP3P	Serial No	
	erXen		
Date	28/1/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	$\sqrt{}$
+15v TP4	14.79	1mV	\checkmark
-15v TP6	-15.08	5mV	√

All Outputs smooth DC, no oscillation?	1	1
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP3P	Serial No
	neerXen	
Date	28/1/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V		V
Ch3	V	$\sqrt{}$	
Ch4	V	V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4		\checkmark	

Unit	Q_TOP3P	Serial No	
Test Engine	erXen		

Date28/1/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.35	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP3P	Serial No
Test Engineer		
Date	.28/1/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.2	3v to 3.4v	√
Ch3	3.25	3v to 3.4v	V
Ch4	3.2	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	$\sqrt{}$
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP3P	Serial No	
Test Engineer .	Xen		
Date	28/1/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.399	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	√

Unit	.Q TOP3P	.Serial No
Test Engineer	Xen	
Date	.28/1/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.1	V	-17.2	V	-17.2	V	-17.1	V
-5v	-12.2	V	-12.3	V	-12.3	V	-12.3	V
-1v	-2.4	$\sqrt{}$	-2.42	$\sqrt{}$	-2.42	$\sqrt{}$	-2.4	$\sqrt{}$
0v	0	√	0	√	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.42	\checkmark	2.42	$\sqrt{}$	2.4	$\sqrt{}$	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.1	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.1	V
10v	24.4	V	24.5	V	24.3	V	24.5	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP3P	Serial No
	neerXen	
Date	28/1/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.57	V
Ch4	5v to 6v	5.57	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

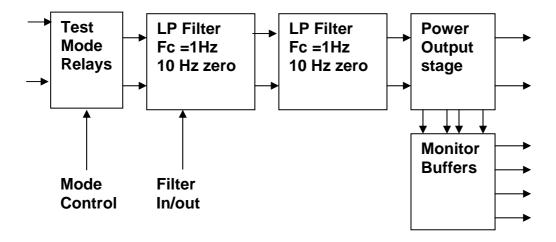
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP4P	Serial No
Test Engineer		
Date		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q_TOP4P	Serial No	
Test Engineer			
Date	29/1/10		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Unit (e.g. DVM) Manufacturer		Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	.Q TOP4P	Serial No
Test Engineer		
Date	.28/1/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

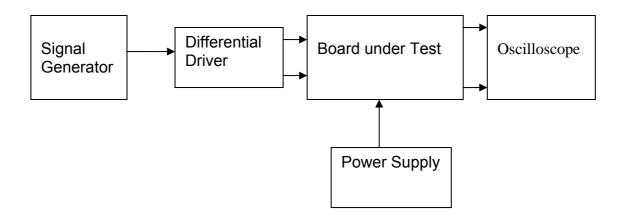
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP4P	Serial No
	neerXen	
Date	28/1/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B- 15		
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	V


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	0V	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP4P	Serial No
	erXen	
Date	28/1/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	√
+15v TP4	14.81	1mV	√
-15v TP6	-15.04	5mV	√

All Outputs smooth DC, no oscillation? √
--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP4P	Serial No
Test Engineer		
Date	.28/1/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1			V
Ch2		$\sqrt{}$	V
Ch3		$\sqrt{}$	V
Ch4	$\sqrt{}$		V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	√	V	V
Ch2	V		
Ch3	V		$\sqrt{}$
Ch4	√	√	

Unit	Q_TOP4P	Serial No	
Test Enginee	erXen		

Date28/1/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	1	Hz	
v	•••		

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	
Ch3	3.35	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP4P	Serial No
Test Engineer	.Xen	
Date	.28/1/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	
Ch2	0.5	0.4v to 0.5v	
Ch3	0.49	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	V

Unit	Q_TOP4P	Serial No
Test Engineer	Xen	
Date	28/1/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	\checkmark
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.398	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	$\sqrt{}$
Ch3	$\sqrt{}$
Ch4	

Unit	Q_TOP4P	Serial No
Test Engine	eerXen	
Date	29/1/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.3	$\sqrt{}$	-24.3	$\sqrt{}$	-24.5	$\sqrt{}$
-7v	-17.2	V	-17.1	V	-17.1	V	-17.1	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.41	V	-2.41	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.41	V	2.41	V	2.42	V	2.41	$\sqrt{}$
5v	12.1	V	12.1	V	12.2	V	12.1	√
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.2	V	24.3	V	24.3	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP4P	Serial No
	erXen	
Date	28/1/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	√	\checkmark	V
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.56	V
Ch3	5v to 6v	5.57	V
Ch4	5v to 6v	5.57	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

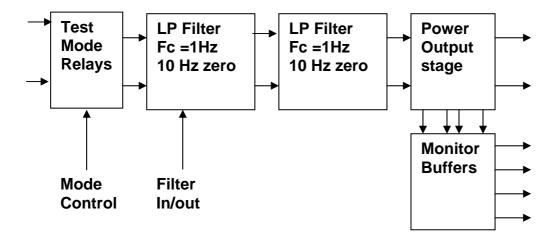
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP5P	Serial No	
Test Engineer			
Date	.29/1/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP5P	.Serial No
Test Engineer		
Date	29/1/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q_TOP5P	Serial No	
Test Engineer			
Date	29/1/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

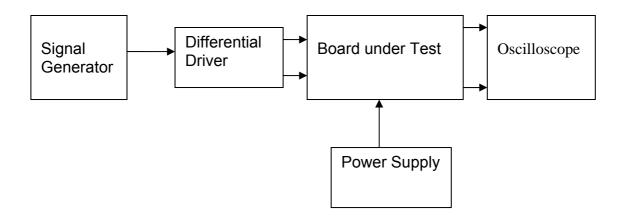
Unit	Q TOP5P	Serial No
	eerXen	
Date	29/1/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PIN	N OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	V
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	√
8	Imon3N	20	V
9	Imon4N	21	√

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP5P	Serial No	
	erXen		
Date	29/1/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.07	1mV	√
+15v TP4	14.91	1mV	√
-15v TP6	-15.05	5mV	√

All Outputs smooth DC, no oscillation? √
--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP5P	Serial No
	eerXen	
Date	29/1/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	$\sqrt{}$	√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TOP5P	Serial No)	
Test Engineer	Xen			

Date29/1/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	1	Ш-
U		112

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.35	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.66	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP5P	Serial No
Test Engineer	.Xen	
Date	.29/1/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	V
Ch2	3.25	3v to 3.4v	
Ch3	3.25	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	
Ch3	0.48	0.4v to 0.5v	
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP5P	Serial No	
Test Engineer	Xen		
Date	29/1/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	\checkmark
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	$\sqrt{}$
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	$\sqrt{}$
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP5P	Serial No
Test Engin	eerXen	
Date	29/1/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.4	V	-24.5	V
-7v	-17.2	V	-17.1	V	-17.2	V	-17.1	V
-5v	-12.3	$\sqrt{}$	-12.3	√	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$
-1v	-2.42	$\sqrt{}$	-2.42	√	-2.42	$\sqrt{}$	-2.41	$\sqrt{}$
0v	0	$\sqrt{}$	0	√	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.41	\checkmark	2.42	$\sqrt{}$	2.41	$\sqrt{}$	2.42	$\sqrt{}$
5v	12.0	V	12.1	V	12.0	V	12.1	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.2	V	24.2	V	24.2	V	24.2	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP5P	Serial No	
	ieerXen		
Date	29/1/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.57	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

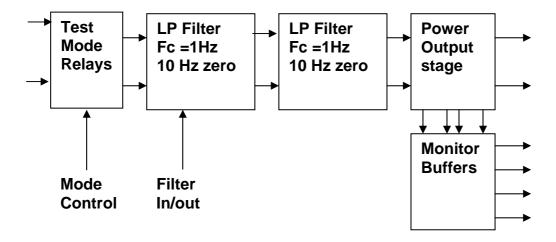
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP6P	Serial No
Test Engineer	Xen	
Date	1/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP6P	.Serial No
Test Engineer		
Date	1/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP6P	Serial No
Test Engineer		
Date	29/1/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

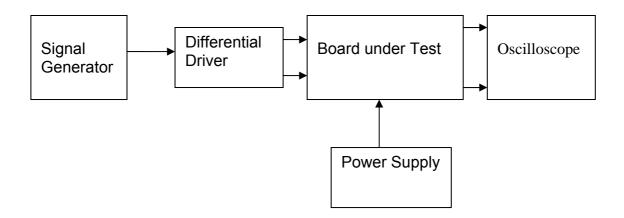
Unit	Q TOP6P	Serial No
	eerXen	
Date	29/1/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	√
7	Imon2N	19	\checkmark
8	Imon3N	20	\checkmark
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP6P	Serial No	
Test Engineer	·Xen		
Date	1/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	\checkmark
+15v TP4	14.88	1mV	\checkmark
-15v TP6	-15.03	5mV	\checkmark

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP6P	Serial No
Test Engineer		
Date	.1/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	$\sqrt{}$	√	√

Test Switches

Channel	Indio	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q TOP6P	Serial No	
Test Engineer	Xen		
Date	1/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	530	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	√
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	√
Ch/	1 85	4.7 to 5y	1

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.35	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP6P	Serial No
Test Engineer	.Xen	
Date	1/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	
Ch2	0.49	0.4v to 0.5v	
Ch3	0.48	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP6P	Serial No	
Test Engineer	Xen		
Date	1/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	\checkmark
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.399	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	.Q TOP6P	Serial No	
Test Engineer	.Xen		
Date	.1/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.1	V	-17.2	V	-17.2	V	-17.1	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.2	
-1v	-2.4	V	-2.41	V	-2.42	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.1	V	17.0	V	17.0	V
10v	24.5	V	24.5	V	24.3	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP6P	Serial No
	eerXen	
Date	1/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.57	
Ch2	5v to 6v	5.57	V
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

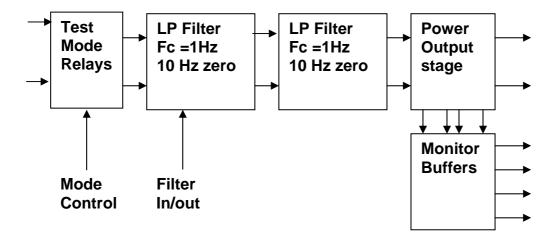
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP7P	Serial No
Test Engineer		
Date	.1/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP7P	.Serial No
Test Engineer		
Date	1/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP7P	Serial No	
Test Engineer			
Date	1/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

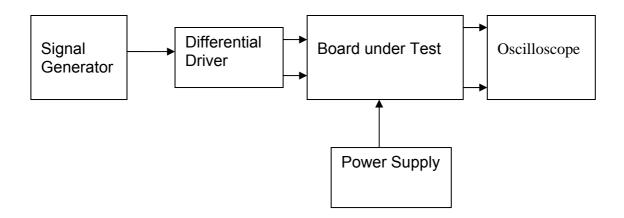
Unit	Q TOP7P	Serial No
	neerXen	
Date	1/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	√
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	√
3	Imon3P	7	√
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	√
7	Imon2N	19	\checkmark
8	Imon3N	20	\checkmark
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP7P	Serial No	
Test Engineer	·Xen		
Date	1/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.00	1mV	\checkmark
+15v TP4	14.78	1mV	\checkmark
-15v TP6	-14.86	5mV	\checkmark

All Outputs smooth DC, no oscillation? √
--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP7P	Serial No
	erXen	
Date	1/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		
Ch2	V		
Ch3	V		V
Ch4			

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

Unit	Q TOP7P	Serial No	
Test Engineer .			
Date	1/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	V
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	√
Ch4	4 85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.35	3.3v to 3.7v	$\sqrt{}$
Ch3	3.35	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	\checkmark
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP7P	Serial No
Test Engineer		
Date	1/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	$\sqrt{}$
Ch2	0.49	0.4v to 0.5v	V
Ch3	0.49	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	$\sqrt{}$
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q_TOP7P	Serial No	
Test Engineer	Xen		
Date	1/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	\checkmark
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.397	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	.Q_TOP7P	Serial No	
Test Engineer	.Xen		
Date	.1/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.4	$\sqrt{}$	-24.4	$\sqrt{}$
-7v	-17.2	V	-17.2	V	-17.1	V	-17.0	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.4	V	-2.41	V	-2.42	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.41	V	2.41	V	2.42	
5v	12.2	V	12.0	V	12.0	V	12.2	√
7v	17.1	V	17.0	V	17.0	V	17.0	√
10v	24.3	V	24.2	V	24.2	V	24.2	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP7P	Serial No
	eerXen	
Date	1/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.56	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

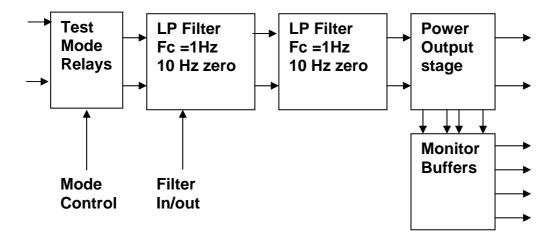
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP8P	Serial No .	
Test Engineer			
Date	.2/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP8P	.Serial No
Test Engineer		
Date	2/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP8P	Serial No
Test Engineer .		
Date	1/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Changed IC11, IC10 and IC5 on CH4.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

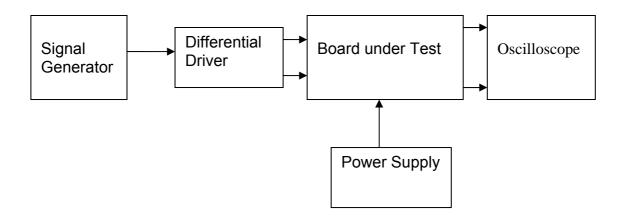
Unit	Q TOP8P	Serial No
	eerXen	
Date	1/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	√
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	√
7	Imon2N	19	\checkmark
8	Imon3N	20	
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP8P	Serial No	
Test Enginee	erXen		
Date	2/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.07	1mV	
+15v TP4	14.93	1mV	
-15v TP6	-14.89	5mV	

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP8P	Serial No
Test Engineer		
Date	.2/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TOP8P	Serial No .	
Test Engine	erXen		

Date2/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.3	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.66	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP8P	Serial No
Test Engineer		
Date	.2/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	
Ch2	0.5	0.4v to 0.5v	
Ch3	0.5	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP8P	Serial No
Test Engineer	Xen	
Date	2/2/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	\checkmark
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?	
Ch1	$\sqrt{}$	
Ch2	V	
Ch3	V	
Ch4	√	

Unit	Q_TOP8P	Serial No
Test Engine	eerXen	
Data	2/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.2	V	-17.2	V	-17.0	
-5v	-12.3	V	-12.5	V	-12.3	V	-12.2	
-1v	-2.42	V	-2.42	V	-2.4	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	√
7v	17.0	V	17.1	V	17.2	V	17.0	V
10v	24.3	V	24.5	V	24.5	V	24.3	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP8P	Serial No	
	erXen		
Date	2/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not		V	V	V
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	V
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

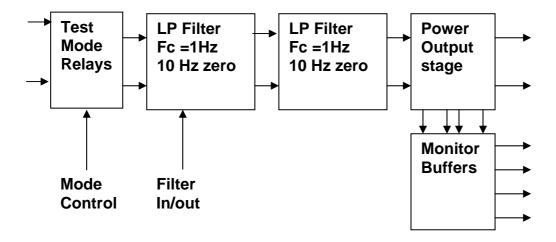
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP9P	Serial No
Test Engineer	Xen	
Date	3/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP9P	Serial No
Test Engineer		
Date	.3/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP9P	Serial No
Test Engineer		
Date	2/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

