
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T080135-v6 LIGO April 19, 2013

aLIGO CDS
Real-time Code Generator (RCG)
Application Developer’s Guide

R. Bork, M. Aronsson, A. Ivanov

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

LIGO LIGO-T080135-v6

 2

Table	 of	 Contents	

1	 Introduction	 ...	 4	
2	 Document	 Overview	 ..	 4	
3	 References	 ..	 4	
4	 RCG	 Overview	 ..	 5	
4.1	 Code	 Development	 ...	 5	
4.2	 Code	 Generator	 ..	 7	
4.3	 Run-‐time	 Software	 ...	 10	
4.3.1	 Real-‐Time	 ..	 10	
4.3.2	 Non-‐Real-‐time	 ...	 11	

5	 RCG	 Application	 Development	 ..	 13	
5.1	 General	 Rules	 and	 Guidelines	 ..	 13	
5.2	 Code	 Compilation	 and	 Installation	 ..	 15	

6	 Running	 the	 RCG	 Application	 ..	 17	
6.1	 Automatic	 Scripts	 ...	 17	
6.2	 Runtime	 Diagnostics	 ...	 18	
6.3	 Additional	 Run	 Time	 Tools	 ...	 18	

7	 RCG	 Software	 Parts	 Library	 ...	 19	
7.1	 Top	 Level	 ..	 19	
7.1.1	 cdsParameters	 ..	 20	

7.2	 C	 Code	 ...	 23	
7.2.1	 cdsFunctionCall	 ..	 23	

7.3	 I/O	 Parts	 ..	 25	
7.3.1	 ADC	 ..	 26	
7.3.2	 ADC	 Selector	 ..	 28	
7.3.3	 DAC	 Modules	 ..	 29	
7.3.4	 cdsDio	 ...	 31	
7.3.5	 cdsRio	 and	 cdsRio1	 –	 ...	 32	
7.3.6	 cdsIPCx_PCIE,	 cdsIPCx_RFM,	 and	 cdsIPCx_SHMEM	 ..	 33	
7.3.7	 cdsCDO32	 ..	 35	
7.3.8	 cdsCDIO1616	 and	 cdsDIO6464	 ...	 36	

7.4	 Simulink	 Parts	 ..	 38	
7.4.1	 Unit	 Delay	 ..	 39	
7.4.2	 Subsystem	 Part	 ...	 40	
7.4.3	 MathFunction	 ..	 41	
7.4.4	 In-‐line	 (math)	 function	 ..	 44	
7.4.5	 From/Goto	 ..	 50	
7.4.6	 Bus	 Creator	 /	 Bus	 Selector	 ..	 51	

7.5	 EPICS	 Parts	 ...	 52	
7.5.1	 cdsEpicsOutput/cdsEpicsIn	 ..	 53	
7.5.2	 cdsEpicsBinIn	 ..	 56	
7.5.3	 cdsRemoteIntlk	 ...	 57	

LIGO LIGO-T080135-v6

 3

7.5.4	 cdsEzCaRead/cdsEzCaWrite	 ..	 58	
7.5.5	 EPICS	 Momentary	 ..	 59	

7.6	 Osc/Phase	 ...	 60	
7.6.1	 cdsPhase	 ..	 61	
7.6.2	 cdsWfsPhase	 ..	 62	
7.6.3	 cdsOsc	 ...	 63	
7.6.4	 cdsSatCount	 ..	 64	
7.6.5	 cdsNoise	 ...	 65	

7.7	 Filters	 ...	 66	
7.7.1	 CDS	 Standard	 IIR	 Filter	 Module	 ...	 67	
7.7.2	 IIR	 Filter	 Module	 with	 Control	 ...	 74	
7.7.3	 IIR	 Filter	 Module	 with	 Control	 2	 ...	 76	
7.7.4	 PolyPhase	 FIR	 Filter	 ...	 79	
7.7.5	 Single	 Pole	 /	 Single	 Zero	 (SPSZ)	 Filter	 ...	 80	
7.7.6	 RMS	 Filter	 ..	 81	
7.7.7	 True	 RMS	 Filter...	 82	
7.7.8	 Test	 Point	 ..	 83	
7.7.9	 Excitation	 ..	 84	

