LIGO Laboratory / LIGO Scientific Collaboration

Ligo-t0900231-v1 Advanced LIGO UK 6 мау 2009

Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers _public/ALUK Homepage.htm

TOP COIL DRIVER BOARD
 TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25 A .

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
Serial No
Test Engineer
Date
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer
Date \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
5	OV			
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	
2	Imon2P		6	
3	Imon3P		7	
4	Imon4P		8	
5	0V		18	
6	Imon1N		19	
7	Imon2N		20	
8	Imon3N		21	
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	OV (TP3)		
22	OV (TP3)		
23	OV (TP3)		
24	OV (TP3)		
25	OV (TP3)		

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1 $+=$ J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin $3 \quad$ Ch2- = J4 pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3 -J 4 pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- = J4 pin 15

Unit.
.Serial No
Test Engineer
Date

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-0.5 \mathrm{v} ?$
+12 v TP5			
+15 v TP4			
-15 v TP6			

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	

If the supplies are correct, proceed to the next test.

Test Engineer
Date \qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

Unit.
.Serial No \qquad
Test Engineer
Date \qquad
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1				4.7 v to 5 v	
Ch2				4.7 v to 5 v	
Ch3				4.7 v to v	
Ch4				4.7 v to 5 v	

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1		4.7 to 5 v	
Ch2		4.7 to 5 v	
Ch3		4.7 to 5 v	
Ch4		4.7 to 5 v	

1 Hz

	Output	Specification	Pass/Fail
Ch1		3.3 v to 3.7 v	
Ch2		3.3 to 3.7 v	
Ch3		3.3 v to 3.7 v	
Ch4		3.3 v to 3.7 v	

10Hz

	Output	Specification	Pass/Fail
Ch1		0.48 to 0.75 v	
Ch2		0.48 to 0.75 v	
Ch3		0.48 to 0.75 v	
Ch4		0.48 to 0.75 v	

100 Hz

	Output	Specification	Pass/Fail
Ch1		0.4 v to 0.5 v	
Ch2		0.4 v to 0.5 v	
Ch3		0.4 v to 0.5 v	
Ch4		0.4 v to 0.5 v	

1 KHz

	Output	Specification	Pass/Fail
Ch1		0.4 v to 0.5 v	
Ch2		0.4 v to 0.5 v	
Ch3		0.4 v to 0.5 v	
Ch4		0.4 v to 0.5 v	

Unit. .Serial No \qquad
Test Engineer
Date \qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1		$4.7 v$ to 5 v	
Ch2		4.7 v to 5 v	
Ch3		4.7 v to 5 v	
Ch4		4.7 v to 5 v	

1 Hz

	Output	Specification	Pass/Fail
Ch1		3 v to 3.4 v	
Ch2		3 v to 3.4 v	
Ch3		3 v to 3.4 v	
Ch4		3 v to 3.4 v	

10 Hz

	Output	Specification	Pass/Fail
Ch1		0.4 v to 0.5 v	
Ch2		0.4 v to 0.5 v	
Ch3		0.4 v to 0.5 v	
Ch4		0.4 v to 0.5 v	

100 Hz

	Output	Specification	Pass/Fail
Ch1		0.15 v to 0.16 v	
Ch2		0.15 v to 0.16 v	
Ch3		0.15 v to 0.16 v	
Ch4		0.15 v to 0.16 v	

1 KHz

	Output	Specification	Pass/Fail
Ch1		0.14 v to 0.16 v	
Ch2		0.14 v to 0.16 v	
Ch3		0.14 v to 0.16 v	
Ch4		0.14 v to 0.16 v	

Unit.
Serial No \qquad
Test Engineer
Date \qquad

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v peak input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	4.9 v		Pin 1 to Pin 2		
$\mathbf{2}$	4.9 v		Pin 5 to Pin 6		
$\mathbf{3}$	4.9 v		Pin 9 to Pin 10		
$\mathbf{4}$	4.9 v		Pin 13 to Pin 14		

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.6 v		Pin 3 to Pin 4		
$\mathbf{2}$	1.6 v		Pin 7 to Pin 8		
$\mathbf{3}$	1.6 v		Pin 11 to Pin 12		
$\mathbf{4}$	1.6 v		Pin 15 to Pin 16		

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{KHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	
Ch2	
Ch3	
Ch4	

Unit.
.Serial No \qquad
Test Engineer
Date \qquad

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
$\left.\left.\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline & \text { J3 pins 1,6 } & & \text { J3 pins 2,7 } & & \text { J3 pins 3,8 } & & \text { J3 pins 4,9 } & \\ \hline & \begin{array}{l}\text { Ch1 } \\ \text { o/p }\end{array} & \begin{array}{l}\text { Ch1 } \\ \text { stable } \\ ?\end{array} & \begin{array}{l}\text { Ch2 } \\ \text { o/p }\end{array} & \begin{array}{l}\text { Ch2 } \\ \text { stable } \\ ?\end{array} & \text { Ch3 o/p }\end{array} \begin{array}{l}\text { Ch3 } \\ \text { stable } \\ ?\end{array}\right) \begin{array}{l}\text { Ch4 } \\ \text { o/p }\end{array}\right] \begin{array}{l}\text { Ch4 } \\ \text { stable } \\ ?\end{array}\right]$

Unit.
Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

