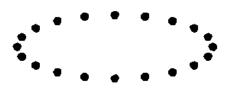
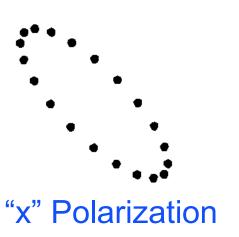
Gravitational-Wave Astrophysics using LIGO

Vuk Mandic
for the LIGO Scientific Collaboration
05/02/09
LIGO-G0900423-v2

Outline

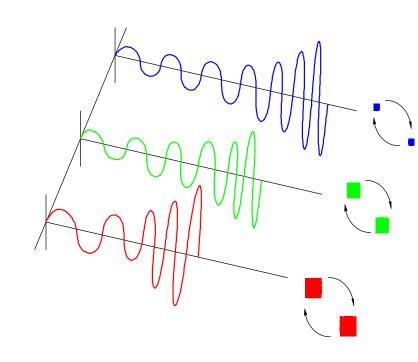

- Brief overview:
 - » Gravitational waves
 - » Sources of gravitational waves
 - » LIGO Laser Interferometer Gravitational-wave Observatory:
- Recent results highlights
- Outlook for the future:
 - » Enhanced and Advanced LIGO
 - » Underground interferometers?


Gravitational Waves

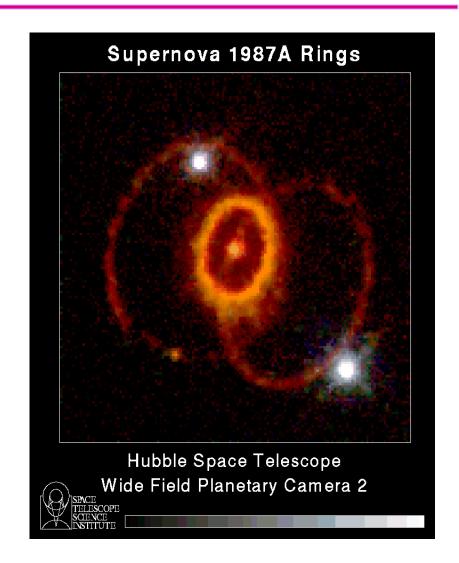
- General Relativity: Presence of mass distorts the fabric of space-time.
- Accelerating quadrupole moment of mass distribution produces waves:
- Einstein's field equations reduce to the wave equation:

equation:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \left(\nabla^2 - \frac{1}{c^2} \; \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$$

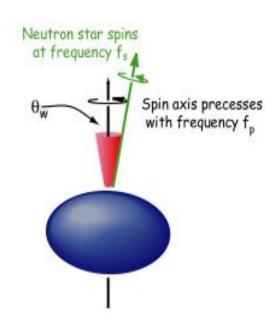
- General Relativity: the "signal" travels at the speed of light.
- Two polarizations:



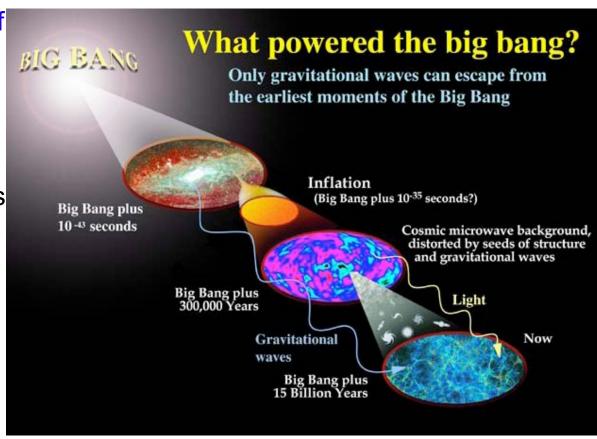
light is deflected from its original straight path.


Sources: Binary Coalescence

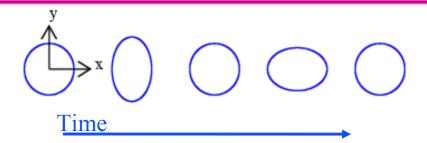
- Compact binary objects:
 - » Two neutron stars, ~1.4 Solar Masses each.
 - » Two black holes, large mass ranges.
 - » Neutron star and a black hole.
- Inspiral toward each other.
 - » Emit gravitational waves as they inspiral.
- Amplitude and frequency of the waves increases over time, until the merger.
- Waveform relatively well understood.