7.8	 Matrix	 Parts	 ...	 85	
7.8.1	 cdsMuxMatrix	 ..	 86	
7.8.2	 cdsFiltMuxMatrix	 ...	 88	
7.8.3	 cdsBit2Word/cdsWord2Bit	 ..	 89	

7.9	 WatchDogs	 ...	 91	
7.9.1	 WD	 ..	 92	
7.9.2	 cdsDacKill	 ..	 92	

7.10	 DAQ	 Parts	 ...	 95	

LIGO LIGO-T080135-v6

 4

1 Introduction
For the development of real-time controls application software, the LIGO Control and Data
Systems (CDS) group has developed an automated real-time code generator (RCG). This RCG uses
MATLAB Simulink as a graphical data entry tool to define the desired control algorithms. The
resulting MATLAB .mdl file is then used by the RCG to produce software to run on an Advanced
Ligo (aLIGO) CDS front end control computer.

The software produced by the RCG includes:

• A real-time code thread, with integrated timing, data acquisition and diagnostics.
• Network interface software, using the Experimental Physics and Industrial Control System

(EPICS) software and EPICS Channel Access. This software provides a remote interface
into the real-time code.

2 Document Overview
This document describes the means to develop a user application using the RCG. It contains the
following sections:

• Reference Section (3): The RCG produces software which integrates with various other
components of CDS software. In addition, there are various files and services which must
be configured prior to code operation. These items are covered under separate
documentation, listed in the reference section.

• RCG Overview (4): Provides a brief description of the RCG, its components and resulting
code threads.

• Application Development (5): Provides the basics for developing an application using the
RCG.

• Software Execution (6): Describes how to start and stop the software application.
• RCG Software Parts Library (7): Describes the various components supported by the RCG.

3 References
LIGO T0900612 aLIGO CDS Design Overview https://dcc.ligo.org/LIGO-T0900612-v2 : Provides
an overview of the aLIGO CDS hardware and software designs, along with links to more detailed
documentation.

LIGO T1000625 CDS Software Documentation https://dcc.ligo.org/LIGO-T1000625-x0: Provides
links to this and other CDS software documentation.

LIGO-T1000248 aLIGO CDS File System Directories https://dcc.ligo.org/LIGO-T1000248-v6:
Defines the code installation and directory structures supported by the RCG.

LIGO LIGO-T080135-v6

 5

4 RCG Overview
The RCG uses MATLAB Simulink as a ‘drawing’ tool to allow real-time control applications to be
developed via a Graphical User Interface (GUI). A basic description of this process, the RCG itself,
and resulting application software is provided in the following subsections.

4.1 Code Development
Code development is done by graphically placing and connecting blocks in the MATLAB Simulink
editor. The ‘building blocks’ supported by the RCG are included in the CDS_PARTS.mdl file. The
contents of the present file are shown below, with further descriptions of the blocks listed in
Section 7 RCG Software Parts Library.

Figure 1: CDS Parts Library

Parts from the CDS library are copied (drag and drop) to the user application window and then
connected to show processing/signal flow. A simple example is shown in the following figures, the
first of which is the “top” level, the second showing the detail of one of the top level subsystem
parts.
This example shows:

LIGO LIGO-T080135-v6

 6

• A cdsParameters: This block must exist in all models. It is used by the RCG in setting code
compile options and linking this application with various other components in a CDS
distributed system.

• A single, 32 channel ADC (Analog-to-Digital Converter; adc_0).
• Tags used to connect ADC signals to subsystem parts (X1, X2)
• A single, 16 channel DAC output block.
• Within the subsystem level, selection of ADC channels and connection to CDS standard IIR

filter modules.

This Simulink diagram is then saved to a user defined .mdl file, which is then processed by the
RCG to provide the final real-time and supporting software which run on a CDS front end
computer.
Many examples of models built for aLIGO use can be found within the CDS SVN repository
(https://redoubt.ligo-wa.caltech.edu/websvn/) in the cds user apps area.

Figure 2: Example Model - Top Level

LIGO LIGO-T080135-v6

 7

Figure 3: Example Model – Subsystem Level

4.2 Code Generator
The code generation process is shown in the following figure and the basic process is described
below.