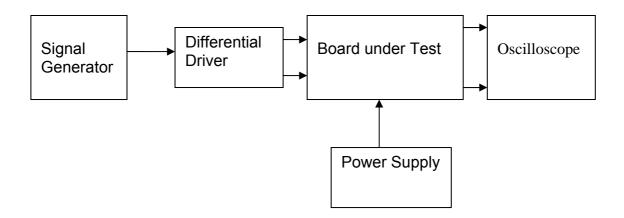
Unit	Q TOP9P	Serial No
	ieerXen	
Date	2/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PIN	I OK?
1	Imon1P	5	V
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	V
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	V
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		\checkmark
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP9P	Serial No	
	erXen		
Date	2/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.05	1mV	
+15v TP4	14.89	1mV	
-15v TP6	-15.06	5mV	V

All Outputs smooth DC, no oscillation?	1	1
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP9P	Serial No
Test Engineer		
Date	.2/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4			V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	√		V
Ch2	√		V
Ch3	V		V
Ch4		\checkmark	

Unit	.Q TOP9P	.Serial No
Test Engineer		
Date	.2/2/10,	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	- 1	Ш-
U		112

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	$\sqrt{}$
Ch2	3.35	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	
Ch4	3.35	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.66	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.46	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.46	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q_TOP9P	Serial No
Test Engineer		
Date	.2/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	V
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	
Ch2	0.5	0.4v to 0.5v	
Ch3	0.5	0.4v to 0.5v	
Ch4	0.49	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP9P	Serial No
Test Engineer	Xen	
Date	2/2/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	√

Unit	.Q TOP9P	Serial No
Test Engineer		
Date	.3/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$
-7v	-17.1	$\sqrt{}$	-17.2	$\sqrt{}$	-17.2	$\sqrt{}$	-17.2	$\sqrt{}$
-5v	-12.2	$\sqrt{}$	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$
-1v	-2.42	$\sqrt{}$	-2.4	$\sqrt{}$	-2.41	$\sqrt{}$	-2.41	$\sqrt{}$
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	\checkmark	0	$\sqrt{}$
1v	2.42	V	2.42	V	2.42	V	2.42	V
5v	12.1	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.4	V	24.4	V	24.3	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP9P	Serial No	
	eerXen		
Date	2/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	√	√	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.56	V
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

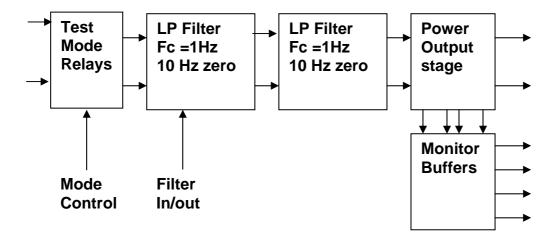
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP10P	Serial No
Test Engineer		
Date	4/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

UnitC	TOP10P	Serial No
Test EngineerX		
Date4/	/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP10P	Serial No
	Xen	
Date	4/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

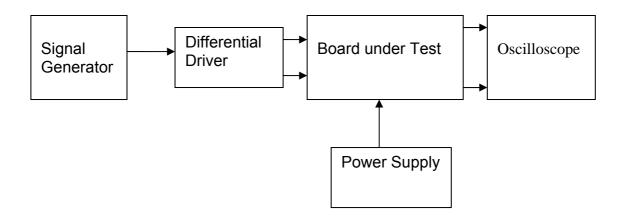
Unit	Q TOP10P	Serial No
	neerXen	
Date	4/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	√
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	√
7	Imon2N	19	\checkmark
8	Imon3N	20	
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP10P	Serial No
Test Engineer		
Date	.4/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.03	1mV	\checkmark
+15v TP4	14.82	1mV	\checkmark
-15v TP6	-15.08	5mV	$\sqrt{}$

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q_TOP10P	.Serial No
Test Engineer	Xen	
Date	.4/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	$\sqrt{}$	√	√

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	V	1	√

UnitQ_10P1	OPSerial No
Test EngineerXen	•••

Date4/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	V
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	- 1	Ш-
U		112

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	V
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP10P	.Serial No
Test Engineer		
Date	.4/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	V
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.5	0.4v to 0.5v	√
Ch4	0.5	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP10P.	 .Serial No	
Test Engineer .	Xen		
Date	4/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	V
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	V
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP10P	Serial No	
Test Engineer	Xen		
Date	4/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.1	V	-17.2	V	-17.2	V	-17.2	
-5v	-12.2	V	-12.2	V	-12.2	V	-12.2	
-1v	-2.4	V	-2.42	V	-2.42	V	-2.41	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	
7v	17.0	V	17.0	V	17.0	V	17.1	V
10v	24.3	V	24.3	V	24.3	V	24.5	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP10P	Serial No	
	erXen		
Date	4/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.58	$\sqrt{}$
Ch3	5v to 6v	5.57	√
Ch4	5v to 6v	5.55	√

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP11P	Serial No	
Test Engineer	Xen		
Date	.4/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP11P	Serial No
Test Engineer		
Date	4/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP11P	Serial No
	Xen	
Date	4/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

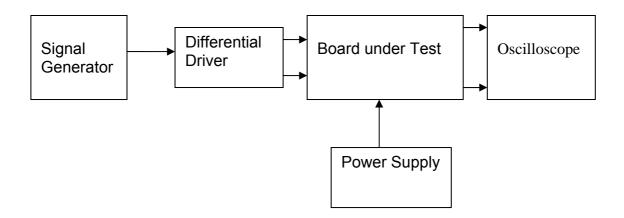
Unit	Q TOP11P	Serial No
	neerXen	
Date	4/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	\checkmark

J5


PIN	SIGNAL	To J1 PI	N OK?
1	Imon1P	5	$\sqrt{}$
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	V
8	Imon3N	20	
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP11P	Serial No	
	Xen		
Date	4/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.04	1mV	
+15v TP4	14.93	1mV	
-15v TP6	-15.04	5mV	

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP11P	Serial No
	eerXen	
Date	4/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	$\sqrt{}$	√	√

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	V		V

Unit	Q_TOP11P	Serial No	
Test Engineer	Xen		

Date4/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	1	Hъ	
v	•••		

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	$\sqrt{}$
Ch3	3.35	3.3v to 3.7v	$\sqrt{}$
Ch4	3.35	3.3v to 3.7v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP11P	Serial No
Test Engineer	.Xen	
Date	.4/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.2	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	$\sqrt{}$
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP11P	Serial No)	
Test Engineer	Xen			
Date	4/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.397	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP11P	Serial No	
Test Engineer	Xen		
Date	4/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.5	V
-7v	-17.2	V	-17.1	V	-17.2	V	-17.0	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.2	V
-1v	-2.42	$\sqrt{}$	-2.42	$\sqrt{}$	-2.42	V	-2.4	
0v	0	V	0	V	0	V	0	V
1v	2.42	$\sqrt{}$	2.42	$\sqrt{}$	2.42		2.4	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.0	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.3	V	24.3	1	24.2	1

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP11P	Serial No
	eerXen	
Date	4/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.56	$\sqrt{}$
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

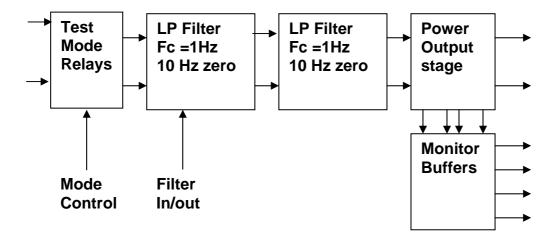
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP12P	Serial No	
Test Engineer	Xen		
Date	.4/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP12P	.Serial No
Test Engineer		
Date	4/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP12P	Serial No	
Test Engineer			
Date	4/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

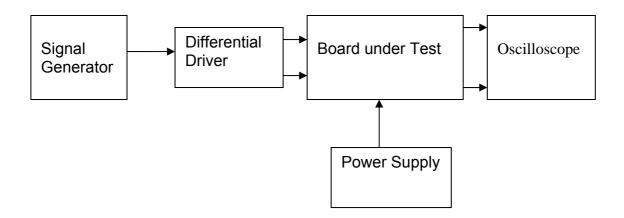
Unit	Q TOP12P	Serial No
	neerXen	
Date	4/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP12P	Serial No	
	Xen		
Date	4/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.95	1mV	
+15v TP4	14.93	1mV	
-15v TP6	-14.96	5mV	V

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP12P	Serial No
	eerXen	
Date	4/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	$\sqrt{}$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	.Q_TOP12P	Serial No	
Test Engineer	.Xen		

Date4/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	✓
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

^	
	 87

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	
Ch3	3.35	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP12P	Serial No
Test Engineer	.Xen	
Date	.4/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.2	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP12P	Serial	No	
Test Engineer.	Xen			
Date	4/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	V
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	V
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP12P	 Serial No	
Test Engineer	Xen		
Date	4/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	V	-24.5	V	-24.4	V	-24.5	
-7v	-17.1	V	-17.2	V	-17.0	V	-17.2	
-5v	-12.2	V	-12.2	V	-12.2	V	-12.3	
-1v	-2.4	V	-2.42	V	-2.4	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	1	17.0	V
10v	24.3	V	24.3	V	24.3	V	24.3	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP12P	Serial No	
	erXen		
Date	4/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.57	
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

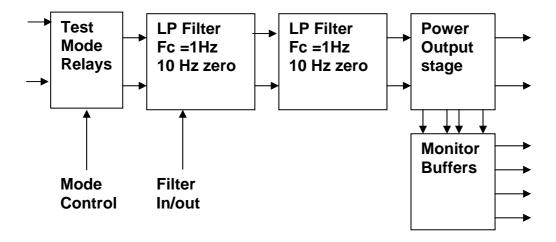
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP13P	Serial No	
Test Engineer			
Date	5/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

UnitQ	TOP13P	.Serial No
Test EngineerX		
Date5/2	2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP13P	Serial No
	Xen	
Date	5/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

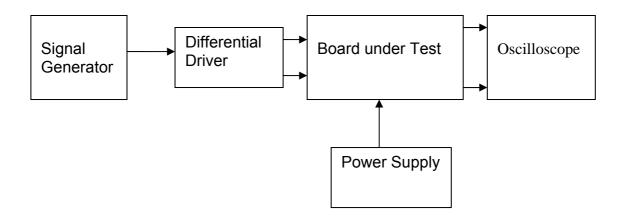
Unit	Q TOP13P	Serial No
	neerXen	
Date	5/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		√
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP13P	Serial No	
Test Engineer			
Date	5/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.01	1mV	$\sqrt{}$
+15v TP4	14.98	1mV	
-15v TP6	-15.01	5mV	√

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP13P	Serial No
Test Engineer		
Date	5/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator O	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	$\sqrt{}$

Test Switches

Channel	Indio	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	$\sqrt{}$	V	V
Ch4		V	V

Unit	Q_TOP13P	Serial No	
Test Engineer .	Xen		

Date5/2/10......

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0	.1	Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	
Ch2	3.3	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	0.48 to 0.75v	√
Ch2	0.66	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4v to 0.5v	
Ch2	0.46	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4v to 0.5v	V
Ch2	0.46	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP13P	Serial No
Test Engineer	.Xen	
Date	.5/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.25	3v to 3.4v	V
Ch3	3.2	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	
Ch2	0.48	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.48	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	V
Ch3	0.16	0.15v to 0.16v	$\sqrt{}$
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP13P	Seria	ıl No	
Test Engineer .	Xen			
Date	5/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	$\sqrt{}$
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	√

Unit	Q_TOP13P	Serial No
Test Engine	eerXen	
Date	5/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.2	V	-17.2	V	-17.2	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.5	
-1v	-2.4	V	-2.42	V	-2.42	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.0	V	17.2	1	17.1	V
10v	24.5	V	24.3	V	24.5	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP13P	Serial No	
	eerXen		
Date	5/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.56	
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

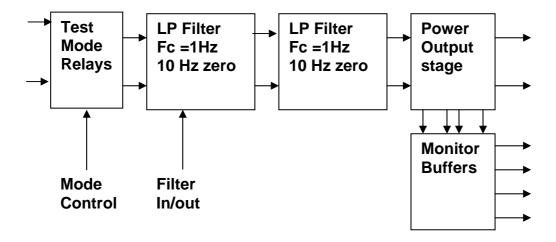
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP14P	Serial No	
Test Engineer	Xen		
Date	.5/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP14P	Serial No	
	Xen		
Date	5/2/10		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP14P	Serial No
	Xen	
Date	5/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

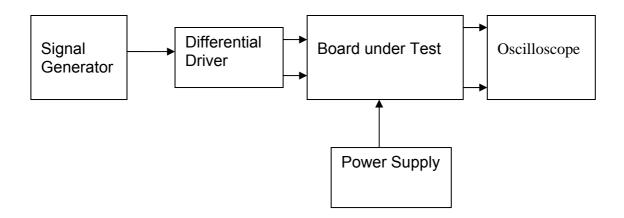
Unit	Q TOP14P	Serial No
	eerXen	
Date	5/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	V
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN OK?
1	Imon1P	5	
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	V
5	0V		V
6	Imon1N	18	$\sqrt{}$
7	Imon2N	19	$\sqrt{}$
8	Imon3N	20	√ √
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		√
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP14P	Serial No
	Xen	
Date	5/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.03	1mV	
+15v TP4	14.77	1mV	
-15v TP6	-15.00	5mV	V

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP14P	Serial No
	neerXen	
Date	5/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4		√	√

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

UnitQ_	OP14PSerial No
Test EngineerXe	

Date5/2/10......