Sources: Bursts

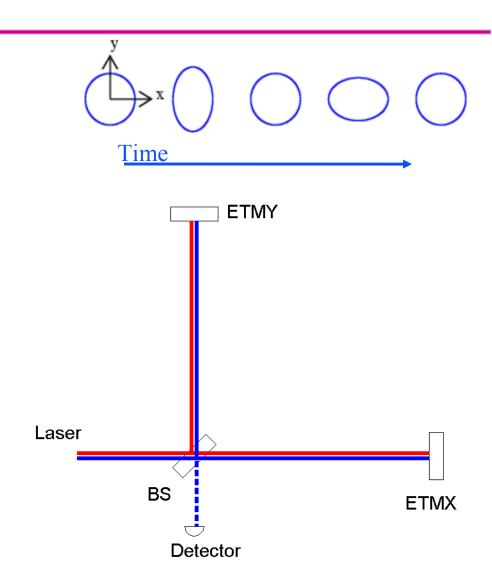
- Various other transients exist:
 - » Supernova explosions: e.g. collapse of massive stars.
 - » Gamma Ray Bursts: collapse of rapidly rotating massive stars or neutron star mergers.
 - » Pulsar glitches: acretion.
- Physics not entirely understood.
- Waveform not known search for power excess in the data.

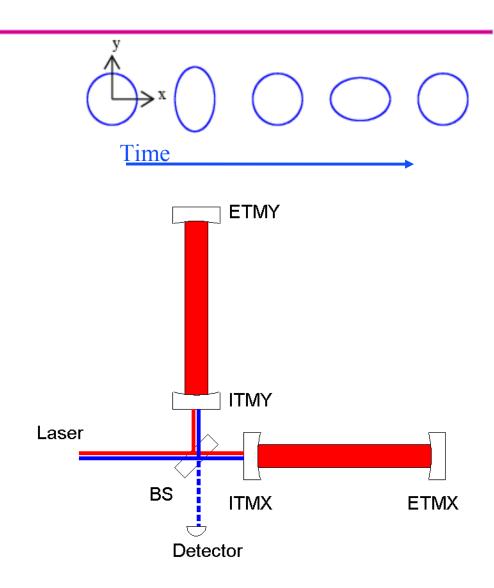

Sources: Periodic

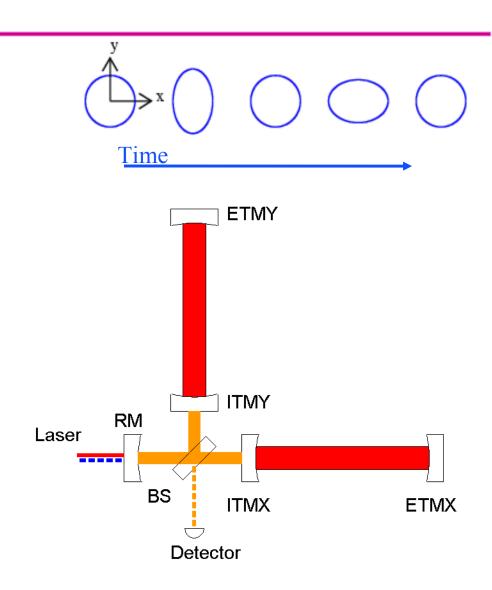
- Pulsars with mass nonuniformity:
 - » Small "mountains".
 - » Density non-uniformity.
 - » Dynamic processes inside neutron star.
- Produce gravitational-waves at twice the rotational frequency.
- Waveform well understood:
 - » Sinusoidal, but Dopplermodulated.
- Continuous source!