1) Once the user application is complete, it is saved to the user .mdl file in a predefined CDS
software directory.

LIGO LIGO-T080135-v6

 8

2) The ‘make’ command is now invoked in the designated CDS build directory. This results in the
following actions:

a) A CDS Perl script (feCodeGen.pl) parses the user .mdl file and creates:

1) Real-time C source code for all of the parts in the user .mdl file, in the sequence
specified by the links between parts.

 2) A Makefile to compile the real-time C code.

3) A text file for use by a second Perl script to generate the EPICS code.

 4) An EPICS code Makefile.

5) A header file, common to both the real-time code and EPICS interface code, for
the communication of data between the two during run-time.

6) Reads/appends inter-process communications signals to an interferometer
common text file.

b) The compiler is invoked on the application C code file, which links in the standard CDS
developed C code modules, and produces a real-time executable.

c) The Perl script for EPICS code generation (fmseq.pl) is invoked, which:

1) Produces an EPICS database file.

2) Produces an executable code object, based on EPICS State Notation Language
(SNL). This code module provides communication between CDS workstations on
the CDS Ethernet and the real-time FE (Front End) code.

3) Produces basic EPICS MEDM (Motif Editor & Display Manager) screens.

4) An EPICS BURT (Back Up and Restore Tool) back-up file for use in saving
EPICS settings.

5) The header for the CDS standard filter module coefficient file.

6) A list of all test points, for use by the GDS (Global Diagnostic System) tools.

7) A basic DAQ (Data Acquisition) file.

8) A list of all EPICS channels for use by the EDCU (EPICS Data Collection Unit).

LIGO LIGO-T080135-v6

 9

Figure 4: Code Generation

SimuLink.mdl
File

CDS_Parts.m
dl

File

CDS
Individual

Part Library
.mdl Files

Realtime C
Source
Code

Common
Header File

Epics .txt
File

EPICS
Makefile

Realtime
Makefile

Skeleton.db

Skeleton.st

Simulink
Graphical

Editor

feCodeGen.pl
Script

Realtime
I/O Library

Realtime
Controller
Software

Realtime
DAQ Library

fmseq.pl
Script

EPICS
SNL
Code

Compiler

Realtime
Executable

EPICS
.db File

EPICS
autoBurt

GDS.par
File

EPICS
Startup File

Basic
MEDM

Screens

Basic .ini
DAQ FIle

Basic
Filter FIle

Compiler

EPICS
Executable EDCU

File

LIGO LIGO-T080135-v6

 10

4.3 Run-time Software
The primary software modules that get executed on the CDS FE computers are shown in the figure
below.

The computer itself is a multi-CPU and/or multi-core machine. The operating system is presently
GPL Gentoo Linux, with a LIGO CDS custom patch for real-time applications. CDS applications
are spread among the various CPU cores:

o CPU core 0: Reserved for the Linux OS and non-realtime critical applications.
o CPU core 1: Reserved for a special case RCG model known as in Input/Output Processor

(IOP).
o CPU core 2 thru n: Real-time user applications built from the RCG to perform system

control. Any core not reserved for a real-time application is made available to the Linux OS
to run non-realtime applications.

Figure 5: Run-time Software Overview

4.3.1 Real-Time
Each application built using the RCG from a Matlab model becomes a self-contained kernel
module. At run time, it is loaded onto the CPU core specified in the model. This code makes use of
the Linux OS facilities to load the code and allow the code to perform its necessary initialization.

LIGO LIGO-T080135-v6

 11

At that point, the code takes full control of the CPU core and that core is removed from the Linux
list of available resources. This prevents that core from being interrupted and/or having other
processes loaded by Linux. Code scheduling in now entirely controlled by the special case IOP
software.