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

D.	1	Н	Z	

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	0.48 to 0.75v	√
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q TOP14P	Serial No
Test Engineer	.Xen	
Date	.5/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.25	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	
Ch4	0.5	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP14P	Seria	al No	
Test Engineer .	Xen			
Date	5/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	$\sqrt{}$
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

UnitQ	TOP14PS	Serial No
Test EngineerXe	en	
Date5/2	2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.1	V	-17.1	V	-17.2	
-5v	-12.3	V	-12.3	V	-12.2	V	-12.3	
-1v	-2.4	V	-2.41	V	-2.4	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	√
7v	17.1	V	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.4	V	24.5	V	24.3	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP14P	Serial No
	Xen	
Date	5/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.54	$\sqrt{}$
Ch4	5v to 6v	5.55	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

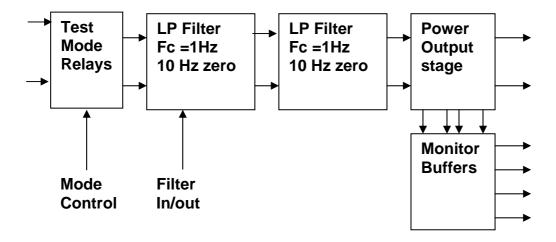
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP15P	Serial No	
Test Engineer			
Date	15/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Jnit	Q TOP15P	Serial No
	eerXen	
)ate	15/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP15P	Serial No	
	Xen		
Date	15/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

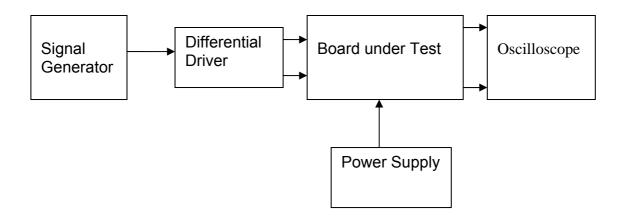
Unit	Q_TOP15P	.Serial No	
Test Engineer	Xen		
Date	15/2/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1 PI	N OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	\checkmark
4	Imon4P	8	V
5	0V		V
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	√
9	Imon4N	21	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		\checkmark
25	0V (TP3)		$\sqrt{}$

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP15P	Serial No
Test Engineer		
Date	.15/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	\checkmark
+15v TP4	14.82	1mV	
-15v TP6	-15.14	5mV	V

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP15P	Serial No
Test Engir	neerXen	
Date	15/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	$\sqrt{}$	V	V
Ch3		V	V
Ch4	V	V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4			V

Unit	Q_TOI	P15P	 Serial No	 	
Test Engineer	Xen				

Date15/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	√
Ch2	4.85	4.7 to 5v	
Ch3	4.9	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP15P	Serial No
Test Engineer	.Xen	
Date	.15/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.9	4.7v to 5v	
Ch4	4.85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	$\sqrt{}$
Ch3	3.35	3v to 3.4v	$\sqrt{}$
Ch4	3.3	3v to 3.4v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.5	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	$\sqrt{}$
Ch2	0.16	0.14v to 0.16v	$\sqrt{}$
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP15P	Ser	ial No	
Test Engineer .	Xen			
Date	15/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.203	Pin 1 to Pin 2	1.203	√
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	√
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.203	
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	V
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

UnitG	<u> </u>	Serial No
Test EngineerX	Cen	
Date1	5/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.0	V	-17.2	V	-17.2	
-5v	-12.3	V	-12.2	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.4	V	-2.41	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.2	V	17.1	1	17.1	V
10v	24.5	V	24.5	V	24.5	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP15P	Serial No
	eerXen	
Date	15/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	√
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	V
Ch2	5v to 6v	5.56	V
Ch3	5v to 6v	5.54	\checkmark
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

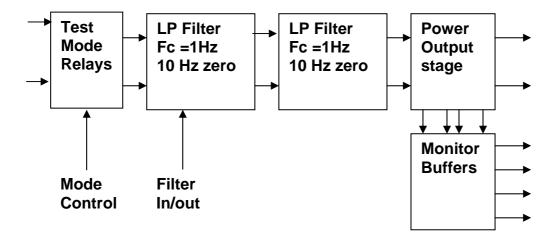
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP16P	Serial No	
Test Engineer			
Date	.16/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP16P	Serial No
Test Engineer		
•	16/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP16P	Serial No	
	Xen		
Date	15/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

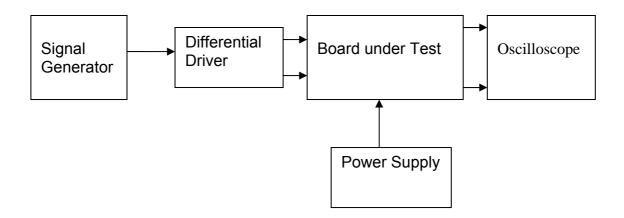
Unit	Q TOP16P	Serial No
	eerXen	
Data	15/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		$\sqrt{}$
6	Imon1N	18	
7	Imon2N	19	\checkmark
8	Imon3N	20	√ √
9	Imon4N	21	$\sqrt{}$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		\checkmark
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP16P	Serial No	
	·Xen		
Date	15/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.04	1mV	\checkmark
+15v TP4	14.94	1mV	
-15v TP6	-15.05	5mV	√

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP16P	.Serial No
Test Engineer		
Date	.15/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1			V
Ch2	$\sqrt{}$		V
Ch3	$\sqrt{}$		V
Ch4			V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q_TOP16P	Serial No	
Test Engineer	·Xen		
Date	15/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	
Ch3	4.85	4.7 to 5v	√
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	V
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4v to 0.5v	√
Ch2	0.46	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q TOP16P	Serial No
Test Engineer	.Xen	
Date	.15/2/10	

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	\checkmark
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	
Ch2	0.49	0.4v to 0.5v	V
Ch3	0.49	0.4v to 0.5v	V
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	V
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP16P	.Serial No
Test Engineer	Xen	
Date	.16/2/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.204	Pin 1 to Pin 2	1.204	\checkmark
2	1.16-1.28	1.203	Pin 5 to Pin 6	1.203	$\sqrt{}$
3	1.16-1.28	1.204	Pin 9 to Pin 10	1.203	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.203	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP16P	.Serial No	
Test Engineer	Xen		
Date1	16/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.4	$\sqrt{}$
-7v	-17.2	V	-17.2	V	-17.2	V	-17.2	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.42	V	-2.42	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.41	V	2.42	V	2.42	
5v	12.1	V	12.1	V	12.2	V	12.2	√
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.2	V	24.3	V	24.3	V	24.2	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP16P	Serial No	
	erXen		
Date	16/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	\checkmark	$\sqrt{}$	V	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.54	$\sqrt{}$
Ch2	5v to 6v	5.55	V
Ch3	5v to 6v	5.55	√
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Unit	Q TOP17P	Serial No	
	Xen		
Date	16/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP17P	.Serial No
Test Engineer		
Date	16/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	.Q TOP17P	Serial No
Test Engineer		
Date	.16/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

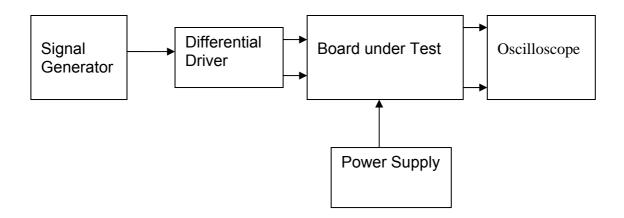
Unit	Q_TOP17P	Serial No
Test Engine	erXen	
Nata	16/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		$\sqrt{}$
6	Imon1N	18	
7	Imon2N	19	\checkmark
8	Imon3N	20	√ √
9	Imon4N	21	$\sqrt{}$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP17P	Serial No
Test Engineer		
Date1	6/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.01	1mV	$\sqrt{}$
+15v TP4	14.97	1mV	
-15v TP6	-14.94	5mV	√

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP17P	Serial No
	neerXen	
Date	16/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	V	√	√

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q_TOP17P	Serial No
Test Engineer	Xen	
Date	16/2/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	V
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	√
Ch4	4 85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP17P	Serial No
Test Engineer	.Xen	
Date	.16/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	V
Ch3	3.35	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	
Ch3	0.5	0.4v to 0.5v	
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP17P	Serial No	
Test Engineer	Xen		
Date	16/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.398	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.397	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q TOP17P	Serial	No	
Test Engineer .	Xen			
Date	16/2/10			

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.3	V	-24.3	
-7v	-17.2	V	-17.0	V	-17.0	V	-17.1	
-5v	-12.3	V	-12.2	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.4	V	-2.4	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	1	17.0	V
10v	24.3	V	24.3	V	24.2	V	24.2	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP17P	Serial No	
	erXen		
Date	16/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.57	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

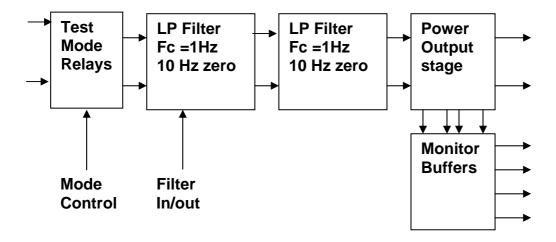
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP18P	Serial No	
Test Engineer			
Date	.16/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit(Q TOP18P	Serial No
Test Engineer		
Date1	16/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP18P	Serial No	
	Xen		
Date	16/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

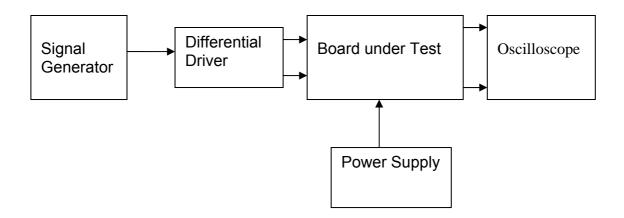
Unit	Q TOP18P	Serial No
	neerXen	
Date	16/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			V
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	V
8	PD3N	Photodiode C-	16	√
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP18P	Serial No
Test Engineer		
Date	16/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.00	1mV	
+15v TP4	14.81	1mV	
-15v TP6	-15.05	5mV	

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP18P	.Serial No
Test Engineer	.Xen	
Date	.16/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		
Ch4		√	$\sqrt{}$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q TOP18P	Serial N	0	
Test Engineer .	Xen			
Date	16/2/10			

8. Corner frequency tests

Ch4

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	√

4.9

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.45	3.3v to 3.7v	√
Ch3	3.45	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	√

4.7 to 5v

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.7	0.48 to 0.75v	√
Ch3	0.7	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP18P	Serial No
Test Engineer	.Xen	
Date	.16/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	V
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	$\sqrt{}$
Ch2	0.49	0.4v to 0.5v	V
Ch3	0.49	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP18P	Serial No
Test Engineer	Xen	
Date	16/2/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.395	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.397	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP18P	Serial No	
Test Engineer	Xen		
Date	16/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.4	$\sqrt{}$
-7v	-17.2	V	-17.0	V	-17.1	V	-17.1	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.41	V	-2.41	V	-2.4	V	-2.41	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	
7v	17.0	V	17.0	$\sqrt{}$	17.0	V	17.1	$\sqrt{}$
10v	24.2	V	24.3	V	24.3	V	24.5	

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP18P	Serial No	
	erXen		
Date	16/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.55	√
Ch4	5v to 6v	5.55	√

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

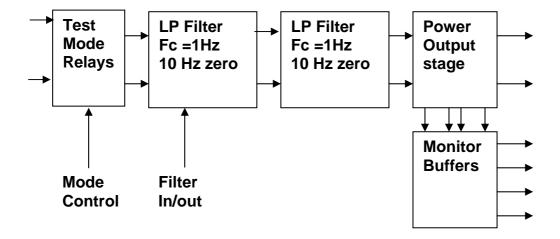
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP19P	Serial No
	Xen	
Date	16/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP19P	.Serial No
	Xen	
Date	16/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP19P	Serial No
	Xen	
Date	16/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

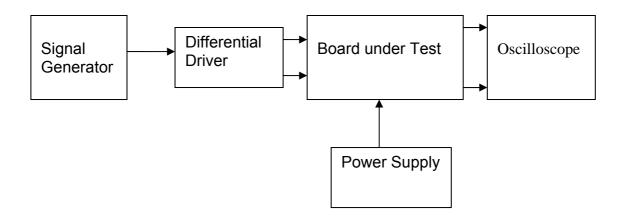
Unit	Q TOP19P	Serial No
Test Engine	erXen	
Data	16/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			V
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	V
8	PD3N	Photodiode C-	16	√
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	\checkmark
9	Imon4N	21	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP19P	Serial No
Test Engineer		
Date	16/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.94	1mV	
+15v TP4	14.97	1mV	
-15v TP6	-15.05	5mV	V

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP19P	.Serial No
Test Engineer	.Xen	
Date	.16/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	V	√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TOP19P	Serial No	
Test Engineer	Xen		
Date	16/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	$\sqrt{}$
Ch4	3.4	3.3v to 3.7v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP19P	Serial No
Test Engineer	.Xen	
Date	.16/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.2	3v to 3.4v	\checkmark
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	V
Ch2	0.48	0.4v to 0.5v	V
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP19P	Serial No	
Test Engineer	Xen		
Date	16/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	V
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	√
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	√

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP19PS	Serial No
Test Engineer>	Ken	
Date1	6/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.1	V	-17.2	V	-17.2	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.4	V	-2.41	V	-2.42	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.2	V	17.1	V	17.1	1	17.0	V
10v	24.5	V	24.4	V	24.4	V	24.3	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP19P	Serial No
	erXen	
Date	16/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

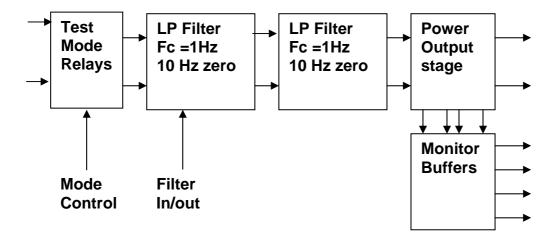
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP20P	Serial No
Test Engineer		
Date	17/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP20P	Serial No
	Xen	
Date	17/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	.Q TOP20P	Serial No
Test Engineer		
Date	17/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

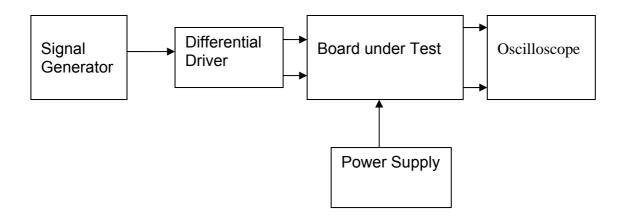
Unit	Q TOP20P	Serial No
Test Engine	eerXen	
Data	17/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	V
5	0V			V
6	PD1N	Photodiode A-	14	V
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	V

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	√
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		√
6	Imon1N	18	$\sqrt{}$
7	Imon2N	19	$\sqrt{}$
8	Imon3N	20	\checkmark
9	Imon4N	21	√

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP20P	Serial No
Test Engineer		
Date		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.99	1mV	$\sqrt{}$
+15v TP4	14.95	1mV	
-15v TP6	-15.00	5mV	√

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP20P	Serial No
Test Engineer	_	
Date	.17/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	$\sqrt{}$

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q TOP20P	Serial No	
	erXen		
Date	17/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	1	Ш-
U		112

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	
Ch4	3.35	3.3v to 3.7v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.46	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP20P	Serial No
Test Engineer	.Xen	
Date	.17/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	V
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.5	0.4v to 0.5v	√
Ch3	0.5	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP20P	Serial No	
Test Engineer .	Xen		
Date	17/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.394	Pin 11 to Pin 12	0.396	V
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	V
Ch2	V
Ch3	V
Ch4	\checkmark

Unit	Q_TOP20P	Serial No	
Test Engineer	Xen		
Date	17/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.1	V	-17.1	V	-17.1	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.42	V	-2.42	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42		2.42	V	2.42	
5v	12.2	V	12.2	√	12.2	V	12.2	V
7v	17.1	V	17.0	V	17.0	1	17.1	V
10v	24.5	V	24.3	√	24.3	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP20P	Serial No	
	erXen		
Date	17/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	\checkmark	√	√	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.57	$\sqrt{}$
Ch2	5v to 6v	5.57	V
Ch3	5v to 6v	5.54	V
Ch4	5v to 6v	5.56	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

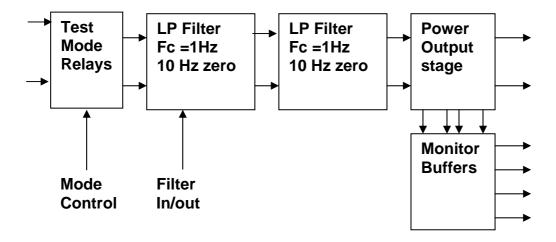
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP21P	Serial No
	Xen	
Date	17/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP21P	Serial No
	Xen	
Date	17/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP21P	Serial No	
	rXen		
Date	17/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

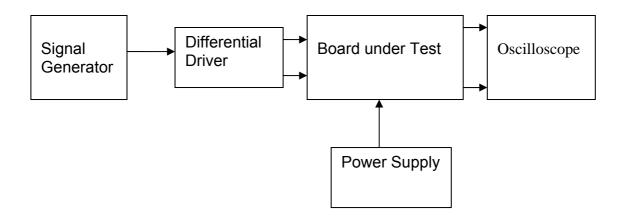
Unit	Q TOP21P	Serial No
	eerXen	
Data	17/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP21P	Serial No
	Xen	
Date	17/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	
+15v TP4	14.96	1mV	
-15v TP6	-15.06	5mV	V