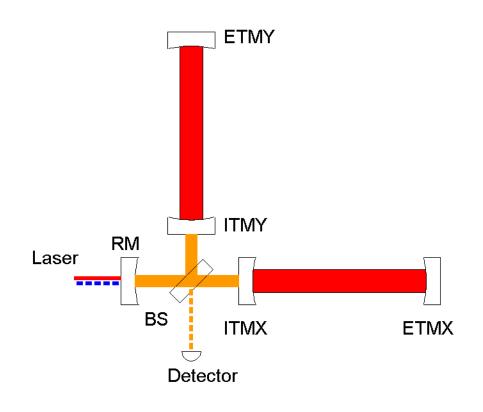
Sources: Stochastic Background


- Incoherent superposition of many unresolved sources.
- Cosmological:
 - » Inflationary epoch
 - » Cosmic strings
 - » Alternative cosmologies
- Astrophysical:
 - » Supernovae
 - » Magnetars
- Potentially could probe physics of the very-early Universe.

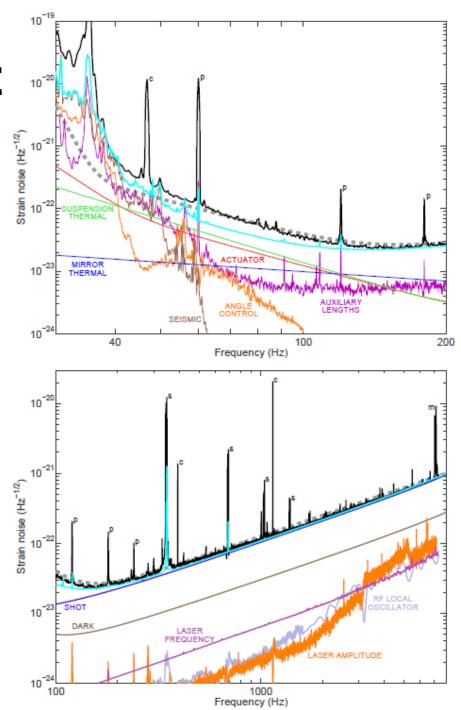

 Gravitational wave effectively stretches one arm while compressing the other.


- Gravitational wave effectively stretches one arm while compressing the other.
- Interferometer measures the armlength difference.
 - » Suspended mirrors act as "freely-falling".
 - » Dark fringe at the detector.

- Gravitational wave effectively stretches one arm while compressing the other.
- Interferometer measures the armlength difference.
 - » Suspended mirrors act as "freely-falling".
 - » Dark fringe at the detector.
- Fabry-Perot cavities in the arms
 - Effectively increase arm length ~100 times.



- Gravitational wave effectively stretches one arm while compressing the other.
- Interferometer measures the armlength difference.
 - » Suspended mirrors act as "freely-falling".
 - » Dark fringe at the detector.
- Fabry-Perot cavities in the arms
 - » Effectively increase arm length ~100 times.
- Power-recycling mirror
 - » Another factor of ~40 in power.

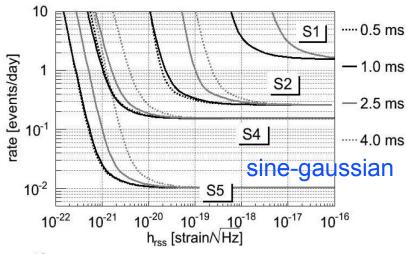

LIGO Sensitivity

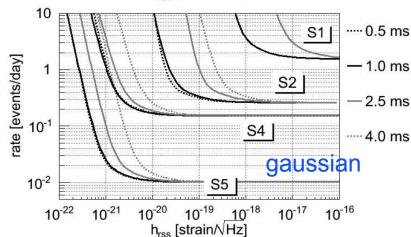
- Rough sensitivity estimate
 - » Input laser power: ~5 Watt
- Sensitivity (ΔL) ~ λ (~ 10⁻⁶ m)
 / Number of Bounces in Arm (~100)
 / Sqrt(Number of Photons (~10²¹))
 ~ 3 × 10⁻¹⁹ m
- Strain Sensitivity:
 - $h = \Delta L / L \sim 10^{-22}$
 - \rightarrow L = 4 km

LIGO Noise Budget

- Fundamental noise sources:
 - » Seismic noise, <40 Hz</p>
 - » Thermal noise, 40-150 Hz
 - » Laser-power shot noise, >150 Hz
- Many technical noise sources:
 - » Electronics, 60 Hz harmonics
 - » Angle-to-length couplings
 - » Auxiliary length degrees of freedom
 - » Laser frequency noise
 - » Laser intensity noise
 - » Oscillator phase noise