4.3.1.1 IOP
The IOP task is essentially the real-time scheduler for the FE computer. It is triggered by the arrival
of data from the ADC modules, which are in turn slaved to the timing system (65536Hz clocks),
which is locked to the GPS. It is also the conduit for passed data ADC and DAC data between the
PCIe modules and the user applications.
Key functions of the IOP include:

• Initialization and setup all PCIe I/O devices.
• Timing control, including:

o Starting the clocks from the Timing Slave module in the I/O chassis such that
startup begins synchronous with the GPS 1PPS mark.

o Monitoring ADC data ready, caused by a GPS clock cycle, and initiating a real-time
code cycle. This information is passed on to the user applications to synchronously
trigger their code cycles.

• Synchronously reading ADC module data and passing data on to user applications.
• Synchronously writing data to DAC modules, data which is received from user applications.
• Providing real-time network and binary I/O module memory address information to user

applications, such that these applications may communicate directly with those devices.

4.3.1.2 User Application
User applications are those that perform actual control functions. There may be as many user
applications running on an FE computer as there are available cores (total cores – 2). Timing of
these processes is controlled by the IOP and all ADC/DAC data is passed via the IOP to ensure
synchronous read/write. The user applications may run at rates from 2K to 64K.

4.3.2 Non-Real-time
The ‘Non-Real-time’ CPU core(s) runs the following tasks:

• EPICS based network interface. This consists of several components:
o EPICS State Notation Language (SNL) sequencer software. This component is built

and compiled by the RCG for each application. This code is designed to
communicate data between the real-time application and the EPICS database
records.

o EPICS Database Records: Produced by the RCG and loaded at runtime. This EPICS
database becomes the communication mechanism to various EPICS tools used in
operating the system, via EPICS Channel Access (ECA). These tools include such
items as MEDM, used to create and run operator interfaces.

• GDS Test Point Manager (TPM) and Arbitrary Waveform Generator (AWG). For each real-
time application, a copy of awgtpman is started. This program allows for the injection of

LIGO LIGO-T080135-v6

 12

test signals into the real-time application (AWG) and the readout of testpoint data, on
demand, via the aLIGO DAQ system.

• MX Stream: In a distributed system, this software communicates DAQ data from real-time
applications to the aLIGO DAQ system for archival and/or real-time diagnostic use. A
single instance of this program handles this DAQ data for all real-time applications on that
particular computer.

LIGO LIGO-T080135-v6

 13

5 RCG Application Development

5.1 General Rules and Guidelines
Some overview notes before starting an application development process:

1) Only modules shown in the CDS_PARTS.mdl file may be used in the application
development. Simulink native parts that may be used are shown in the CDS_PARTS >>
simLinkParts window. A description of all available parts is given in Section 7.

2) The tool is designed to work with the LIGO CDS standard naming convention, which
includes:

a. All channel names shall be upper case.
b. All channel names shall be of the form A1:SYS-SUBSYS_XXX_YYY where:

i. A1 is the Interferometer (IFO) site and number, such as H1, H2, L1, M1,
etc., followed by a colon (:). The IFO part of the name is set using the
cdsParameters part in the application model (see example in next
section).

ii. SYS is a three letter system designator, such as SUS, ISI, SEI, LSC,
ASC, etc., followed by a dash (-).

iii. SUBSYS and beyond are user definable, up to a maximum channel name
length of 48 characters (limit set by EPICS software). Underscores are
used to further break up the name, with any number of characters in
between.

3) The Matlab file name shall be of the form:
a. IFO name (two characters eg h1.
b. Subsystem name (three characters) eg sus, hpi, isi, etc.
c. Remainder of name is arbitrary, but should provide a further description of the

system to be controlled and must make the name unique for a particular
installation.

d. Examples for aLIGO: h1susetmx, h1susetmy, h1hpiham2. The RCG will pick
off the first two characters as the interferometer (IFO) name and expect the next
three characters to be the system name in order to produce a channel list
consistent with (2) above.

4) Every model shall contain one, and only one, Parameter Block.
5) Every model shall contain at least one ADC part.
6) For ease of duplication, the top level of models should be limited to I/O parts, with other

parts nested in subsystem components. For example, the following model could easily
be duplicated by simply changing the “QUAD1” subsystem block name to “QUAD2”
and change a few parameter block entries to make a new model to perform the same
controls on another suspension system.