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP21P	Serial No
	eerXen	
Date	17/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		
Ch2	V		$\sqrt{}$
Ch3	V		V
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q TOP21P	Serial No	
Test Engineer	rXen		
Date	17/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0	ď	1	H	1	Z	

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.35	3.3v to 3.7v	√
Ch4	3.34	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	$\sqrt{}$
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP21P	Serial No
Test Engineer		
Date	.17/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	
Ch2	0.49	0.4v to 0.5v	
Ch3	0.49	0.4v to 0.5v	
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP21P	Serial No	
Test Engineer	Xen		
Date	17/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal?
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	(+/- 0.1v) √
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	V		
Ch3	V		
Ch4	√		

Unit	Q_TOP21P	 .Serial No	
Test Engineer	Xen		
Date	17/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.4	V
-7v	-17.2	V	-17.2	V	-17.2	V	-17.1	V
-5v	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$	-12.4	$\sqrt{}$	-12.3	$\sqrt{}$
-1v	-2.4	$\sqrt{}$	-2.42	$\sqrt{}$	-2.42	$\sqrt{}$	-2.41	$\sqrt{}$
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.42	\checkmark	2.42	$\sqrt{}$	2.42		2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.0	V	17.2	V	17.1	V
10v	24.5	V	24.3	V	24.5	V	24.4	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP21P	Serial No
	eerXen	
Date	17/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

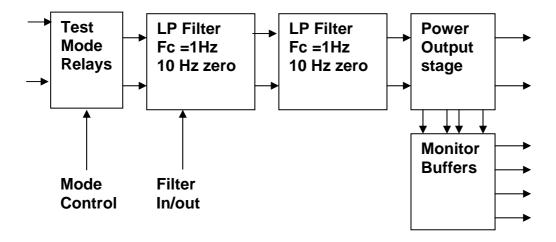
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP22P	Serial No	
	erXen		
Date	18/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

UnitQ	TOP22P	Serial No
Test EngineerX		
Date18	3/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	.Q TOP22P	Serial No
Test Engineer		
Date	.17/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

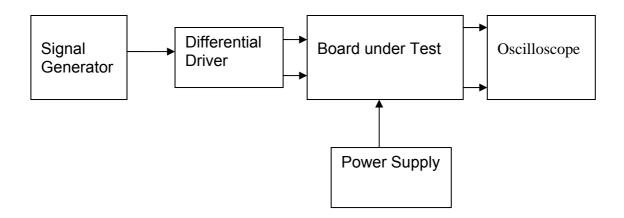
Unit	.Q TOP22P	.Serial No
Test Engineer		
Date	.17/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	\checkmark
9	Imon4N	21	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		\checkmark
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP22P	Serial No	
	Xen		
Date	17/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.99	1mV	
+15v TP4	14.81	1mV	
-15v TP6	-14.99	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP22P	.Serial No
Test Engineer	.Xen	
Date	.17/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		V	V
Ch2		V	V
Ch3		V	V
Ch4		V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q TOP22P	Serial No	
	Xen		
Date	18/2/10		

8. Corner frequency tests

Ch4

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

4.85

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

		Output	Specification	Pass/Fail
Ī	Ch1	4.85	4.7 to 5v	
	Ch2	4.85	4.7 to 5v	
Ī	Ch3	4.85	4.7 to 5v	

4.7 to 5v

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.35	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP22P	Serial No
Test Engineer	.Xen	
Date	.18/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	
Ch2	0.48	0.4v to 0.5v	
Ch3	0.49	0.4v to 0.5v	
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP22P	 Serial No	
Test Engineer .	Xen		
Date	18/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	$\sqrt{}$
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	.Q_TOP22P	.Serial No
Test Engineer	.Xen	
Date	.18/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.1	V	-17.2	V	-17.2	
-5v	-12.3	V	-12.2	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.4	V	-2.42	V	-2.41	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	$\sqrt{}$	2.42	
5v	12.2	V	12.1	V	12.2	V	12.2	
7v	17.0	V	17.0	V	17.0	V	17.0	
10v	24.3	V	24.3	V	24.3	V	24.4	

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Jnit	Q TOP22P	Serial No
	eerXen	
າate ັ	18/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.56	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

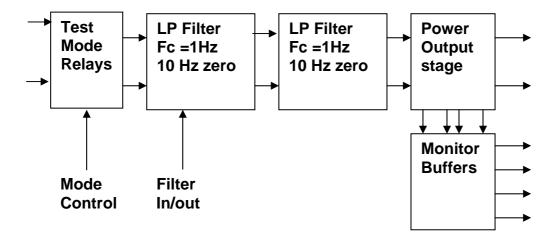
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP23P	Serial No	
	erXen		
Date	18/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP23P	Serial No
	eerXen	
Date	18/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP23P	Serial No
	Xen	
Date	18/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

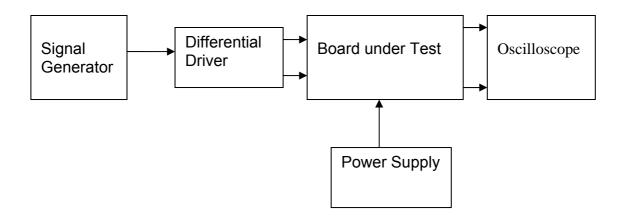
Unit	Q TOP23P	Serial No
	neerXen	
Date	18/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	\checkmark
9	Imon4N	21	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit(Q TOP23P	Serial No
Test Engineer		
Date1	8/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.04	1mV	$\sqrt{}$
+15v TP4	14.84	1mV	V
-15v TP6	-14.97	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current	
+16.5v	400mA	
-16.5v	300mA	

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP23P	Serial No
Test Engineer		
Date	.18/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	√	√	√

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q TOP23P	Serial No	
	erXen		
Date	18/2/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	V
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	√
Ch4	4 85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.66	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP23P	Serial No
Test Engineer	.Xen	
Date	.18/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	V
Ch4	3.2	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP23P	 Serial No	
Test Engineer .	Xen		
Date	18/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	V
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	V
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	$\sqrt{}$
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP23P	Serial No	
Test Engineer	Xen		
Date	.18/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.1	V	-17.2	V	-17.2	V	-17.2	V
-5v	-12.3	$\sqrt{}$	-12.3	√	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$
-1v	-2.41	$\sqrt{}$	-2.42	√	-2.42	$\sqrt{}$	-2.42	$\sqrt{}$
0v	0	$\sqrt{}$	0	√	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.42	\checkmark	2.42	$\sqrt{}$	2.42	$\sqrt{}$	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.0	V	17.0	V	17.0	V
10v	24.4	V	24.3	V	24.3	V	24.4	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP23P	Serial No
	Xen	
Date	18/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.56	$\sqrt{}$
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

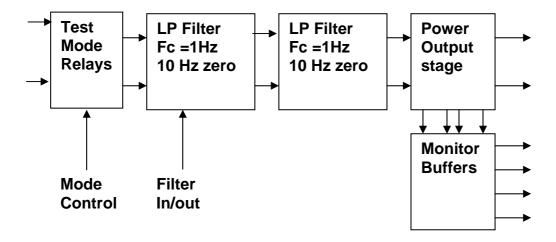
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP24P	Serial No	
Test Engineer			
Date	18/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

UnitQ	TOP24P	Serial No
Test EngineerX		
Date18	3/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP24P	Serial No
	rXen	
Date	18/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

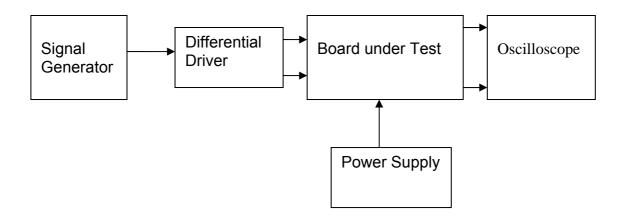
Unit	Q TOP24P	Serial No
Test Engine	eerXen	
Data	18/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP24P	.Serial No
	Xen	
Date	18/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	
+15v TP4	14.95	1mV	
-15v TP6	-15.04	5mV	V

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP24P	Serial No
	eerXen	
Date	18/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	V	√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	.Q TOP24P	.Serial No
Test Engineer		
Date	.18/2/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	
Ch3	4.85	4.7 to 5v	V
Ch4	4 85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.35	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.66	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP24P	Serial No
Test Engineer	.Xen	
Date	.18/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.25	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	
Ch2	0.48	0.4v to 0.5v	
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.5	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP24P	Serial No	
Test Engineer	Xen		
Date	18/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	√
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	V
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	V
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.398	√

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	√

Unit	Q TOP24P	.Serial No	
Test Engineer	Xen		
Date1	18/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.4	$\sqrt{}$	-24.5	$\sqrt{}$
-7v	-17.1	V	-17.2	V	-17.0	V	-17.2	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	
-1v	-2.42	V	-2.42	V	-2.4	V	-2.42	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	
5v	12.1	V	12.2	V	12.2	V	12.2	√
7v	17.0	V	17.1	V	17.2	V	17.1	V
10v	24.2	V	24.4	V	24.5	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP24P	Serial No
Test Engineer		
Date	18/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.58	$\sqrt{}$
Ch3	5v to 6v	5.55	$\sqrt{}$
Ch4	5v to 6v	5.55	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

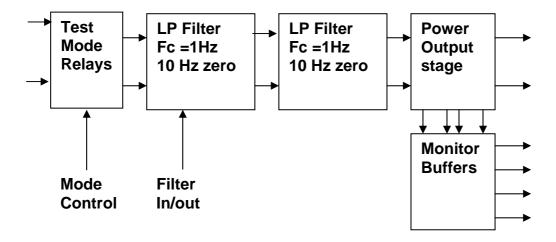
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP25P	Serial No	
	rXen		
Date	23/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP25P	Serial No
	eerXen	
Date	23/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP25P	Serial No	
	Xen		
Date	22/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

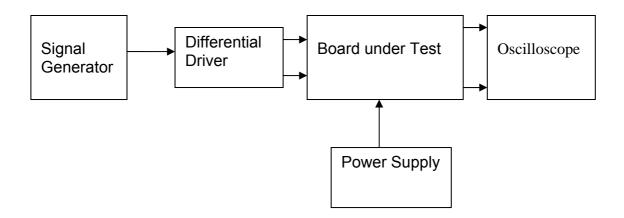
Unit	.Q TOP25P	.Serial No
Test Engineer		
Date	.22/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		$\sqrt{}$
6	Imon1N	18	
7	Imon2N	19	\checkmark
8	Imon3N	20	√ √
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP25P	Serial No
Test Engineer		
Date		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.99	1mV	
+15v TP4	14.96	1mV	
-15v TP6	-15.04	5mV	

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP25P	Serial No
Test Engineer		
Date		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator		
	ON	ON OFF		
Ch1	V	√	V	
Ch2	V		$\sqrt{}$	
Ch3	V		$\sqrt{}$	
Ch4		√	$\sqrt{}$	

Test Switches

Channel	Indio	OK?	
	ON OFF		
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_T(DP25P	 Serial No	 	
Test Engineer	Xen.				

Date23/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	- 1	ш	,
U		п	4

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	
Ch3	3.35	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP25P	Serial No
Test Engineer	.Xen	
Date	.23/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP25P	Seria	l No	
Test Engineer .	Xen			
Date	23/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	V
3	0.37-0.41	0.394	Pin 11 to Pin 12	0.396	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP25P	Serial No
Test Engine	erXen	
Date	23/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	$\sqrt{}$	-24.5	V	-24.4	$\sqrt{}$
-7v	-17.2	V	-17.1	V	-17.2	V	-17.0	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.2	
-1v	-2.42	V	-2.41	V	-2.41	V	-2.41	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	
7v	17.1	V	17.2	V	17.0	V	17.1	
10v	24.5	V	24.5	V	24.3	V	24.5	

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP25P	Serial No
	erXen	
Date	23/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	$\sqrt{}$	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.54	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

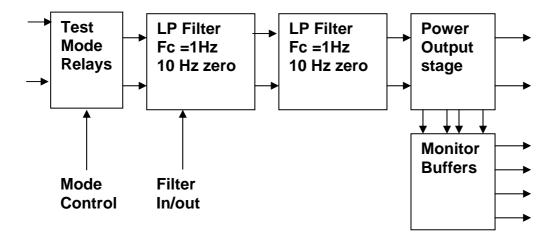
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP26P	Serial No	
	erXen		
Date	23/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP26P	Serial No
	eerXen	
Date	23/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	.Q TOP26P	Serial No
Test Engineer		
Date	.23/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

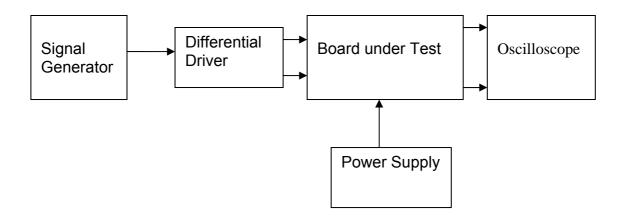
Unit	.Q TOP26P	Serial No
Test Engineer		
Date	.23/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	√
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		$\sqrt{}$
6	Imon1N	18	
7	Imon2N	19	\checkmark
8	Imon3N	20	√ √
9	Imon4N	21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP26P	Serial No
Test Engineer		
Date		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.06	1mV	
+15v TP4	14.96	1mV	
-15v TP6	-14.99	5mV	V

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP26P	Serial No
Test Engineer		
Date	.23/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON OFF		
Ch1	V		
Ch2	V		$\sqrt{}$
Ch3	V		V
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q_T	OP26P	 Serial No)	
Test Engine	erXen				

Date23/2/10......