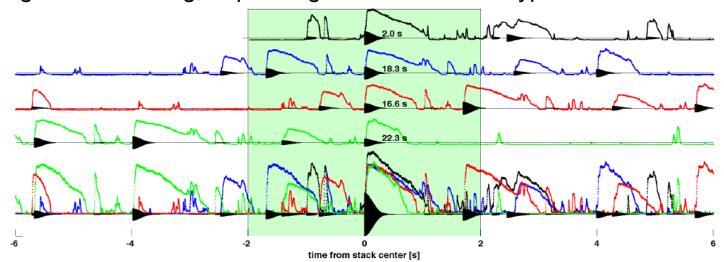
LIGO Observatories


Brief History of LIGO



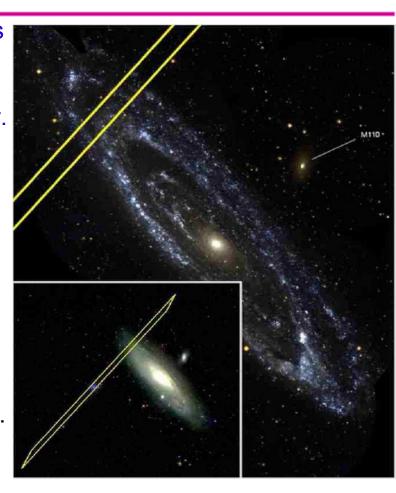
Transient Searches: Bursts (1)

- Search for power excess in data, <1s long.
- Several algorithms deployed:
 - Different time-frequency decompositions, different methods of estimating excess power and coherence between detectors.
- Frequency bands:
 - » 64-2000 Hz
 - » 1-6 kHz
- First year of S5.
- Data quality evaluation:
 - » Data quality flags
 - » Veto conditions (auxiliary channels etc)
- Background estimation using time-slides.
- Efficiency estimation using software simulations of signals.


90% Confidence Rate Limits

Transient Searches: Bursts (2)

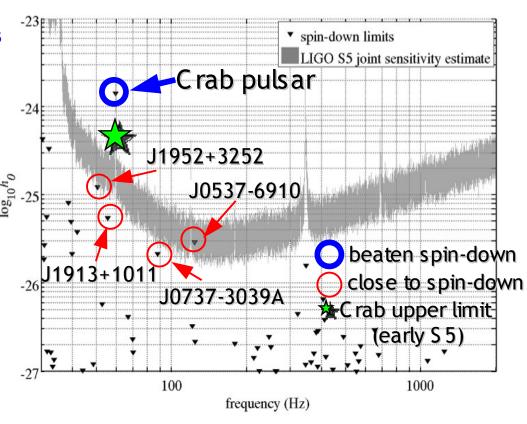
- Soft Gamma Repeaters (SGR): brief (~0.1sec) bursts of gamma rays.
 - » Magnetar model: Galactic neutron star in a strong magnetic field.
- "Storm": SGR 1900+14, March 29, 2006, about 30-sec long.
- Timing information from Swift.
- Stacking technique: time-align the GW data to overlap individual bursts.
- Consider several example waveforms: ringdowns at different frequencies, frequency band-limited or white-noise bursts.
- No signal observed: 90% UL on energy emitted at 10 kpc between 2×10⁴⁵ erg and 6×10⁵⁰ erg, depending on the waveform type.


Transient Searches: CBC

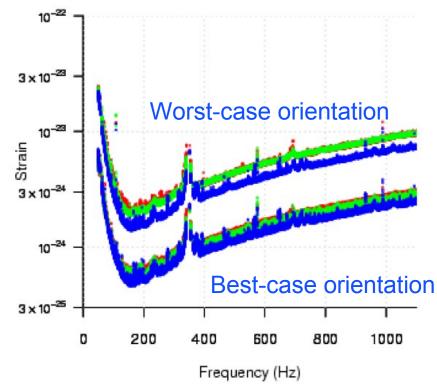
- CBC: Compact Binary Coalescences:
 - » Infall of 2 neutron stars, 2 black holes, or a neutron star and a black hole toward each other.
 - » Ends with a merger (outside of the sensitive band).
- Using most of S5 data.
 - » 2-35 $\rm M_{\odot}$ binaries, minimum component mass 1 $\rm M_{\odot}$.
 - » Matched-template search.
 - » Require coincidence in 2 or more detectors (mass and time)
 - » Apply vetoes (environmental, instrumental)
- No candidates, place 90% rate upper limits:
 - » In units: $(L_{10}^{}yr)^{-1}$ where $L_{10}^{}$ is $10^{10}\times$ the blue solar luminosity.

