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Overview

 Arm cavity geometry (beam sizes, ROCs)

 Arm cavity finesse (high vs low)

 Mirror substrate geometry (etalon vs wedge)

 Recycling cavity design (NDRC vs MSRC)

 Signal Recycling configuration
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Arm Cavities: The Core of a GWD

 In principle arm cavities are rather
simple objects, consisting of just
two mirrors and a space between
them.

 In reality one has to carefully
choose the characteristics of the
arm cavities.

 Arm cavities are the ‘heart’ of the
GW detector.
 GW is here accumulated.
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Arm cavity geometry

 Science driver: Coating Brownian noise

beam radius on mirror

Coating Brownian noise of one mirror:

Absolute beam size should
be as large as possible.
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Beam Geometry
 Where to put the waist inside the arm cavity?

 Initial detectors have the waist close/at the input mirrors

 Advanced detectors: Move waist towards the cavity center.
 Larger beam at input mirror
 Lower overall coating Brownian noise
 BUT: much larger beams in the central interferometer

 may need larger BS
 much larger optics for input and output telescope
 Non-degenerate recycling cavities might help
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How to decide on Beam Size ?

 Sensitivity
 Need to make the beams as large as possible!

 Cavity stability
 Large beams means pushing towards instability of the cavity.
 Cavity degeneracy sets limit for maximal beam size

 Mirror size
 The maximum coated area might also

impose a limit for the beam size.
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Clipping losses
 Why are clipping losses a problem?

 Reduced power buildup.
 Scattered light noise.

 In the ideal case a factor 2.5 (beam
radius to mirror radius) seems to be
fine = clipping loss of only a few
ppm.

 Keep in mind: in reality
 Mirror imperfections
 Miscentering
 Residual alignment fluctuations

3ppm

Advanced Virgo:

Mirror diameter 35cm

Maximal beam radius = 6.5cm
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Sensitivity with symmetric ROCs

 With 6cm radius
and 1530m ROC:
Advanced Virgo
obtains about
150 Mpc.
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Choice of ROCs

 2 potential ways: either ROC close to L/2 or ROC>>L.

 Disadvantages of ROC close to L/2: beam size strongly depends on ROC.

 Disadvantages of ROC>>L: Tilt instability + hard to polish such a large ROC.

 2nd Generation instruments go for ROC close to L/2

2 potential ROCs
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Cavity Stability and Choice of ROCs

 Account for potential manufacturing
accuracy
 AdVirgo example: L = 3000m,

beam radius at ITM and ETM = 6cm
=> ROCs of 1531m are required.

 Deviation of only a few ten meters
can make cavity instable.

 Additional problem: polished
spheres are not spherical.

 Advanced Virgo: Believe that we
can go for ROCs 2% of instability.

 Corrective coating as baseline.

Example of non-spherical
mirror from initial Virgo

Average ROC depends on
beam size used for fitting
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Corrective coating from LMA

Before correction (∅120 mm)
3.3 nm R.M.S.

16 nm P.V.

After correction (∅120 mm)
0.98 nm R.M.S.

10 nm P.V.
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Symmetric ROCs of IM and EM ?

 Coating noise for ITM and
ETM are different, due to
their different number of
coating layer:

 For equal beam size ETM
has higher noise.

Coating thickness
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Optimal Waist Position

 In order to minimize the
thermal noise we have to
make the beam larger on
ETM and smaller on ITM.

 Equivalent to moving the
waist closer to ITM.

 Nice additional effect: the
beam in the central area
would be slightly smaller.

ITM

ITM

ETM

ETM

Symmetric ROCs = non optimal Coating noise

Asymmetric ROCs = optimal Coating noise
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Cavity Stability and Choice of ROCs

 Definition of mode-non-
degeneracy:
 Gouy-phase shift of mode of

order l+m:

 Mode-non-degeneracy for a
single mode is:

 Figure of merit for combining
all modes up to the order N:

Instablity
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Choice of ROCs/beam size:
Sensitivity vs Mode-non-degeneracy

 In general mode-non-
degeneracy and sensitivity go
opposite.

 Asymmetric ROCs are
beneficial:
 For identical mode-non-

degeneracy (parallel to arrows
in lower plot) and even slightly
increased senstivity we can
reduce the beam size in the
CITF from 6 to 5.5 cm.
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Potential beam sizes for ET

 How large can we make
the beam size for ET?

 Assuming we could go for a
ROC 2% off instability.

 Assuming polishing improves
we could think of going only
1.4% away from instability.

 For a 10km arm length we
could increase the beam radius
to 12cm.

 Minimal testmass dimension:
62cm diameter, 30cm
thickness = about 200kg. Will test masses (fused silica, silicon) with such

dimensions become available in the next years ??