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

\mathbf{a}	- 4		_
u	_ 1	н	7

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.35	3.3v to 3.7v	
Ch3	3.35	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.66	0.48 to 0.75v	√
Ch4	0.66	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q TOP26P	Serial No
Test Engineer	_	
Date	.23/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	
Ch2	3.2	3v to 3.4v	
Ch3	3.2	3v to 3.4v	V
Ch4	3.2	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4v to 0.5v	$\sqrt{}$
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.48	0.4v to 0.5v	$\sqrt{}$
Ch4	0.47	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP26P	Serial No	
Test Engineer	Xen		
Date	23/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.395	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.396	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP26P	Serial No
Test Engine	eerXen	
Data	23/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.2	V	-17.2	V	-17.2	V	-17.2	V
-5v	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$	-12.3	$\sqrt{}$
-1v	-2.42	$\sqrt{}$	-2.4	$\sqrt{}$	-2.42	$\sqrt{}$	-2.41	$\sqrt{}$
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.42	\checkmark	2.42	$\sqrt{}$	2.42		2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.1	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.4	V	24.3	V	24.3	V	24.3	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Jnit	Q TOP26P	Serial No
	erXen	
Date	23/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	√	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.55	$\sqrt{}$
Ch3	5v to 6v	5.56	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

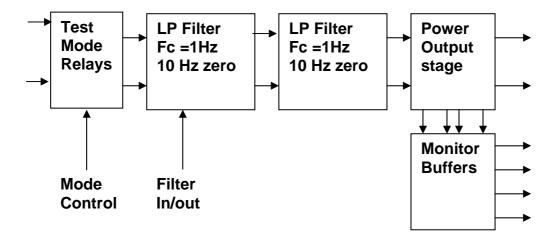
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP27P	Serial No	
Test Engineer			
Date	.24/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP27P	Serial No
	eerXen	
Date	24/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	.Q TOP27P	Serial No
Test Engineer		
Date	.23/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

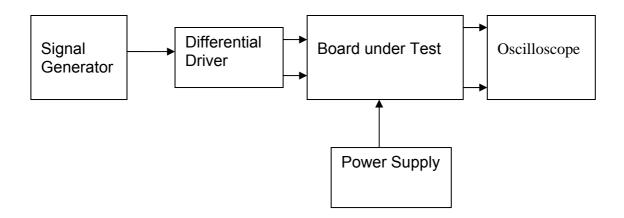
Unit	.Q TOP27P	.Serial No
Test Engineer		
Date	.23/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		$\sqrt{}$
6	Imon1N	18	
7	Imon2N	19	\checkmark
8	Imon3N	20	√ √
9	Imon4N	21	$\sqrt{}$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP27P	Serial No
Test Engineer		
Date		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.98	1mV	
+15v TP4	14.93	1mV	
-15v TP6	-15.02	5mV	V

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP27P	Serial No
Test Engineer		
Date		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	V	√	√

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q_TOP2 7 F	Seria	l No	
Test Engineer	Xen			

Date23/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	1	Hъ	
v	•••		

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.35	3.3v to 3.7v	$\sqrt{}$
Ch3	3.35	3.3v to 3.7v	$\sqrt{}$
Ch4	3.35	3.3v to 3.7v	

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	$\sqrt{}$
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP27P	Serial No
Test Engineer	.Xen	
Date	.23/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	
Ch2	0.49	0.4v to 0.5v	V
Ch3	0.5	0.4v to 0.5v	V
Ch4	0.48	0.4v to 0.5v	V

100Hz

	Output	Specification Pass/	
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	V
Ch3	0.16	0.15v to 0.16v	$\sqrt{}$
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	\checkmark
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP27P	Serial No	
Test Engineer	Xen		
Date	23/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	√
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	V
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	√

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP27P	Serial No
Test Engine	eerXen	
Data	24/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.3	V	-24.3	V	-24.3	V	-24.3	
-7v	-17.1	V	-17.0	V	-17.0	V	-17.0	
-5v	-12.3	V	-12.2	V	-12.2	V	-12.2	
-1v	-2.41	V	-2.4	V	-2.4	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.41	V	2.42	$\sqrt{}$	2.42	
5v	12.1	V	12.1	V	12.2	V	12.1	
7v	17.0	V	17.0	V	17.0	V	17.0	√
10v	24.2	V	24.2	V	24.2	V	24.3	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP27P	Serial No
	Xen	
Date	23/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	$\sqrt{}$	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.57	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

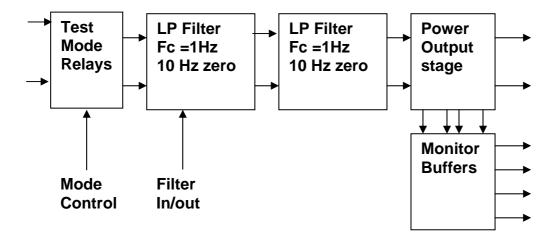
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP28P	Serial No
Test Engineer		
Date	.24/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP28P	Serial No
	rXen	
Date	24/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP28P	Serial No
	Xen	
Date	24/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	.Q TOP28P	.Serial No
Test Engineer		
Date	.24/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		\checkmark
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP28P	Serial No	
	Xen		
Date	24/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.98	1mV	
+15v TP4	14.95	1mV	
-15v TP6	-15.08	5mV	√

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q_TOP28P	Serial No
	neerXen	
Date	24/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	√	√	V
Ch2	V		V
Ch3	V		
Ch4	√	√	√

Test Switches

Channel	Indi	Indicator		
	ON	OFF		
Ch1	V		V	
Ch2	V		V	
Ch3	V		V	
Ch4	V		V	

Unit	Q_T	OP28P	 Serial N	0	 	
Test Engineer	Xen					

Date24/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.9	4.7 to 5v	
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.46	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP28P	Serial No
Test Engineer		
Date	.24/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	\checkmark
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.2	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.5	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP28P	Seria	al No	
Test Engineer .	Xen			
Date	24/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.395	Pin 7 to Pin 8	0.396	√
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	√
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	√

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	
Ch2	
Ch3	
Ch4	\checkmark

Unit	Q_TOP28P	Serial No
Test Engine	erXen	
Data	24/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.2	V	-17.2	V	-17.1	V	-17.2	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.2	V
-1v	-2.42	V	-2.41	V	-2.4	V	-2.4	V
0v	0	V	0	V	0	V	0	V
1v	2.42	V	2.42	V	2.42	V	2.42	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.0	V	17.1	V	17.1	V
10v	24.4	V	24.3	V	24.5	V	24.5	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Jnit	Q TOP28P	Serial No
	erXen	
Tate 0	24/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.55	
Ch3	5v to 6v	5.54	
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

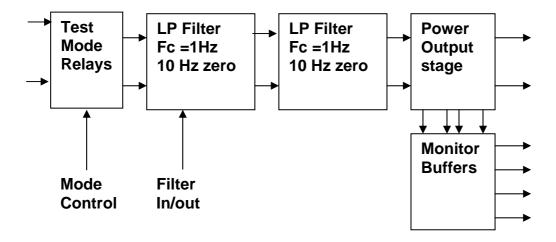
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q TOP29P	Serial No
	Xen	
Date	25/2/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP29P	Serial No
	erXen	
Date	25/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP29P	Serial No	
	Xen		
Date	24/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

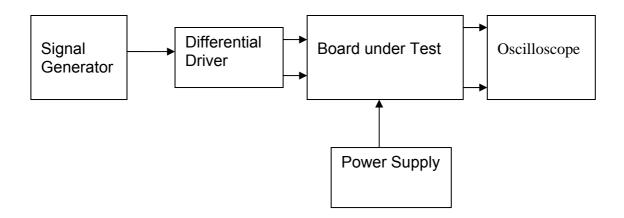
Unit	.Q TOP29P	.Serial No
Test Engineer		
Date	.24/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP29P	Serial No
Test Engineer		
Date	.24/2/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.05	1mV	$\sqrt{}$
+15v TP4	14.80	1mV	
-15v TP6	-15.01	5mV	√

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q_TOP29P	Serial No
Test Engineer		
Date	.24/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	

Test Switches

Channel	Indicator		OK?
	ON OFF		
Ch1	V	V	V
Ch2	V	V	V
Ch3	$\sqrt{}$	V	V
Ch4		V	V

Jnit	Q_	10P29P	 Serial No	 	
Test Engine	erXer	۱			

Date24/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0	ď	1	ŀ	1	Z	

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	√
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP29P	Serial No
Test Engineer	.Xen	
Date	.24/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	√
Ch4	4 85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	V
Ch2	3.3	3v to 3.4v	√
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	
Ch2	0.48	0.4v to 0.5v	
Ch3	0.49	0.4v to 0.5v	
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP29P	Seri	ial No	
Test Engineer .	Xen			
Date	24/2/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	√
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	√
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP29P	Serial No
Test Engine	erXen	
Data	25/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.3	$\sqrt{}$	-24.3	$\sqrt{}$	-24.4	$\sqrt{}$
-7v	-17.2	V	-17.1	V	-17.1	V	-17.0	
-5v	-12.5	V	-12.3	V	-12.1	V	-12.2	
-1v	-2.42	V	-2.42	V	-2.41	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.41	V	2.4	V	2.42	$\sqrt{}$
5v	12.2	V	12.1	V	12.1	V	12.2	√
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.2	V	24.2	V	24.3	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP29P	Serial No	
	erXen		
Date	24/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Climping?	$\sqrt{}$	V	$\sqrt{}$	\checkmark
Clipping?	•	,	,	,

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.56	
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

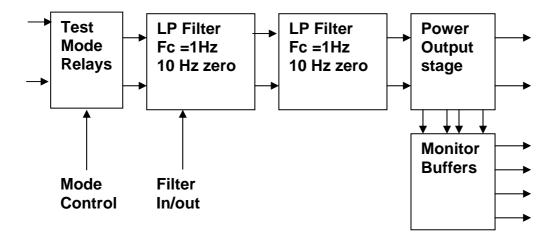
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP30P	Serial No	
Test Engineer			
Date	.25/2/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

UnitQ	TOP30P	Serial No
Test EngineerX		
Date25	5/2/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP30P	Serial No	
	Xen		
Date	25/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

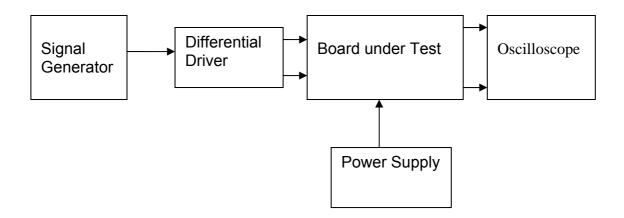
Unit	.Q TOP30P	.Serial No
Test Engineer		
Date	.25/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		\checkmark
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP30P	Serial No	
Test Engineer	Xen		
Date	25/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	$\sqrt{}$
+15v TP4	14.94	1mV	
-15v TP6	-14.92	5mV	√

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	.Q TOP30P	Serial No
Test Engineer		
Date	.25/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TOP30P	Serial No	١	
Test Engineer	Xen			

Date25/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.9	4.7 to 5v	
Ch3	4.85	4.7 to 5v	
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	$\sqrt{}$
Ch2	3.35	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	V

Unit	.Q_TOP30P	.Serial No
Test Engineer		
Date	.25/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.5	0.4v to 0.5v	√
Ch4	0.5	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	$\sqrt{}$
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP30P	Serial No	
Test Engineer	Xen		
Date	25/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	$\sqrt{}$
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	$\sqrt{}$
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP30P	Serial No
Test Engine	eerXen	
Date	25/2/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.2	V	-17.1	V	-17.1	
-5v	-12.3	V	-12.3	V	-12.3	V	-12.2	
-1v	-2.42	V	-2.42	V	-2.4	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	$\sqrt{}$	2.42	
5v	12.2	V	12.2	V	12.2	V	12.2	
7v	17.2	V	17.1	V	17.0	V	17.0	V
10v	24.5	V	24.3	V	24.4	V	24.2	V

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP30P	Serial No	
	rXen		
Date	25/2/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	
Ch2	5v to 6v	5.57	V
Ch3	5v to 6v	5.54	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

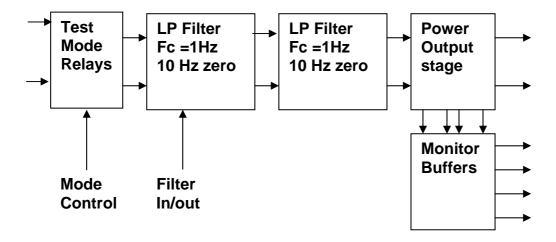
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q TOP31P	Serial No
Test Engineer		
Date		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP31P	Serial No	
	Xen		
Date	2/3/10		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP31P	Serial No	
Test Engineer			
Date	25/2/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

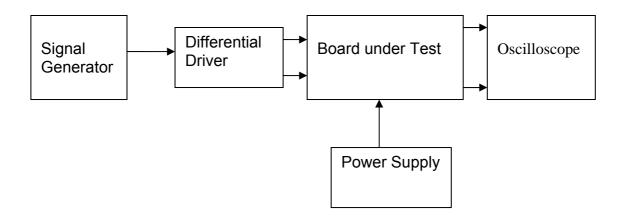
Unit	Q TOP31P	Serial No
Test Engine	eerXen	
Data	25/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	√
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5


PIN	SIGNAL	To J1	PIN	OK?
1	Imon1P	5		✓
2	Imon2P	6		$\sqrt{}$
3	Imon3P	7		$\sqrt{}$
4	Imon4P	8		$\sqrt{}$
5	0V			$\sqrt{}$
6	Imon1N	18	3	\checkmark
7	Imon2N	19	9	\checkmark
8	Imon3N	20)	$\sqrt{}$
9	Imon4N	2	1	V

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		\checkmark
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP31P	Serial No
Test Engineer		
Date	.2/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.05	1mV	
+15v TP4	14.85	1mV	
-15v TP6	-15.05	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP31P	Serial No
	eerXen	
Date	2/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	$\sqrt{}$

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q_	TOP31P	 Serial No)	
Test Engineer	Xe	n			

Date2/3/10......

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	V
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

^	- 4		_
u	_ 1	н	7

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	$\sqrt{}$
Ch3	3.4	3.3v to 3.7v	$\sqrt{}$
Ch4	3.4	3.3v to 3.7v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	067	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP31P	Serial No
Test Engineer		
Date	.2/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	$\sqrt{}$
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	$\sqrt{}$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3v to 3.4v	
Ch2	3.25	3v to 3.4v	
Ch3	3.35	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	$\sqrt{}$
Ch2	0.48	0.4v to 0.5v	V
Ch3	0.5	0.4v to 0.5v	$\sqrt{}$
Ch4	0.5	0.4v to 0.5v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	$\sqrt{}$
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	V

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	$\sqrt{}$
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP31P	Serial No)	
Test Engineer	Xen			
Date	2/3/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.203	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	Q_TOP31P	Serial No
Test Engine	eerXen	
Data	2/3/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.0	V	-17.1	V	-17.1	
-5v	-12.3	V	-12.2	V	-12.2	V	-12.3	
-1v	-2.42	V	-2.4	V	-2.4	V	-2.41	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.2	V	17.0	1	17.0	V
10v	24.5	V	24.5	V	24.4	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP31P	Serial No	
	Xen		
Date	2/3/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.56	$\sqrt{}$
Ch3	5v to 6v	5.55	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

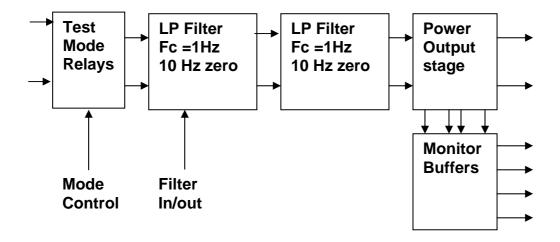
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP32P.	Serial No .	
Test Engineer	Xen		
Date	2/3/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP32P	Serial No
	Xen	
Date	2/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP32P	.Serial No
	Xen	
Date	2/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

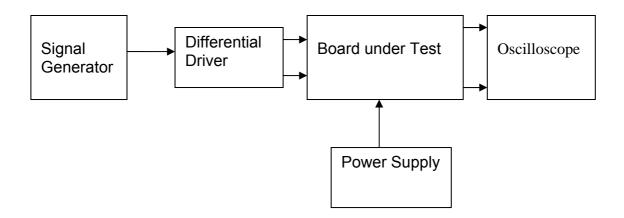
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	.Q TOP32P	.Serial No
	Xen	
Date	2/3/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	То	J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V			\checkmark
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	
9	Imon4N		21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP32P	Serial No	0
Test Engineer	Xen		
Date	2/3/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	
+15v TP4	14.80	1mV	
-15v TP6	-14.97	5mV	V

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP32P	Serial No
	Xen	
Date	2/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1			V
Ch2	$\sqrt{}$		V
Ch3			V
Ch4			V

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q TOP32P	Serial No
	erXen	
_ ,		

Date.....2/3/10.....