Туре	90% UL	Realistic Expected	Optimistic Expected
BNS	1.4×10 ⁻²	5×10 ⁻⁵	5×10 ⁻⁴
BBH	7.3×10 ⁻⁴	4×10 ⁻⁷	6×10 ⁻⁵
NSBH	3.6×10 ⁻³	2×10 ⁻⁶	6×10 ⁻⁵

Transient Searches: Burst + CBC


- Short Gamma Ray Bursts (GRBs): intense flashes of gamma rays, lasting <2s.</p>
 - » Nearby: soft gamma-ray repeaters (SGRs).
 - » Distant: neutron star and/or black hole merger.
- GRB 070201 was observed in the direction of Andromeda galaxy (M31) by several spacecraft (Konus-*Wind*, Integral, Messenger, Swift).
 - H1 and H2 operational at the time.
 - » Search -120/+60 sec around the GRB time.
 - » No gravitational-wave candidate was found (Astrop. J. 681, 1419 (2008)).
- Inspiral search for compact binary merger (M_o<m₁<3M_o, M_o<m₂<40M_o):
 - » In M31 (770 kpc) excluded at 99% confidence.
 - » Excluded at 90% confidence out to 3.5 Mpc.
- Un-modeled burst: SGR in M31 not excluded.

IPN3 error box overlaps with M31


Continuous Waves (1)

- Search for known pulsars:
 - » 113 known ms-pulsars >20 Hz.
 - » Known positions, spin evolutions from radio (JBO, Green Bank, Parkes) and X-ray (RXTE) observations.
 - » Assume GWs phase locked to EM signal.
- Neutron star ellipticity can constrain (2) 125 its equation of state.
- Crab pulsar:
 - » Spin-down of 3.7×10⁻¹⁰ Hz/s implies maximum strain of 1.4×10⁻²⁴.
- Major Milestone: Beating the Crab spin-down limit!
 - » Based on first 10 months of S5.
 - » Ap. J. Lett. 683, 45 (2008)

Continuous Waves (2)

- All-sky search:
 - » First 8 months of S5.
 - » Frequency: 50-1100 Hz.
 - » Spin-down: $-5 \times 10^{-9} 0$ Hz/s.
 - » Isotropic sky-position grid.
 - » 5 polarizations.
 - » 30-min segments, 0.5 mHz resolution.
- H1 and L1 analyzed.
 - » 6 candidates found with SNR>6.25 in both H1 and L1.
 - "Coincidence" requirements met.
 - » But not of constant amplitude/spindown.
 - » Reject all candidates.

Blue: Polar

Red: Equatorial

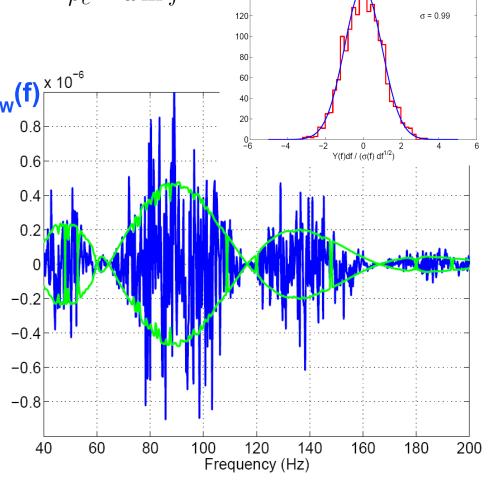
Green: intermediate

Continuous Waves (3)

- Einstein@Home:
 - Analysis performed by 100,000 computers volunteered by general public.
 - Spans 66 days of S5, in 28 30-hr segments.
 - Frequency band: 50 1500 Hz.
 - Frequency resolution: 3-6 μHz
 - Spin-down resolution: (1.6-4.0) ×10⁻¹⁰ Hz/s_o
 - Sky-position grid.
- » Sky-position grid.