LIGO LIGO-T080135-v6

 14

Figure 6: RCG Example

LIGO LIGO-T080135-v6

 15

5.2 Code Compilation and Installation
In a standard aLIGO installation, a particular computer and code build area is set up by the site
system administrator has been set up to compile user models. User models are controlled under the
CDS SVN repository in the userapps area, with each major subsystem assigned a directory within
this area. A new RCG user should contact the site system administrator for this information.

Once set up, the compilation proceeds by:
1) Login into the assigned build computer and cd to the BUILD directory.
2) From the shell prompt, enter ‘make modelname’. This will start the model parsing and

compilation process. The resulting products are:
a. Real-time code source and executable kernel object in the

BUILD/src/fe/modelname directory.
b. EPICS database and compilation code in the BUILD/build/modelnameepics

directory.
c. Complete EPICS database and executable, ready for installation, in the

BUILD/target/modelnameepics directory.
3) After successful compilation, the RCG produced code must be moved into the standard

runtime directories. This is done by entering ‘make install-modelname’. This command
moves the executable software into the standard code startup area ie
/opt/rtcds/site/ifo/target/modelname directory. Included in the install are:

a. A complete backup of the previous code installation into the
/opt/rtcds/site/ifo/target_archive/modelname directory.

b. startmodelname and killmodelname scripts in the /opt/rtcds/site/ifo/scripts area.
These scripts are later used to start and stop the code on the assigned real-time
computer.

c. Autogenerated EPICS MEDM screens are moved into the
/opt/rtcds/site/ifo/medm/modelname directory.

d. Runtime code moved into the /opt/rtcds/site/ifo/modelname directory, including:
i. Real-time executable kernel object into the bin subdirectory.

ii. EPICS related code and startup scripts into the modelnameepics
subdirectory.

iii. Compilation information files into the src subdirectory. This area also
contains a copy of all source code used in this build.

e. Appropriate GDS testpoint information moved into place for use by the DAQ
and GDS software.

f. DAQ channel configuration file moved into /opt/rtcds/site/ifo/chans/daq
directory. This file is used by the real-time code and DAQ system to acquire
data.

g. IIR filter module coefficient definition file moved into /opt/rtcds/site/ifo/chans
directory as MODELNAME.txt. This file is used by the foton tool to store filter
coefficient information, loaded at run time by the real-time code to define its
filter calculations. NOTE: The real-time code will also read FIR filter definitions
from a separate file, if provided by the user ie not auto-generated and foton will

LIGO LIGO-T080135-v6

 16

not produce FIR filter coefficients. Also, the use of FIR filters is limited to
polyphase FIR on systems that run only at 2048 or 4096 samples/sec.

LIGO LIGO-T080135-v6

 17

6 Running the RCG Application

6.1 Automatic Scripts
During the make install process, scripts are generated in the /opt/rtcds/<site>/<ifo>/scripts area for
conveniently starting and stopping the user application. This directory should be put into the user’s
PATH. Note that the user must have super user privileges, as the real-time code needs to be
inserted into the kernel.

To start the RCG processes, type ‘start<sys>’, where <sys> is the name of the model file. This will
result in:

• The EPICS code being started, along with an automatic restoration of the last EPICS
settings (if EPICS Back Up and Restore Tool (BURT) is in the user’s path and a back-up
had been made previously).

• The awgtpman process will be executed to provide GDS support for this system. Note again
that this task will only function properly if the appropriate system parameters have been set
up, as described in the SysAdmin Guide.

• The real-time code thread will be executed and inserted into the kernel of the assigned CPU
core.

To verify that the software is functioning, use the auto generated MEDM screen, described below
in section 6.2. There are also log files produced in the target areas for the EPICS and real-time code
that provide additional diagnostic information.

To stop the software, execute the kill<sys> script, where again <sys> is the model name. This will
kill all tasks associated with this model.

LIGO LIGO-T080135-v6

 18

6.2 Runtime Diagnostics
Once the code is running, a number of diagnostics, in the form of EPICS MEDM screens and log
files, are available to verify proper operation. These diagnostics are described in LIGO-T1100625.

6.3 Additional Run Time Tools

Along with EPICS MEDM, various additional tools are available to support real-time applications
during run-time. These are listed below, with a few described briefly in the following subsections.
For more detailed information, see the appropriate user guides for these applications.