8. Corner frequency testsApply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	V
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	V
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.35	3.3v to 3.7v	\checkmark

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.66	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.46	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	Q_TOP32P	Serial No
	Xen	
Date	2/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	V
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.49	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	\checkmark
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q_TOP32P	Serial No	
Test Engineer.	Xen		
Date	2/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP32P	Serial No	
Test Enginee	rXen		
Data	2/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.4	$\sqrt{}$
-7v	-17.1	V	-17.0	V	-17.2	V	-17.1	
-5v	-12.2	V	-12.2	V	-12.3	V	-12.2	
-1v	-2.42	V	-2.41	V	-2.42	V	-2.41	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.41	V	2.42	V	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	√
7v	17.0	V	17.0	V	17.0	V	17.0	√
10v	24.2	V	24.3	V	24.3	V	24.5	1

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP32P	.Serial No
	Xen	
Date	2/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.56	$\sqrt{}$
Ch3	5v to 6v	5.55	$\sqrt{}$
Ch4	5v to 6v	5.55	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

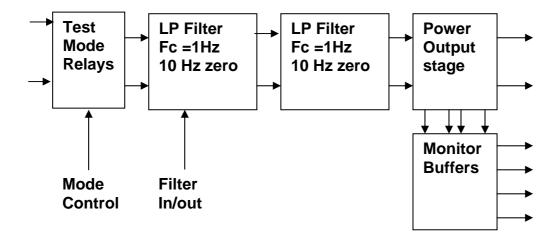
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP33P	Serial No .	
Test Engineer	Xen		
Date	.3/3/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP33P	Serial No
	Xen	
_	3/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP33P	Serial No	
Test Engineer			
Date	2/3/10		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

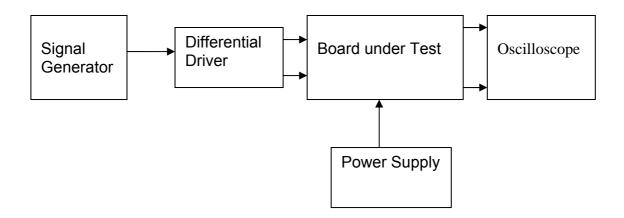
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q TOP33P	Serial No	
	Xen		
Date	3/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	\checkmark
9	Imon4N	21	$\sqrt{}$

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Jnit	.Q TOP33P	.Serial No
	.Xen	
Date	3/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.97	1mV	√
+15v TP4	14.82	1mV	√
-15v TP6	-14.96	5mV	\checkmark

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP33P	Serial No	
	Xen		
Date	3/3/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4		√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	.Q TOP33P	Serial No
Test Engineer	.Xen	
Date	3/3/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.35	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	$\sqrt{}$
Ch2	0.67	0.48 to 0.75v	√
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP33P	Serial No
Test Engineer	Xen	
Date	.3/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	.Q TOP33P	Serial No
Test Engineer	Xen	
Date	.3/3/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.398	Pin 7 to Pin 8	0.399	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	V
Ch2	V
Ch3	V
Ch4	\checkmark

Unit	.Q TOP33P	Serial No
Test Engineer	.Xen	
Date	3/3/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6 Ch1	Ch1	J3 pins 2,7 Ch2	Ch2	J3 pins 3,8 Ch3 o/p	Ch3	J3 pins 4,9 Ch4	Ch4
	o/p	stable ?	o/p	stable ?		stable ?	o/p	stable ?
-10v	-24.5	V	-24.4	V	-24.3	V	-24.3	V
-7v	-17.1	V	-17.1	V	-17.0	V	-17.1	V
-5v	-12.3	V	-12.3	V	-12.2	V	-12.2	V
-1v	-2.41	V	-2.42	V	-2.41	V	-2.41	V
0v	0	V	0	V	0	V	0	V
1v	2.4	V	2.42	$\sqrt{}$	2.42	$\sqrt{}$	2.42	
5v	12.1	V	12.2	V	12.2	V	12.2	V
7v	17.0	√	17.0	V	17.0	V	17.0	
10v	24.2	1	24.3	V	24.3	V	24.3	

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP33P	Serial No
	Xen	
Date	3/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	$\sqrt{}$	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.58	$\sqrt{}$
Ch3	5v to 6v	5.56	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

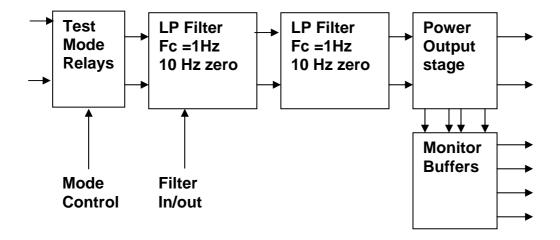
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_	TOP34P	 .Serial No	 	
Test Engineer	.Xer	n			
Date	.3/3/	/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Jnit	.Q TOP34P	Serial No
	.Xen	
Date	.3/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP34P	.Serial No
Test Engineer	Xen	
Date	3/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

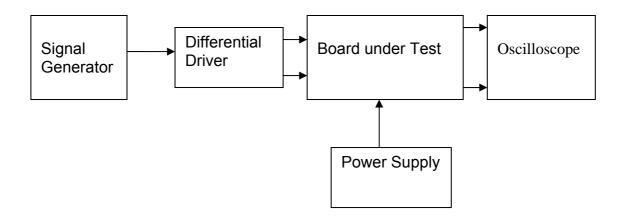
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	.Q TOP34P	.Serial No
	Xen	
Date	3/3/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	√
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	\checkmark
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP34P	.Serial No
	Xen	
Date	3/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.10	1mV	V
+15v TP4	14.92	1mV	V
-15v TP6	-15.11	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP34P	Serial No	
	Xen		
Date	3/3/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	V	√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_	_TOP34P	.Serial No	٠	
Test Engineer	Xe	n			
Date	3/3	3/10			

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	V
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	√
Ch4	4 85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	\checkmark

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	$\sqrt{}$
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP34P	Serial No
Test Engineer	Xen	
Date	.3/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.25	3v to 3.4v	\checkmark
Ch3	3.3	3v to 3.4v	\checkmark
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP34P	.Serial No	
Test Engineer	Xen		
Date	.3/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP34P	Serial No	
Test Engineer	·Xen		
Data	3/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.4	$\sqrt{}$
-7v	-17.2	V	-17.1	V	-17.2	V	-17.0	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.2	$\sqrt{}$
-1v	-2.42	V	-2.4	V	-2.42	V	-2.4	$\sqrt{}$
0v	0	V	0		0	V	0	$\sqrt{}$
1v	2.41	$\sqrt{}$	2.42		2.42	$\sqrt{}$	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	$\sqrt{}$
7v	17.0	V	17.0	√	17.0	V	17.0	
10v	24.3	V	24.3	√	24.3	V	24.3	1

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP34P	Serial No
	·Xen	
Date	3/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	$\sqrt{}$	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.56	$\sqrt{}$
Ch3	5v to 6v	5.56	$\sqrt{}$
Ch4	5v to 6v	5.54	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

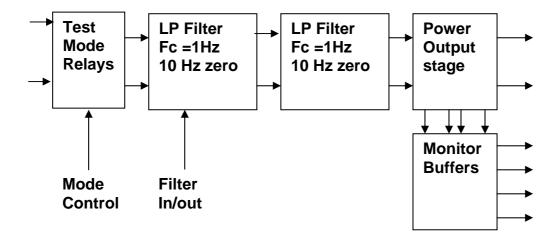
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q	TOP35P	 Serial No	 	
Test Engineer	.Xe	n			
Date	.4/3	3/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP35P	Serial No	
	Xen		
_	4/3/10		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP35P	.Serial No
Test Engineer	Xen	
Date	3/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

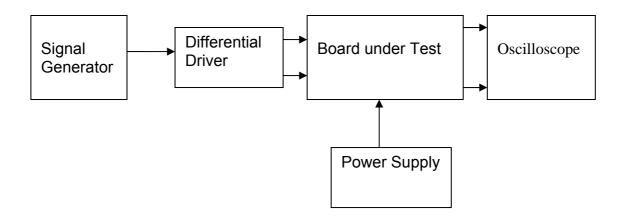
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	.Q TOP35P	.Serial No
	Xen	
Date	3/3/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	\checkmark
4	Imon4P	8	$\sqrt{}$
5	0V		\checkmark
6	Imon1N	18	$\sqrt{}$
7	Imon2N	19	\checkmark
8	Imon3N	20	√
9	Imon4N	21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	V
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		V
22	0V (TP3)		√
23	0V (TP3)		V
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP35P	.Serial No
	Xen	
Date	3/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	\checkmark
+15v TP4	14.95	1mV	\checkmark
-15v TP6	-15.00	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP35P	Serial No	
	Xen		
Date	3/3/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		$\sqrt{}$
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		V	

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1		$\sqrt{}$	V
Ch2		$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	√	V	√

Unit	Q TOP35P	.Serial No	
	Xen		
Date	4/3/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

n	1	Hz	
v	•••		

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	V
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	$\sqrt{}$
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.46	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q_TOP35P	Serial No
Test Engineer	Xen	
Date	.4/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	√
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	√
Ch2	0.49	0.4v to 0.5v	√
Ch3	0.5	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP35P	Serial No)	
Test Engineer	Xen			
Date	4/3/10			

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP35P	Serial No	
Test Engineer	Xen		
Date	4/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	$\sqrt{}$
-7v	-17.2	V	-17.2	V	-17.0	V	-17.1	$\sqrt{}$
-5v	-12.3	V	-12.3	V	-12.2	V	-12.2	$\sqrt{}$
-1v	-2.4	V	-2.41	V	-2.4	V	-2.41	$\sqrt{}$
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	√	0	$\sqrt{}$
1v	2.41	$\sqrt{}$	2.42	$\sqrt{}$	2.42	$\sqrt{}$	2.42	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	
7v	17.0	V	17.1	V	17.0	V	17.0	
10v	24.4	V	24.5	V	24.3	V	24.2	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	.Q TOP35P	.Serial No
	Xen	
Date	4/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	$\sqrt{}$	V

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.55	$\sqrt{}$
Ch4	5v to 6v	5.56	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

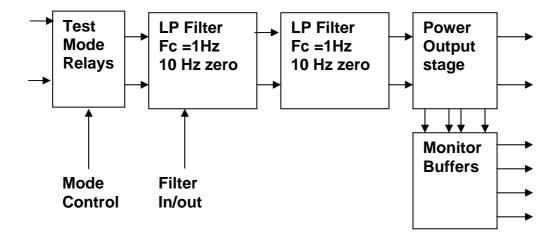
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q	TOP36P	 .Serial No	 	
Test Engineer	.Xe	n			
Date	.4/3	3/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP36P	.Serial No
	Xen	
Date	4/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP36P	.Serial No
	Xen	
Date	4/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Links:

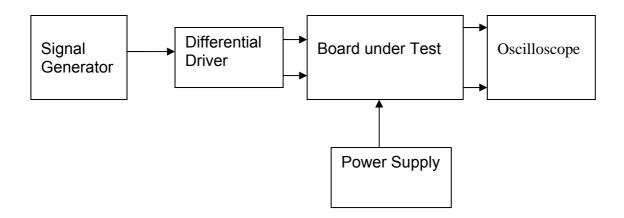
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP36P	.Serial No	
Test Engineer	Xen		
Date	.4/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	V
5	0V		V
6	Imon1N	18	V
7	Imon2N	19	V
8	Imon3N	20	√
9	Imon4N	21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP36P	Serial No
	erXen	
Date	4/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.06	1mV	\checkmark
+15v TP4	14.93	1mV	\checkmark
-15v TP6	-15.02	5mV	

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP36P	.Serial No
	Xen	
Date	4/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator		
	ON	ON OFF		
Ch1	V	√	V	
Ch2	V		$\sqrt{}$	
Ch3	V		$\sqrt{}$	
Ch4		√	$\sqrt{}$	

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	.Q	TOP36P	Serial No)
Test Engineer	.Xe	n		
Date				

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	√
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

^	 	_
	 н	7

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.66	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.46	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	$Q_{}$	TOP36P	Serial No	
Test Engineer				
Date	.4/3	3/10		

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	\checkmark
Ch3	3.3	3v to 3.4v	$\sqrt{}$
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.5	0.4v to 0.5v	√
Ch4	0.5	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP36P	Serial No	٠
Test Engineer.	Xen		
Date	4/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	$\sqrt{}$
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP36P	Serial No	
Test Engineer.	Xen		
Date	4/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.3	V	-24.3	V	-24.4	
-7v	-17.2	V	-17.1	V	-17.0	V	-17.2	V
-5v	-12.3	V	-12.2	V	-12.2	V	-12.3	
-1v	-2.42	V	-2.41	V	-2.4	V	-2.4	
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	√	0	$\sqrt{}$
1v	2.42	$\sqrt{}$	2.42		2.42	\checkmark	2.42	$\sqrt{}$
5v	12.2	V	12.2	√	12.2	V	12.2	√
7v	17.1	V	17.1	√	17.1	V	17.1	
10v	24.3	V	24.4	V	24.5	V	24.3	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP36P	.Serial No
	Xen	
Date	4/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.56	√
Ch4	5v to 6v	5.56	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

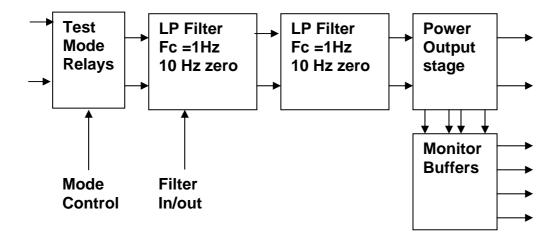
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q	TOP37P	 Serial No .	 	
Test Engineer	.Xe	n			
Date	4/3	3/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP37P	Serial No
	Xen	
Date	4/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP37P	.Serial No
	Xen	
Date	4/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Links:

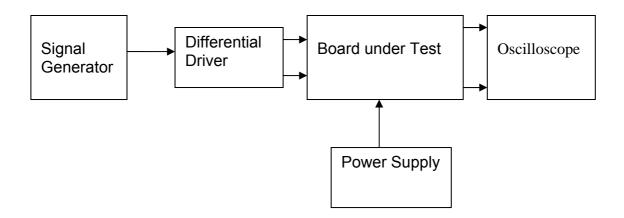
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP37P	Serial No	
Test Engineer.	Xen		
Date	4/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	√
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	\checkmark
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP37P	.Serial No
	Xen	
Date	4/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.95	1mV	\checkmark
+15v TP4	14.92	1mV	\checkmark
-15v TP6	-15.05	5mV	\checkmark

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP37P	Serial No .	
	X <mark>e</mark> n		
Date	4/3/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	√	√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit(Q_TOP37P	Serial No
	Xen	
Date4	J/3/10	

8. Corner frequency tests

Ch4

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	√
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

4.85

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	√
Ch3	4.85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	√

4.7 to 5v

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.46	0.4v to 0.5v	V
Ch3	0.46	0.4v to 0.5v	V
Ch4	0.46	0.4v to 0.5v	√

Unit	Q TOP37P	Serial No
	Xen	
Date	.4/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3v to 3.4v	$\sqrt{}$
Ch2	3.25	3v to 3.4v	$\sqrt{}$
Ch3	3.3	3v to 3.4v	$\sqrt{}$
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit(Q_TOP37PSer	rial No
Test Engineer	Xen	
Date4	1/3/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.397	
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP37P	Serial No	
Test Engineer	Xen		
Date	4/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.2	V	-17.1	V	-17.2	V	-17.1	V
-5v	-12.3	V	-12.2	V	-12.3	V	-12.2	$\sqrt{}$
-1v	-2.42	√	-2.41	√	-2.42	$\sqrt{}$	-2.42	\checkmark
0v	0	V	0	V	0	V	0	$\sqrt{}$
1v	2.42	\checkmark	2.42	$\sqrt{}$	2.41	$\sqrt{}$	2.42	√
5v	12.2	1	12.2	V	12.2	V	12.2	V
7v	17.0	1	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.4	V	24.2	V	24.3	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP37P	.Serial No
	Xen	
Date	4/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.56	√
Ch4	5v to 6v	5.55	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

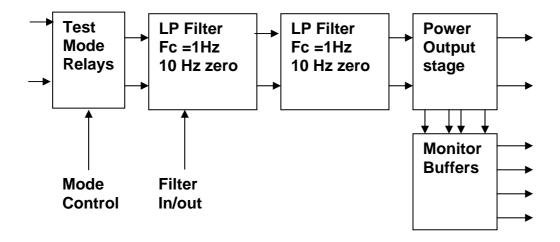
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_	TOP38P	 .Serial No	 	
Test Engineer	.Xe	n			
Date	.5/3	3/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP38P	Serial No	
	Xen		
_	5/3/10		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP38P	.Serial No
	Xen	
_	5/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, changed capacitors C50 and C51 from 4.7uF to the correct value of 10uF on CH1.