Advanced Virgo

ET
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Coating noise: What factor is
still missing?

 Assuming ET with
10km arms, TEM00,
room temperature
and 12cm beam
radius.

 To reach the ET tar-
get we need another
factor 2 to 3.
 Cryogenic ??
 Better coatings ??
 Different beam

geometry?
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Overview

 Arm cavity geometry (beam sizes, ROCs)

 Arm cavity finesse (high vs low)

 Mirror substrate geometry (etalon vs wedge)

 Recycling cavity design (NDRC vs MSRC)

 Signal Recycling configuration
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Michelson sensitivity versus
arm cavity finesse

 In the initial detectors
the arm cavity finesse
determines the detector
bandwidth:
 Low finesse = large

bandwidth
 High finesse = best

peak sensitivity

 Is this also true for an
interferometer with
Signal Recycling?
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How to compare different
arm cavity finesse values?

 A change of arm cavity finesse goes hand in hand with a change of the
optical power inside the arm cavities.

 If we decrease the arm cavity finesse, the stored optical power will go
down as well.  => stronger shot noise contribution. => not a fair
comparison.

 One can compensate for the lower finesse by increasing the power
recycling gain.

 Our approach for a fair comparison: If we change the arm cavity finesse
we will always restore the intra cavity power by increasing the power
recycling gain, thus we always compare configurations with ~750kW
per arm.
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Sensitivity for finesse 888 and 444
 Let’s see how the ADV sensitivity changes if we lower the arm

cavity finesse by a factor of 2.

Step 1:
• double ITM transmission
• double PR factor 

Step 2:
If we half the arm cavity finesse we also
have to compensate the Signal Recycling
parameters:
• double Signal Recycling detuning
• double SRM transmittance
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 The Advanced Virgo sensitivity is (within a certain) range
independent of the arm cavity finesse !!

Sensitivity for finesse 888 and 444

Please note: in this analysis
coating Brownian of the ITM
was considered to be constant.
See slide 23 for the influence
of the coating layer number.
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Coating Brownian and finesse (I)
 Lower finesse => higher

transmittance of the ITM HR
coating.

 Lowering arm cavity finesse from
888 to 444:
 increasing ITM transmittance from

0.007 to 0.014
 might be able to get rid of one

coating layer on ITM
 Reduce coating Brownian of ITM

Coating Brownian
 noise of one mirror:
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Coating Brownian and finesse (II)

 When going from 888 to 444 in arm cavity Finesse the BNS inspiral increases by
only 1.3%.

 We do not consider this small influence as significant.
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Finesse and mirror losses

 Advanced Virgo preliminary
design assumes 37.5ppm
loss per surface.

 This is an ambitious goal.
What happens if the losses
turn out to be twice as
much (75ppm)? Any
influence of arm cavity
finesse?

 The sensitivity changes
with the actual mirror
losses, BUT is independent
of the arm cavity finesse.
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Dark fringe offset and
arm cavity finesse

 Consider imbalanced  losses in the two arm cavities. => Does
the coupling of differential losses to dark port power depend on
the arm cavity Finesse?

 Performed a simple numerical simulation using Finesse software:

 The coupling of
differential losses to
the dark port power is
independent of the
arm cavity finesse.
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Noise coupling from the small
Michelson

 All differential arm length
noise inside the small Michel-
son (MICH) gets suppressed
by the arm cavity finesse.

 Lower finesse => stricter
requirements for:
 Thermo refractive noise

inside ITMs, CPs, BS.
 Quietness of wedged optics

(CPs? ITMs? BS?)
 … etc …
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Thermal load of BS, CP and ITM
substrates

 Optical power inside the power
recycling cavity is proportional to
inverse of the arm cavity finesse.

 Lowering the arm cavity finesse from
888 to 444 increases optical power in
BS, CP and ITM substrates from 2.6kW
to 5.1kW.

 The lower the arm cavity finesse the
more optical power is inside the
substrates of the CITF.

 As long as the finesse is not too low
(<100) should be no serious problem.
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Lock-acquisition and finesse
 The capture range of arm cavities inverse proportional to the

Finesse.

 Would lowering the arm cavity finesse makes lock acquisition
easier.

 However, advanced detectors might use auxiliary systems for
lock acquisition.

 Baseline for Advanced Virgo: lock acquisition with auxiliary
lasers (different wavelength)
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Losses inside the SRC

 If there are unexpectedly high losses inside the SRC, then a low
arm cavity finesse would be better.
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Potential reasons for lowering
the finesse?