• EPICS Back Up and Restore Tool (BURT): Used to save and restore operator settings.
• EPICS StripTool: Provides strip charting for EPICS channels.
• Dataviewer: Allows users to view DAQ and GDS TP channels, either live or from disk.
• ligoDV: Based on the GEO developed tool, this is a MATLAB tool for reading, plotting

and analyzing DAQ data.
• Diagnostic Test Tool (DTT): Allows for analysis of live or recorded DAQ/TP data,

particularly useful for calculating and plotting transfer functions.
• DaqGui: A graphical user interface for setting up DAQ channels.
• Foton: A GUI for the development of filter coefficients for use by the real-time software.
• Ezca based scripting tools, along with TDS scripting tools. These tools allow for the

addition of automated scripts which may be used to sequence through operator settings
automatically.

LIGO LIGO-T080135-v6

 19

7 RCG Software Parts Library
The CDS_PARTS.mdl file contains symbols for the modules supported by the RCG. Only parts
defined in this library may be used with the RCG, i.e., the RCG does not support the full set of
Simulink parts and some custom parts have been added for specific purposes.

7.1 Top Level
CDS parts top level, shown below, contains:

1) Parameter Block: Required for all models.
2) Additional part subsystem blocks, which group parts by category.

LIGO LIGO-T080135-v6

 20

7.1.1 cdsParameters

7.1.1.1 Function
The purpose of this module is to define basic run-time parameters
needed by the CDS RCG during the build process.

7.1.1.2 Usage
This module must appear once, and only once, at the top level of an
RCG application model, by convention usually in the upper left-hand
corner. It contains six fields which must be edited.

1) site: Somewhat of a misnomer, this field is actually the
designator for the site and interferometer on which the
code will run. This can be a single entry (as shown) or
comma delimited for multiple IFO use, such as
site=H1,H2,L1. In this case, the RCG will generate code
for three IFOs. This field will be used in the EPICS
channel generation as the first two characters of the
channel name. In the example at right, all channel names
within this RCG model will have an M1: prefix. The
following sites are recognized:

a. C (= CalTech or California Institute of Technology)
b. G (= GEO)
c. H (= LHO or LIGO Hanford Observatory)
d. L (= LLO or LIGO Livingston Observatory)
e. M (= MIT or Massachusetts Institute of Technology)
f. S (= Stanford)
g. X (= Offline test systems

2) rate: The sample rate of the generated code must be defined as one of the supported
rates:

a. 64K (65,536 samples/sec)
b. 32K (32,768 samples/sec)
c. 16K (16,384 samples/sec)
d. 4K (4096 samples/sec)
e. 2K (2,048 samples/sec)

3) dcuid: All real-time processes must have a unique (per IFO) dcuid number. This is used
to identify a front end process to the data acquisition system for proper communications
to the framebuilders. Note this same number will be used to produce a GDS node id,
required for operation of GDS tools.

4) host: Name of the computer on which the executable code is to run. This is used by code
startup scripts to verify that this software is intended to run on the computer on which
the startup script is run. This is intended to reduce the chance that an operator may start
code on the wrong computer, which is a particular possibility in a large control system.

5) shmem_daq=1: With RCG version 1.9, and later, this is a required field and setting.
6) Specific_cpu=X, where X is 1, if an IOP task, or >1 for all other applications to run on

the same computer. Note also that no two tasks assigned to the same computer shall
have the same cpu number.

LIGO LIGO-T080135-v6

 21

7) adcMaster=1 or adcSlave=1: Any model that is to be used as an IOP must have
adcMaster=1 set. All user application models must have adcSlave=1 set.

For items 3 and 4 above, the site system administrator should be contacted for proper id numbers if
this code is to operate on an integrated CDS computer.

In addition to the above fields, there are additional optional entries. Each of these entries must be
on its own line, followed by a carriage return:

Ø biquad=1
o Changes the RCG IIR filter algorithm to be switched to use biquad form for filter

calculations instead of Direct Form 2 (see https://dcc.ligo.org/LIGO-G0900928-v1).
This will become the default filter computation method in RCG V2.7 and later.