Links:

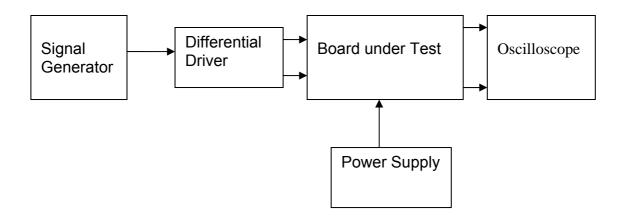
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q TOP38P	Serial No	
	Xen		
Date	5/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	То	J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V			\checkmark
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	
9	Imon4N		21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	V
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP38P	.Serial No
	Xen	
Date	5/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.93	1mV	\checkmark
+15v TP4	14.93	1mV	\checkmark
-15v TP6	-14.84	5mV	\checkmark

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP38P	.Serial No
	Xen	
Date	5/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator		
	ON	OFF		
Ch1	V	√	V	
Ch2	V		$\sqrt{}$	
Ch3	V		$\sqrt{}$	
Ch4		√		

Test Switches

Channel	Indi	Indicator		
	ON	OFF		
Ch1		$\sqrt{}$	V	
Ch2		$\sqrt{}$	V	
Ch3	V	$\sqrt{}$	V	
Ch4	√	V	√	

Unit	Q TOP38P	Serial No
Test Engineer	Xen	
Date	5/3/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

,	ď	1	H	ľ	Z	

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.9	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	√
Ch2	3.35	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	$\sqrt{}$
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP38P	Serial No
	Xen	
Date	.5/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	
Ch2	3.3	3v to 3.4v	
Ch3	3.25	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4v to 0.5v	\checkmark
Ch2	0.49	0.4v to 0.5v	\checkmark
Ch3	0.48	0.4v to 0.5v	\checkmark
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	√
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP38P	Serial No
Test Engineer	Xen	
Date	5/3/10	

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	V
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.395	Pin 7 to Pin 8	0.396	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP38P	Serial No	
Test Enginee	rXen		
Data	5/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.4	V	-24.1	
-7v	-17.1	V	-17.2	V	-17.1	V	-17.0	V
-5v	-12.3	V	-12.3	V	-12.2	V	-12.1	
-1v	-2.41	V	-2.4	V	-2.4	V	-2.4	
0v	0	V	0		0	V	0	$\sqrt{}$
1v	2.42		2.41		2.42	\checkmark	2.42	$\sqrt{}$
5v	12.2	√	12.2	√	12.2	V	12.0	√
7v	17.0	V	17.0	√	17.0	V	16.9	
10v	24.5	1	24.2	√	24.4	V	24.2	1

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	.Q TOP38P	.Serial No
	Xen	
Date	5/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	√	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.55	$\sqrt{}$
Ch3	5v to 6v	5.56	$\sqrt{}$
Ch4	5v to 6v	5.57	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

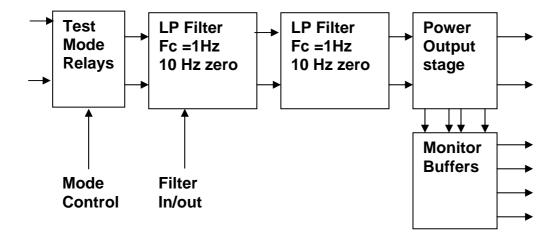
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q	TOP39P	 .Serial No	 	
Test Engineer	.Xe	n			
Date	.5/3	3/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP39P	Serial No
	Xen	
Date	5/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP39P	.Serial No
Test Engineer	Xen	
Date	5/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP39P	Serial No	
Test Engineer.	Xen		
Date	5/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	V
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	V
8	Imon3N	20	V
9	Imon4N	21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		\checkmark
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	.Q TOP39P	.Serial No
	Xen	
Date	5/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.03	1mV	\checkmark
+15v TP4	14.98	1mV	\checkmark
-15v TP6	-15.02	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP39P	.Serial No
	Xen	
Date	5/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	V	√	√

Test Switches

Channel	Indio	OK?	
	ON OFF		
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TOP39P	Serial No	
Test Engineer	Xen		
Date	5/3/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	√
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0	.1	Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	\checkmark

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	$\sqrt{}$
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4v to 0.5v	\checkmark
Ch2	0.46	0.4v to 0.5v	V
Ch3	0.46	0.4v to 0.5v	V
Ch4	0.46	0.4v to 0.5v	√

Unit	$Q_{}$	_TOP39P	Serial No	
Test Engineer				
Date	.5/3	3/10		

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.25	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification Pass/	
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP39P	Serial No	
Test Engineer	Xen		
Date	5/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP39P	Serial No	
Test Engineer.	Xen		
Data	5/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.2	V	-17.1	V	-17.1	V	-17.0	V
-5v	-12.3	V	-12.2	V	-12.3	V	-12.2	V
-1v	-2.42	V	-2.41	V	-2.4	V	-2.4	
0v	0	V	0	V	0	V	0	V
1v	2.42	V	2.42	V	2.42	V	2.42	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.2	V	24.3	V	24.2	V	24.3	√

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP39P	Serial No
	Xen	
Date	5/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	$\sqrt{}$
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.55	√

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

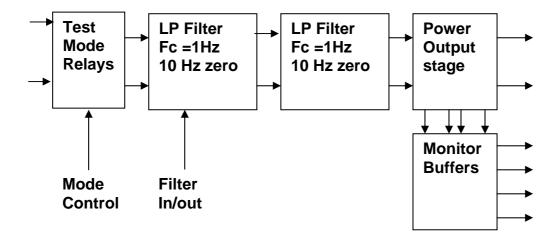
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP40P	Serial No	
Test Engineer	Xen		
Date	.5/3/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP40P	.Serial No
	Xen	
Date	5/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP40P	.Serial No
Test Engineer	Xen	
Date	5/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Links:

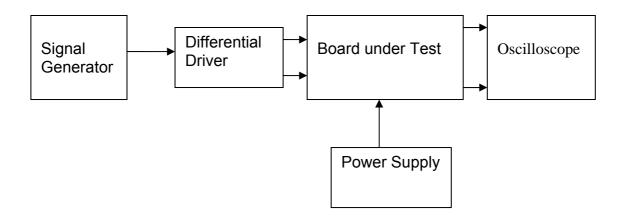
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP40P	Serial No	
Test Engineer	Xen		
Date	5/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	V
3	Imon3P	7	V
4	Imon4P	8	V
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	V
8	Imon3N	20	V
9	Imon4N	21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	V
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		V
22	0V (TP3)		
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP40P	Serial No
	Xen	
Date	5/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.01	1mV	
+15v TP4	14.96	1mV	
-15v TP6	-15.03	5mV	√

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP40P	Serial No	
	Xen		
Date	5/3/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator		
	ON	OFF		
Ch1	V		V	
Ch2	V			
Ch3	V			
Ch4	V	√	√	

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	V	V
Ch2	V	$\sqrt{}$	V
Ch3	V	$\sqrt{}$	V
Ch4	V		V

Unit	Q_	_TOP40P	Serial No	
Test Engineer	Xe	n		
Date	5/3	3/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

٠.	••	-		

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q	TOP40P	.Serial No	
Test Engineer				
Date	.5/3	3/10		

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.2	3v to 3.4v	√
Ch3	3.2	3v to 3.4v	√
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.48	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP40P	Serial No	
Test Engineer	Xen		
Date	5/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	V
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.396	
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP40P	Serial No	
Test Engineer.	Xen		
Data	5/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.1	V	-17.2	V	-17.2	V	-17.2	V
-5v	-12.3	V	-12.3	V	-12.4	V	-12.3	V
-1v	-2.41	V	-2.42	V	-2.42	V	-2.41	V
0v	0	V	0	$\sqrt{}$	0	V	0	$\sqrt{}$
1v	2.42	V	2.42	V	2.42	$\sqrt{}$	2.42	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.2	V	17.1	V	17.0	V	17.1	V
10v	-24.5	1	24.5	V	24.4	V	24.5	√

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP40P	Serial No
	Xen	
Date	5/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{}$
Ch2	5v to 6v	5.55	$\sqrt{}$
Ch3	5v to 6v	5.56	V
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

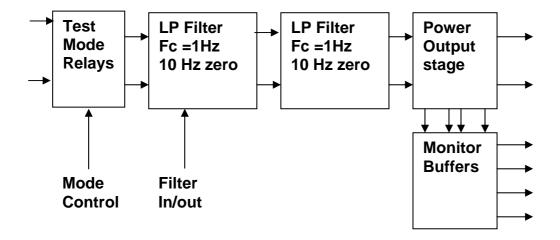
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP41P	.Serial No
	Xen	
Date	.8/3/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP41P	.Serial No
	Xen	
_	8/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP41P	.Serial No
Test Engineer	Xen	
Date	8/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Links:

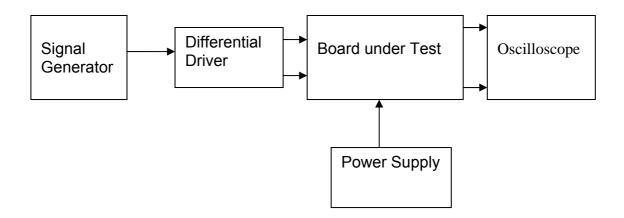
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP41P	Serial No	
Test Engineer.	Xen		
Date	8/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	√
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	√
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	\checkmark
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	
13	0V (TP3)		V
22	0V (TP3)		\checkmark
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP41P	.Serial No
	Xen	
Date	8/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.05	1mV	√
+15v TP4	14.92	1mV	√
-15v TP6	-14.99	5mV	√

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP41P	Serial No	
	Xen		
Date	8/3/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1			V
Ch2	$\sqrt{}$		V
Ch3			V
Ch4			V

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TOP41P	.Serial No
Test Engineer	Xen	
	8/3/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	530	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	√
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.35	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.66	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.46	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.46	0.4v to 0.5v	V
Ch3	0.46	0.4v to 0.5v	V
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q_TOP41P	Serial No
	Xen	
Date	.8/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	
Ch2	3.2	3v to 3.4v	
Ch3	3.2	3v to 3.4v	
Ch4	3.2	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.46	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	\checkmark

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP41P	Serial No	
Test Engineer	Xen		
Date	8/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.398	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.396	$\sqrt{}$
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP41P	Serial No	
Test Engineer.	Xen		
Date	8/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.5	V
-7v	-17.2	V	-17.1	V	-17.2	V	-17.1	V
-5v	-12.3	V	-12.3	V	-12.3	V	-12.3	V
-1v	-2.41	V	-2.42	V	-2.41	V	-2.41	V
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.42	$\sqrt{}$	2.42		2.42	$\sqrt{}$	2.41	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.0	√	17.1	V	17.0	V
10v	24.3	V	24.2	V	24.5	V	24.5	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP41P	Serial No	
	Xen		
Date	8/3/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.57	
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.55	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP42P	Serial No
Test Engineer	Xen	
Date	.8/3/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP42P	.Serial No
	Xen	
Date	8/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP42P	.Serial No
	Xen	
_	8/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Links:

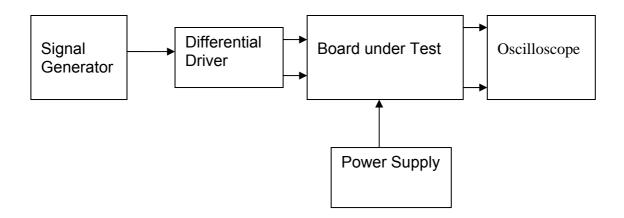
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP42P	Serial No	
Test Engineer	Xen		
Date	8/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	√
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	\checkmark
3	Imon3P	7	\checkmark
4	Imon4P	8	\checkmark
5	0V		$\sqrt{}$
6	Imon1N	18	\checkmark
7	Imon2N	19	
8	Imon3N	20	√
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		\checkmark
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP42P	Serial No
	Xen	
Date	8/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator Output voltage Output noise Nomina			
			+/- 0.5v?
+12v TP5	11.99	1mV	V
+15v TP4	14.91	1mV	V
-15v TP6	-15.06	5mV	

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP42P	Serial No
	Xen	
Date	8/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		V	V
Ch2		V	V
Ch3		V	V
Ch4		V	V

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	.Q_TOP42P	Serial No
Test Engineer	Xen	
Date	.8/3/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

\mathbf{a}	- 4		_
u	_ 1	н	7

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	√
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.45	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.69	0.48 to 0.75v	V
Ch4	0.66	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.46	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q_TOP42P	Serial No
	Xen	
Date	.8/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	√
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.49	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP42P	.Serial No	
	Xen		
Date	8/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.203	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.203	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil	Monitor Pins	Monitor Voltage	Pass/Fail: Equal?
		resistor			(+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.396	
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.398	
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.397	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP42P	Serial No	
Test Engineer	Xen		
Date	8/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	V	-24.4	V	-24.0	V	-24.3	V
-7v	-17.2	V	-17.1	V	-16.9	V	-17.1	V
-5v	-12.3	V	-12.3	V	-12.0	V	-12.3	V
-1v	-2.42	$\sqrt{}$	-2.41	√	-2.4	$\sqrt{}$	-2.4	V
0v	0	V	0	V	0	V	0	V
1v	2.42	\checkmark	2.42	$\sqrt{}$	2.4	$\sqrt{}$	2.42	√
5v	12.2	V	12.2	V	12.0	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.3	V	24.3	V	24.3	V	24.3	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP42P	Serial No
	Xen	
Date	8/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	
Ch2	5v to 6v	5.56	
Ch3	5v to 6v	5.57	V
Ch4	5v to 6v	5.55	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Facility Crearles Leb Orlean ville

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

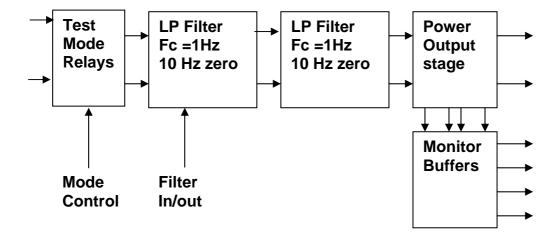
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_TOP43P	Serial No	
Test Engineer	Xen		
Date	.9/3/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP43P	Serial No
Test Engineer		
Date	9/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP43P	.Serial No
Test Engineer	Xen	
Date	3/2/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, IC4 and IC12 changed on CH3.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

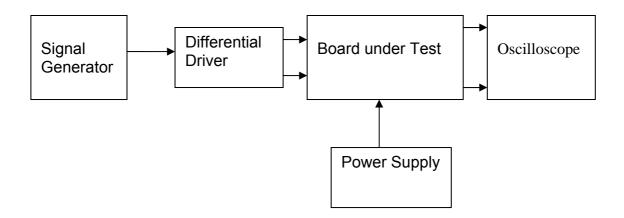
Unit	Q TOP43P	Serial No
	neerXen	
Date	3/2/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$

J5


PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	$\sqrt{}$
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	\checkmark
5	0V		\checkmark
6	Imon1N	18	\checkmark
7	Imon2N	19	\checkmark
8	Imon3N	20	$\sqrt{}$
9	Imon4N	21	$\sqrt{}$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	$\sqrt{}$
11	V- (TP2)	-17v Supply	$\sqrt{}$
12	V- (TP2)	-17v Supply	$\sqrt{}$
13	0V (TP3)		$\sqrt{}$
22	0V (TP3)		$\sqrt{}$
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q_TOP43P	Serial No	
Test Engineer			
Date	3/2/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.03	1mV	
+15v TP4	14.92	1mV	
-15v TP6	-15.04	5mV	

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP43P	Serial No
Test Engineer	Xen	
Date	.3/2/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		
Ch3	V		
Ch4	√	√	√

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_	TOP43P.	 Serial No	 	
Test Engineer	٧a	n			

Test EngineerXen....... Date3/2/10.....