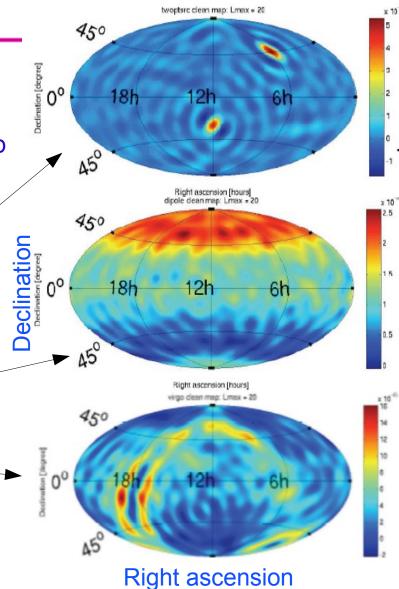
 Less data, but much finer frequency and spin-down grids similar sensitivity to the all-sky search.
- Require 20 (out of 28) segments to agree for detection.
 - Background level: <10 (out of 28) segments in coincidence.
 - No candidate found!

Strain amplitude at which 10%,50%, and 90% of simulated pulsars are detected by Einstein@Home

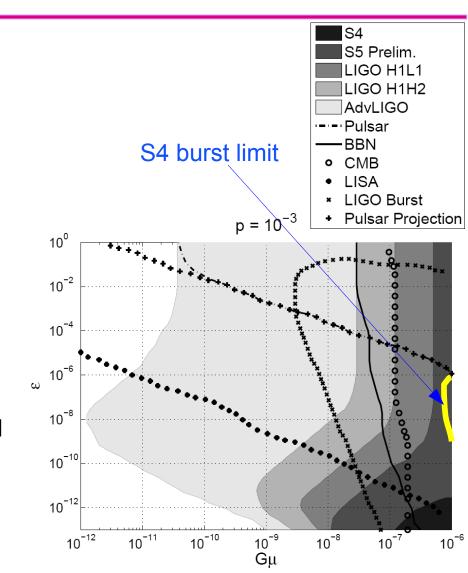


Stochastic Background (1)

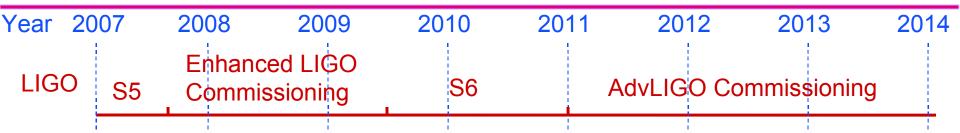
- Search for GW energy density by cross-correlating L1 and H1. $\Omega_{GW}(f) = \frac{1}{\rho_c} \, \frac{d\rho_{GW}(f)}{d\ln f}$
- Use S5 data up to Jan 22, 2007:
 - Frequency band: 41-178 Hz.
 - Frequency-independent spectrum Ω_{GW}(f) × 10⁻⁶
- Preliminary S5 H1L1 result:
 - $\Omega \pm \sigma_{\Omega} = (1.0 \pm 5.2) \times 10^{-6}$
- Bayesian 90% UL: **9.0 × 10**-6
- Big-Bang Nucleosynthesis model and observations constrain the total energy at the time of BBN:


$$\int \Omega_{\rm GW}(f) h_{100}^2 d(\ln f) < 6.3 \times 10^{-6}$$

- BBN in LIGO band: Ω_0 < 1.0 × 10⁻⁵
- We have surpassed the BBN bound.
 - » Another important LIGO milestone!


Stochastic Background (2)

- Directional searches:
 - » Search for point-sources (S4 run).
 - » Generated stochastic GW upper-limit map (analogous to CMB maps).
 - Phys. Rev. D 76, 082003 (2007).
- Spherical Harmonic Decomposition
 - » Complex GW power sky-distributions.
 - » In progress with S5 data.
 - » Recovering simulated signals:
 - 2 point sources.
 - Dipole moment.
 - Galactic distribution.