 Sensitivity ………………………………………………………..independent

 Coating Brownian from ITMs ………….…………….. independent

 Mirror losses …………………………………………………...independent

 Coupling of diff losses to dark port power ………independent

 Noise couplings from small Michelson ……………...NO

 Thermal load of BS, ITM and CPs …………..………...NO

 Lock acquisition ……………………………………….YES, not in AdVirgo

 Losses inside the recycling cavities ………………..…YES



S. Hild GWADW, Florida, May 2009 Slide 32

Full RSE (I)
 Recently the question rose, why not to use full RSE? This would

mean:
 Get rid of power recycling
 Increase arm cavity finesse to restore high optical power.
 Increase SRM reflectivity.

 To get 750 kW:
 ITM transmittance = 300ppm
 Arm cavity Finesse = 19333

 Adjusting RSE again:
 SRM transmittance = 0.005
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Full RSE (II)

 High Finesse ‘amplifies’ the influence of losses inside the signal
recycling cavity. With 37.5ppm loss per surface Full RSE cannot
achieve a sensitivity compatible with dual-recyling.
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Arm cavity finesse of ET

 Arm cavity finesse seems to be rather flexible.

 As long as one does not go ‘too’ low or ‘too’ high
there should be no problem.
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Overview

 Arm cavity geometry (beam sizes, ROCs)

 Arm cavity finesse (high vs low)

 Mirror substrate geometry (etalon vs wedge)

 Recycling cavity design (NDRC vs MSRC)

 Signal Recycling configuration
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Wedges vs Etalon
Input mirror etalon:

 Initial Virgo has no wedges in
the input mirrors

 The etalon effect could be used
for adjusting the cavity finesse
(compensating for differential
losses)

 If etalon effect is not controlled
it might cause problems

Input mirror with wedge:

 Used by initial LIGO

 Reflected beams from AR
coating can be separated from
main beam => pick-off beams
provide additional ports for
generation of control signals.

 No etalon effect available.
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Possible design option: Wedges at input
mirrors and etalon effect at end mirrors

 Wedge at input mirrors:
 Allows for additional pick-off beams

 Use etalon effect at end test mass
 Tune etalon to balance arms => reduce noise couplings => might speed

up commissioning
 Tune etalon to change readout quadrature in DC-readout.
 Replace AR-coating by a coating of about 10% reflectivity.
 Ideally use a curved back surface (same curvature as front).
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Wegdes at Input Mirrors

 Need a wedge large enough
to separate beams within
about 5 meter (distance ITM
to BS).

 For 6cm beam radius a
wedge of about 1.5 deg is
required.

 High hardware impact
(larger vacuum tube in
centeral IFO, more optical
elements)
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Differential Arm Length Noise from vertical
Movement of wedged Input Mirrors

 Lateral movement of a wedged
mirror cause length sensing
noise.

 Need to do a projection of
seismic noise to DARM:

 RESULT: Not limiting within
the detection band.

 Please note: No actuation noise
considered.

More detail in
Hild et al: VIR-037A-08
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Balancing Range due to Etalon Effekt

 Examples of figures of merit:
 Transmittance of end mirror (etalon)
 Finesse of arm cavity
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Etalon changes Optical Phase

 When changing the etalon tuning the optical-phase changes
as well. (noise!)

 The two etalon surfaces build a compound mirror, whose
apparent position depends on the etalon tuning.
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Requirement for Temperature
Stability of Etalon Substrate

 Certain temperature stability of Etalon
substrate required to not spoil AdV
sensitivity

 Can compare this requirement to
substrate thermal noise

 RESULT: Not limiting.

 Please note: Did not consider technically
driven temperature fluctuations.

More detail in
Hild et al: VIR-058A-08
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Optical Design: Check System
Integrity for Deviations from Specs

 A deviation in the relative misalignment (parallelism)
and relative curvature of the two etalon surfaces:
 Imperfect wave front overlap…
 Reduces tuning range …
 Beam shape distortions …

 Two methods for analysis:
 FFT based code (Waveprop)
 Coupling coefficients
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Tuning Range of imperfect Etalon

 Requirements for Etalon manufacturing accuracy:
 Parallelism better than a few urad.
 ROC deviation: uncritical
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Mirror geometry of ET

 If it turns out that ET might run into problems
originating from imbalanced arm cavities:
 different finesse
 different losses

 … then using etalons (EM and/or IM) can help.
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Overview

 Arm cavity geometry (beam sizes, ROCs)

 Arm cavity finesse (high vs low)

 Mirror substrate geometry (etalon vs wedge)

 Recycling cavity design (NDRC vs MSRC)

 Signal Recycling configuration
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Non-degenerate Recycling cavities

 Motivation: Thermal effects
or misalignments scatter
light into higher-order modes
so that optical signal is lost.
Non-degenerate cavities
reduce this effect.