Ø plant_name
o Plant name. Only used in 40m lab plant simulations.

Ø accum_overflow
o ADC overflow accumulator value.

Ø no_daq
o System is to run without data acquisition capabilities.

Ø no_oversampling
o The present default is to clock all ADC/DAC at 65,536Hz, then do decimation/up-

sample filtering of I/O data to match the desired servo ‘rate’. With this flag set, the
decimation filtering is not performed and it is expected that the timing clock will
match the ‘rate’.

Ø no_dac_interpolation
o As above, except this turns off the up-sample filtering to 65,536Hz.

Ø pciRfm=1
o Front-end will run with PCIE Reflected Memory (RFM) network. This flag is only

set in an IOP model if the computer is to be connected to the CDS PCIe real-time
network. This flag should never be set in a user application.

Ø remote_ipc_port=n
o Remote IPC port value. The value of ‘n’ must be greater than or equal to zero.

The following are for TEST USE ONLY **.

Ø dac_internal_clocking
o The DAC modules will be clocked using internal clock signal instead of external

clock signal from timing system.
Ø diagTest

o This option adds some test code into the system, which allows a test script to:
§ Force ADC channel hopping
§ Force ADC timeouts

LIGO LIGO-T080135-v6

 22

7.1.1.3 Operation
This component is used solely to set up appropriate compiler flags in the RCG. It is not linked as
part of the real-time code.

7.1.1.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v6

 23

7.2 C Code
The RCG provides the capability for application developers to provide their own C Code modules
to be linked in with the real-time code build.

7.2.1 cdsFunctionCall

7.2.1.1 Function
The purpose of this block is to allow users to link their own C code into
the real-time application built by RCG. It is typically used when RCG
does not support desired functions or the desired process is too
complicated to be drawn in a model file.

7.2.1.2 Usage
Process variables are passed into and out of the user C function by
connecting signals at the Mux inputs and Demux outputs. Any number
of inputs or outputs may be connected by adjusting the Mux/Demux
I/O sizes in MATLAB.

- The ‘Function Name’ must be changed to the name of the user
supplied function.

- Block Properties must be modified to point to the code and its

location in the form <inline> <C function name>
<Source file>.

o “inline” must be first entry, used as a flag to the
compiler. This allows the same function to be
used/called several times within a model and be
provided with its own static variables.

o C Function name, as defined in the source code
file.

o Source code file name. This can be either:
§ The complete path to the file, as in the

example at right.
§ Environment variable + filename, for

example $USER_CODE/omc_src.c,
where $USER_CODE has been defined
on the user’s computer to point to the
source code directory.

The user defined C code function must be of the form:

void Function_Name (double *in, int inSize, double *out, int
outSize)

where:

LIGO LIGO-T080135-v6

 24

• *in is a pointer to the input variables. Inputs are passed in the same order as they are
connected to the input Mux.

• inSize indicates the number of parameters being passed to the function.
• *out is a pointer to the output variables. Outputs are passed back to the main code in

the same order as the Demux connections.
• outSize is the number of outputs allowed from the code module.

As a simple example of user code:
void RCG_EXAMPLE(double *in, int inSize, double *out, int outSize)

{

 if (in[2] > in[0]) out[0] = in[1] * -1;

 else out[0] = in[1];

}

7.2.1.3 Operation
At run-time, the code operates as defined by the user provided C code.

7.2.1.4 Associated EPICS Records
None.

7.2.1.5 Auto-Generated MEDM Screens
None.

LIGO LIGO-T080135-v6

 25

7.3 I/O Parts

The I/O parts library contains the drivers for connecting I/O modules to the system.

LIGO LIGO-T080135-v6

 26

7.3.1 ADC

7.3.1.1 Function
The purpose of this module is to define an ADC module. At
Presently, only the General Standards 32 channel, 16 bit
ADC is supported.

7.3.1.2 Usage
Each RCG model must include at least one (1) ADC
block. All models must start with ADC0, followed by
ADC1, and so forth. The “card_num” should then be
changed, as necessary, to point to the ADC module to
connect to. A number of ADC blocks are available in the
CDS_PARTS library for convenience, each with an
embedded bus creator with pre-defined signal names.