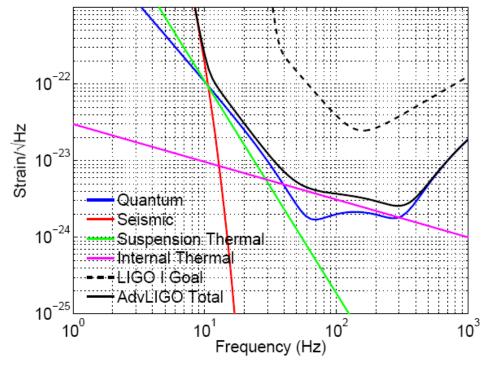


Cosmic (Super)Strings: Burst and Stochastic

- Cosmic Strings:
 - » Topological defects from phase transitions in early universe.
 - » Fundamental strings.
- Cosmic string cusps, Lorentz boosted toward Earth produce bursts of GWs.
- Integrating over the whole network gives a stochastic background.
- Model parameters (small loop scenario)
 - » Loop-size parametrized by: $10^{-13} < \varepsilon < 1$
 - **»** String tension: $10^{-12} < G\mu < 10^{-6}$
 - » Reconnection probability: 10⁻³ < p < 1
- Preliminary S5 stochastic result and S4 burst result probe this parameter space.

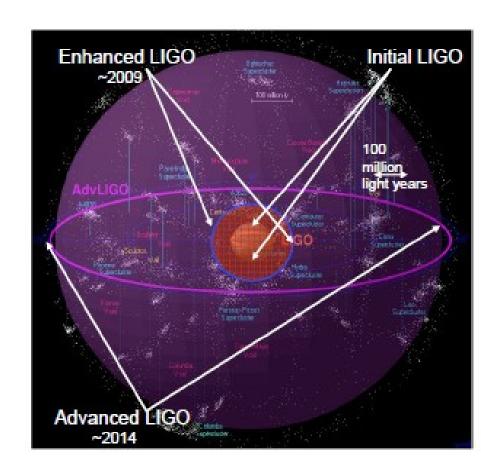
Expected Future Timeline

Enhanced LIGO

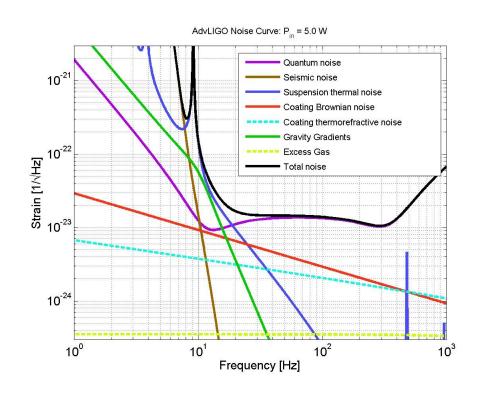

- » Relatively small upgrade over the Initial LIGO.
- » Improve strain sensitivity of 4-km interferometers ~2 times.
- » Test some of the Advanced LIGO concepts.
- » NSF support: \$150M over 2009-2013 for LIGO Lab operation!

Advanced LIGO

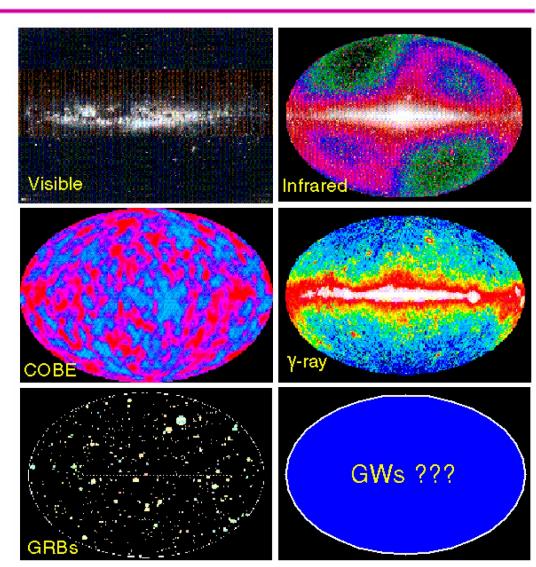
- » Major upgrade: essentially every aspect of the experiment will be significantly improved.
- » Improve strain sensitivity of all interferometers >10 times.
- Widen the sensitive band down to 10 Hz.
- » Substantial increase in the number of expected accessible sources.
- » NSF support: \$205M over 2008-2015 for ALIGO construction!