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	
Ch3	4.85	4.7 to 5v	√
Ch4	4.85	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	√
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q TOP43P	Serial No
Test Engineer		
Date	.3/2/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	\checkmark
Ch2	3.25	3v to 3.4v	\checkmark
Ch3	3.3	3v to 3.4v	\checkmark
Ch4	3.2	3v to 3.4v	$\sqrt{}$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	
Ch3	0.49	0.4v to 0.5v	
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	
Ch2	0.16	0.14v to 0.16v	
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	V

Unit	Q TOP43P.	 Serial No	
Test Engineer.	Xen		
Date	3/2/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.395	Pin 3 to Pin 4	0.397	
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	V
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	V
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	V

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{}$
Ch2	V
Ch3	V
Ch4	V

Unit	.Q TOP43P	.Serial No	
Test Engineer	.Xen		
Date	.3/2/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.4	
-7v	-17.0	V	-17.2	V	-17.0	V	-17.0	
-5v	-12.2	V	-12.2	V	-12.2	V	-12.2	
-1v	-2.4	V	-2.41	V	-2.4	V	-2.4	
0v	0	V	0	V	0	V	0	
1v	2.42	V	2.42	V	2.42	V	2.42	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.1	V
10v	24.5	V	24.5	V	24.3	V	24.5	√

Unit	Serial No	
Test Engineer		
Date		

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP43P	Serial No
Test Engineer		
Date	3/2/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	√	\checkmark	V
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{}$
Ch2	5v to 6v	5.57	V
Ch3	5v to 6v	5.53	V
Ch4	5v to 6v	5.56	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

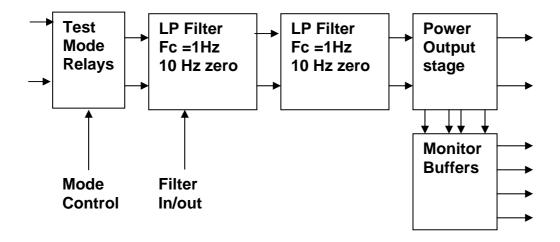
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	.Q_	TOP44P	Serial No	o	
Test Engineer	.Xe	n			
Date	.9/3	3/10			

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	.Q TOP44P	Serial No
	Xen	
Date	9/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP44P	.Serial No
	Xen	
_	9/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, replaced IC12 on CH4.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP44P	Serial N	۱o	
Test Engineer	Xen			
Date	8/3/10			

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$

J5

PIN	SIGNAL	То	J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V			\checkmark
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	
9	Imon4N		21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		V
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP44P	.Serial No
	Xen	
Date	8/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	\checkmark
+15v TP4	14.91	1mV	\checkmark
-15v TP6	-14.99	5mV	$\sqrt{}$

All Outputs smooth DC, no oscillation?	1	/
--	---	---

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP44P	Serial No
	Xen	
Date	8/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		
Ch2	V		
Ch3	V		V
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	√	V	V
Ch2	V		
Ch3	V		$\sqrt{}$
Ch4	√	√	

Unit	$Q_{}$	_TOP44P	.Serial No	
		en		
Date				

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.85	5.0	5.0	4.7v to 5v	√
Ch4	4.85	5.0	5.0	4.7v to 5v	√

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	
Ch2	4.85	4.7 to 5v	
Ch3	4.85	4.7 to 5v	√
Ch4	4.85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.35	3.3v to 3.7v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	$\sqrt{}$
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	Q_TOP44P	.Serial No
	Xen	
Date	8/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	\checkmark
Ch3	3.3	3v to 3.4v	$\sqrt{}$
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	\checkmark

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP44P	Serial No	
Test Engineer	Xen		
Date	8/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	$\sqrt{}$
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	$\sqrt{}$
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	√

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.396	Pin 15 to Pin 16	0.398	\checkmark

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP44P	Serial No	
Test Engineer	Xen		
Date	9/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	V	-24.4	V	-24.4	V	-24.4	V
-7v	-17.1	V	-17.0	V	-17.1	V	-17.1	V
-5v	-12.3	V	-12.2	V	-12.2	V	-12.3	V
-1v	-2.42	V	-2.4	V	-2.42	V	-2.41	V
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	√	0	$\sqrt{}$
1v	2.42	$\sqrt{}$	2.42	$\sqrt{}$	2.42	$\sqrt{}$	2.41	$\sqrt{}$
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.1	V	17.0	V	17.1	V	17.0	V
10v	24.3	V	24.2	V	24.4	V	24.3	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP44P	.Serial No
	Xen	
Date	9/3/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	$\sqrt{}$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.57	
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.57	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

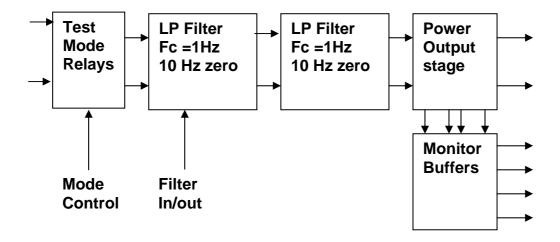
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP45P	.Serial No
Test Engineer	Xen	
Date	9/3/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP45P	.Serial No
	Xen	
Date	9/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP45P	.Serial No
	Xen	
-	9/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, changed capacitors C50 and C51 on all channels from 4.7uF to 10uF.

I inks:

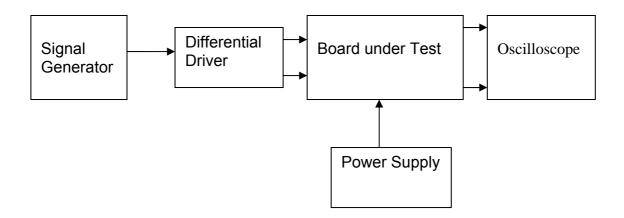
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	.Q TOP45P	Serial No
	Xen	
Date	9/3/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	$\sqrt{}$
5	0V			$\sqrt{}$
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	$\sqrt{}$


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	
2	Imon2P	6	
3	Imon3P	7	
4	Imon4P	8	
5	0V		
6	Imon1N	18	
7	Imon2N	19	
8	Imon3N	20	
9	Imon4N	21	

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	V
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP45P	.Serial No
	Xen	
Date	9/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.06	1mV	$\sqrt{}$
+15v TP4	14.90	1mV	√
-15v TP6	-15.09	5mV	V

All Outputs smooth DC, no oscillation?	٧	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q TOP45P	Serial No
	Xen	
Date	9/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

Unit	Q_	_TOP45P	Serial No	
Test Engineer	Xē	en		
Date	9/3	3/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0	.1	Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	\checkmark
Ch2	4.85	4.7 to 5v	\checkmark
Ch3	4.85	4.7 to 5v	\checkmark
Ch4	4.85	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	\checkmark
Ch3	3.45	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	V
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.47	0.4v to 0.5v	√

Unit	.Q_TOP45P	Serial No
	Xen	
Date	.9/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	
Ch2	3.2	3v to 3.4v	
Ch3	3.2	3v to 3.4v	
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	Q TOP45P	.Serial No	
Test Engineer	Xen		
Date	9/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	\checkmark
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.202	\checkmark
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	\checkmark
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	\checkmark
2	0.37-0.41	0.396	Pin 7 to Pin 8	0.397	\checkmark
3	0.37-0.41	0.395	Pin 11 to Pin 12	0.397	\checkmark
4	0.37-0.41	0.397	Pin 15 to Pin 16	0.399	$\sqrt{}$

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	√
Ch2	√
Ch3	√
Ch4	\checkmark

Unit	Q_TOP45P	Serial No	
Test Engineer	Xen		
Date	9/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.4	V	-24.5	V	-24.4	V
-7v	-17.1	V	-17.1	V	-17.1	V	-17.0	V
-5v	-12.3	V	-12.2	V	-12.2	V	-12.2	V
-1v	-2.4	V	-2.41	V	-2.41	V	-2.41	
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$	0	$\sqrt{}$
1v	2.42	$\sqrt{}$	2.41		2.42	$\sqrt{}$	2.42	$\sqrt{}$
5v	12.2	V	12.2	√	12.2	V	12.2	V
7v	17.1	V	17.0	√	17.0	V	17.0	V
10v	24.5	V	24.3	V	24.4	V	24.5	V

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP45P	Serial No	
	Xen		
Date	9/3/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.56	
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.57	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900231-v3 Advanced LIGO UK

30 November 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research

University of Glasgow Phone +44 (0) 141 330 5884

Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u>

Engineering Department

CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297
Fax +44 (0) 1235 445 843
Fax +44 (0) 1235 445 843

E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy

University of Birmingham Phone +44 (0) 121 414 6447

Fax +44 (0) 121 414 3722

E-mail av@star.sr.bham.ac.uk

Department of Physics

University of Strathclyde

Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

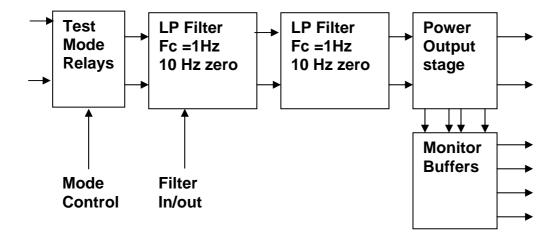
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN


Unit	Q_TOP47P	Serial No	
Test Engineer	Xen		
Date	10/3/10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1Hz, followed by a complimentary zero at 10Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	Q TOP47P	.Serial No
	Xen	
Date	10/3/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit	Q TOP47P	.Serial No
	Xen	
_	9/3/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, U1 has been replaced.

Links:

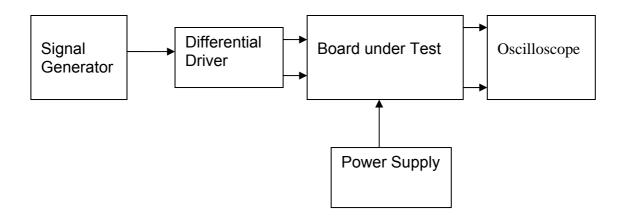
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	Q_TOP47P	Serial No	
Test Engineer	Xen		
Date	9/3/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			\checkmark
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	\checkmark


J5

PIN	SIGNAL	To J1 PIN	OK?
1	Imon1P	5	\checkmark
2	Imon2P	6	$\sqrt{}$
3	Imon3P	7	$\sqrt{}$
4	Imon4P	8	$\sqrt{}$
5	0V		$\sqrt{}$
6	Imon1N	18	$\sqrt{}$
7	Imon2N	19	\checkmark
8	Imon3N	20	√
9	Imon4N	21	\checkmark

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		V
22	0V (TP3)		V
23	0V (TP3)		V
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		V

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

```
J3 pins 1, 2, 3, 4 = positive input
J3 pins 6, 7, 8, 9 = negative input
J3 pin 5 = ground
```

Power

```
J1 pin 9, 10 = +16.5v
J1 pin 11,12 = -16.5
J1 pins 22, 23, 24, 25 = 0v
```

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	Q TOP47P	.Serial No
	Xen	
Date	9/3/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.08	1mV	V
+15v TP4	14.92	1mV	V
-15v TP6	-15.05	5mV	V

All Outputs smooth DC, no oscillation?	V	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	400mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit	Q_TOP47P	Serial No
Test Engineer	Xen	
Date	9/3/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	V
Ch2	V		$\sqrt{}$
Ch3	V		$\sqrt{}$
Ch4		√	

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3		V	V
Ch4		V	V

Unit	Q_TC)P47P	Serial No	
Test Engineer	Xen			
Date	9/3/10)		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch3	4.85	5.0	5.0	4.7v to 5v	\checkmark
Ch4	4.85	5.0	5.0	4.7v to 5v	\checkmark

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz and 1kHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5v	$\sqrt{}$
Ch2	4.85	4.7 to 5v	$\sqrt{}$
Ch3	4.85	4.7 to 5v	V
Ch4	4.85	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	
Ch2	0.67	0.48 to 0.75v	V
Ch3	0.67	0.48 to 0.75v	√
Ch4	0.66	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	
Ch2	0.47	0.4v to 0.5v	
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.47	0.4v to 0.5v	√
Ch4	0.46	0.4v to 0.5v	√

Unit	.Q_TOP47P	Serial No
Test Engineer	.Xen	
Date	.10/3/10	

8.3 Fixed filter in: Remove W4, insert W5 Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	√
Ch2	3.2	3v to 3.4v	√
Ch3	3.25	3v to 3.4v	√
Ch4	3.25	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	\checkmark
Ch2	0.47	0.4v to 0.5v	\checkmark
Ch3	0.48	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	\checkmark
Ch3	0.16	0.15v to 0.16v	\checkmark
Ch4	0.16	0.15v to 0.16v	√

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	√
Ch2	0.16	0.14v to 0.16v	\checkmark
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Jnit	Q TOP47P	Serial No	
Test Engineer	Xen		
)ate	10/3/10		

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1v r.m.s input at 10Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins Monitor Voltage Pin 1 to Pin 2 1.202 Pin 5 to Pin 6 1.203 Pin 9 to Pin 10 1.202		Pass/Fail: Equal? (+/- 0.1v)
1	1.16-1.28	1.202	Pin 1 to Pin 2	1.202	
2	1.16-1.28	1.202	Pin 5 to Pin 6	1.203	V
3	1.16-1.28	1.202	Pin 9 to Pin 10	1.202	V
4	1.16-1.28	1.202	Pin 13 to Pin 14	1.202	V

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.37-0.41	0.396	Pin 3 to Pin 4	0.397	
2	0.37-0.41	0.397	Pin 7 to Pin 8	0.398	
3	0.37-0.41	0.396	Pin 11 to Pin 12	0.397	
4	0.37-0.41	0.395	Pin 15 to Pin 16	0.397	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

Unit	Q_TOP47P	Serial No	
Test Engineer	Xen		
Date	10/3/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.4	V	-24.5	V
-7v	-17.2	V	-17.1	V	-17.1	V	-17.2	V
-5v	-12.2	V	-12.2	V	-12.2	V	-12.3	V
-1v	-2.41	V	-2.41	V	-2.4	V	-2.41	
0v	0	V	0	V	0	V	0	V
1v	2.42	V	2.42	V	2.42	V	2.42	V
5v	12.2	V	12.2	V	12.1	V	12.2	V
7v	17.1	V	17.1	V	17.0	V	17.1	V
10v	24.3	V	24.5	V	24.3	V	24.5	√

Unit	.Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT	OUTPUT	Output at	Maximum	@ Freq
CHANNEL	CHANNEL	10Hz	o/p	
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	Q TOP47P	Serial No	
	Xen		
Date	10/3/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10v peak sinusoidal signal at 10Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	V	V	√

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	
Ch2	5v to 6v	5.57	
Ch3	5v to 6v	5.55	V
Ch4	5v to 6v	5.55	V