 Commissioning experience
shows that degenerate
cavities cause problems for
control signals. Y. Pan
showed in 2006 that also
GW signal is lost.

Non-degenerate recycling cavity



S. Hild GWADW, Florida, May 2009 Slide 48

 A possible optical  layout

 Design of Non-degenerate Recycling Cavity

Beam waist

Beam size 
w=55mm 

 Proper design of the non-degenerate Recycling Cavity is rather
complicated …

 Here I concentrate on a single aspect: Infrastructure
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Advanced Virgo Baseline design

 Folded beam to increase recycling cavity length

 PRM3 and PRM2 are (de)focusing elements.

 Infrastructure problems:

• Need to suspend more than 1 optic per vacuum tower

• Need large vacuum tubes to fit (larger) folded beams

• Non perpendicular angle of incidence = losses due to astigmatism
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Examples of other NDRC layouts
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NDRC and ET?

 If non-degenerate RC perform like we think (we will
find out in 2G), then for sure ET will have them.

 ET should ideally have:
 Lots of space (large CITF, many vacuum tanks, large

vacuum links etc)
 Lots of flexibility (more than 1 optic per vacuum vessel,

platforms etc)
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Overview

 Arm cavity geometry (beam sizes, ROCs)

 Arm cavity finesse (high vs low)

 Mirror substrate geometry (etalon vs wedge)

 Recycling cavity design (NDRC vs MSRC)

 Signal Recycling configuration
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Signal Recycling / RSE helps!

 Signal Recycling / RSE significantly improves the sensitivity!
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How to listen to the Universe?

 Advanced Virgo is a hyper-sensitivity microphone to listen to the Universe.

 Each astrophysical source has its own sound or tone.

 This microphone can be tuned ‘similar’ to a radio receiver.

Pulsar

Supernova

Binary Neutron
Star inspiral
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Fundamental noise limits for
Advanced Virgo

 Advanced Virgo will be
limited by quantum noise
at nearly all frequencies of
interest.

 GOAL: Optimise quantum
noise for maximal science
output.
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Advanced Virgo optical layout

knob 1

microscopic po-
sition of SRM1

(nm scale)

knob 2

optical
transmittance of

SRM1

knob 3

Input
Light power

Signal Recycling
resonance frequency

Signal
Recycling
bandwidth

 We have three
knobs available for
optimisation:
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Optimization Parameter 1:
Signal-Recycling (de)tuning

 Frequency of pure optical resonance goes down with SR-tuning.

 Frequency of opto-mechanical resonance goes up with SR-tuning

Advanced Virgo, Power = 125W, SR-transmittance = 4%

Pure optical
resonance

Opto-mechanical
Resonance 
(Optical spring)

Photon ra-
diation pres-
sure noise Photon shot

noise

knob 1
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Optimization Parameter 2:
Signal-Recycling mirror transmittance

Advanced Virgo, Power = 125W, SR-tuning = 0.07

 Resonances are less developed for larger SR transmittance.

knob 2
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Optimization Parameter 3:
Laser-Input-Power

Advanced Virgo, SR-tuning=0.07, SR-transmittance = 4%

 High frequency sensitivity improves with higher power (Shotnoise)

 Low frequency sensitivity decreases with higher power (Radiation pressure noise)

knob 3
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Example: Optimizing 2 Parameters

 Inspiral ranges for
free SR-tuning and
free SRM-
transmittance, but
fixed Input power

NSNS-range

BHBH-range
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Example: Optimizing 2 Parameters

Maximum
NSNS-range

Maximum
BHBH-range

Parameters
for maximum

Parameters
for maximum

 Different source usually have
their maxima at different
operation points.

 It is impossible to get the
maximum for BNS AND BBH
both at the same time !
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Example: Optimizing 3 Parameter
for Inspiral range

 Scanning 3
parameter at
the same time:
 SR-tuning
 SR-trans
 Input Power

 Using a video to
display 4th
dimension.



S. Hild GWADW, Florida, May 2009 Slide 63

Optimal configurations

Curves show the optimal sensitivity for a single source type.
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Optimising the
signal recycling detuning

 Detuned SR is used in
Advanced Virgo and
Advanced LIGO

 For ET tuned SR seems
to be more promising:
 Optimal trade-off

between peak sensi-
tivity and bandwidth

 Recycle both signal
sidebands.
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Optimising the signal
recycling transmittance

 Optimal trade-off
between peak sensi-
tivity and bandwidth for
10% transmittance.
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Quantum noise of ET-B
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Xylophone interferometers

 HF-IFO:
 Tuned SR
 3 megawatt
 Room temperature

 LF-IFO:
 Detuned SR
 Only 18 kW
 Cryogenic

PRELIMINARY
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