Advanced LIGO

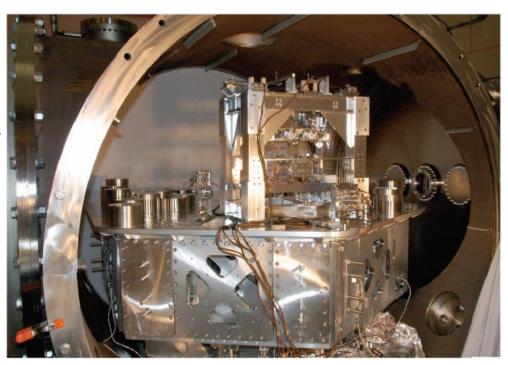
- Keep the same facilities, but redesign all subsystems.
 - » Improve sensitivity over the whole frequency range.
- Increase laser power in arms.
- Better seismic isolation.
 - » Quadruple pendula for each mass
- Larger mirrors to suppress thermal noise.
- Silica wires to suppress suspension thermal noise.
- "New" noise source due to increased laser power: radiation pressure noise.
- Signal recycling mirror
 - » Allows tuning sensitivity for a particular frequency range.


Advanced LIGO

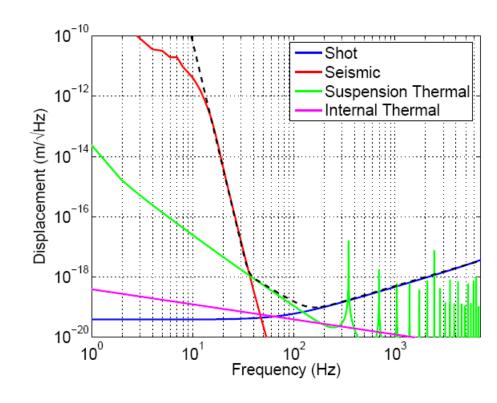
- Three 4km interferometers.
 - » Two at Hanford, one at Livingston.
- Significantly larger expected number of GW sources.
- Project started in April 2008.
- Presently finalizing designs, placing orders.
 - » Preliminary tests of various subsystems.
 - » Some of the hardware and concepts to be tested by Enhanced LIGO.
- Installation expected to start in 2011.
 - » First results: ~2014.


Beyond Advanced LIGO: Probing ~1 Hz

- Scientific Motivation for probing 1Hz GWs is very strong.
 - » Stochastic: $S(f) = \frac{3H_0^2}{10\pi^2} \frac{\Omega_{GW}(f)}{f^3}$
 - » Periodic: Most known pulsars are in the 0.1-10 Hz band.
 - » Inspirals: larger total mass (IMBH), longer observations.
- Technology challenge:
 - » Quantum (shot + rad. pressure)
 - » Thermal
 - » Seismic + gravity gradient
- Underground interferometers?
 - » Ongoing project at Homestake mine characterizing seismic and gravity gradient noise 1.5-2 km underground.


Conclusion

- LIGO achieved design sensitivity and completed a year-long science run.
- Many searches for GW sources completed, many still in the pipeline
 - » Beginning to have astrophysical implications.
- Significant improvements expected in the coming years:
 - » Enhanced LIGO to start in the summer, ~2x better strain sensitivity.
 - » Advanced LIGO construction under way.
 - » Already thinking about third generation.
- Stay tuned...


Enhanced LIGO

- Modifications only planned for 4-km interferometers: H1 and L1.
- Hardware installation nearly complete.
- More powerful laser (35 W instead of 6 W), with upgraded input optics.
- New, active seismic isolation platform in the output port.
- Output mode cleaner, suspended, in vacuum.
- New locking scheme.
- New earthquake stops (SiO₂) to suppress charging of the mirrors.
- New magnets (SmCo instead of NdFeB) to minimize non-linear, upconversion effects.

LIGO Sensitivity

- Seismic Noise (<40 Hz)
 - » Active and passive isolation
 - » Suspensions
 - » Effective "Seismic Wall" at 40 Hz
- Thermal Noise (40-150 Hz)
 - » Suspension wires
 - » Internal mirror modes
 - » Mirror coatings modes
- Shot noise (>150 Hz)