The output of this block must be tied to one or more
ADC Selector blocks to pick out and further connect
individual ADC signal channels.

7.3.1.3 Operation
No software is directly produced for this part. Rather, it is used as an indicator of how many and of
what type ADC module(s) the real-time I/O software should expect during operation.

7.3.1.4 Associated EPICS Records
None.

7.3.1.5 Auto-Generated MEDM Screen
For each IOP and user application, a screen is created which shows raw ADC data input values. In
the case of an IOP, this is the raw data received from the ADC module and being passed to user
applications via shared memory. In the case of user applications, this is the data being received via
the shared memory.

LIGO LIGO-T080135-v6

 27

LIGO LIGO-T080135-v6

 28

7.3.2 ADC Selector

7.3.2.1 Function
The function of the ADC Selector is to route selected
channels from an ADC to other RCG model blocks (it
is actually a Simulink Bus Selector part).

7.3.2.2 Usage
- Drag and drop the part into the model

window.
- Connect the input to an ADC part.
- Double click on the ADC selector and

select the desired signals from the Simulink
window.

- Connect the outputs to other RCG parts.

7.3.2.3 Operation
No real-time code is directly generated to support this
part. Rather, it is used by the RCG to produce appropriate signal links.

7.3.2.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 29

7.3.3 DAC Modules

7.3.3.1 Function
The purpose of this block is
to allow signal connections to
be output to DAC output
channels.

7.3.3.2 Usage
Two type of DAC modules are supported:

1) 16 Channel, 16 bit from General
Standards.

2) 8 Channel, 18 bit from General
Standards.

To use:

1) Drag and drop the appropriate model
to the user model.

2) Change the part name to reflect
instance of DAC part within the model.
As with ADC parts, first DAC part
must be named “DAC_0” and then
number ending must increment by one
for each DAC module used.

3) Use the block properties to select the
desired DAC within the I/O chassis to
connect to.

7.3.3.3 Operation

As with the ADC part, this block is only used by the real-time code to route signals to DAC
modules.

7.3.3.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 30

7.3.3.5 Auto-Generated MEDM Screens
This display shows four (4) DAC modules, with two columns each:

1) Left is value being sent (OUT):
a. For IOP, actual value it is sending out to the DAC module. The Red/Green

indicator above this column indicates whether or not the IOP is receiving
synchronous data from a user application to send out to the DAC. This indicator
will go RED and output discontinued if there is not an application running, or
running properly, to send data to the DAC eg user application is stopped.

b. For user app, actual value being sent to shared memory for IOP to relay to DAC
module.

2) Right is overflow counter (OFC) ie number of times per second output value exceeds
+/-32000 counts (16 bit DAC) or 128000 counts (18 bit DAC).

LIGO LIGO-T080135-v6

 31

7.3.4 cdsDio

7.3.4.1 Function
Provide support for Acces 24 bit digital I/O module. The
board manual can be found at PCI-DIO-24DH.PDF

7.3.4.2 Usage
In1 should be an integer, the lower 16 bits representing the bit
pattern to be sent as outputs. Out1 will return an integer, the
lower 8 bits of which represent the inputs to the I/O module.

7.3.4.3 Operation
The software sets the board to use 16 bits as outputs (Port A and
B) and 8 bits as inputs (Port C). Software within the advLigo/src/fe/map.c file provides three
supporting routines:

1) int mapDio(), which registers and initializes the board for use.
2) unsigned int readDio(), which is used to read the binary input bits.
3) void writeDio(), which is used to write to the 16 output bits.

Standard code definitions used in these code modules can be found in the
advLigo/src/include/drv/cdsHardware.h file.

7.3.4.4 Associated EPICS Records
None.

7.3.4.5 Auto-Generated MEDM Screens
None.

LIGO LIGO-T080135-v6

 32

7.3.5 cdsRio and cdsRio1 –

7.3.5.1 Function
Provide support for Acces 8 (cdsRio part) and 16 bit
relay modules (cdsRio1 part). The board manuals can
be found at
PCI-IIRO-8.PDF and PCI-IIRO-16.PDF.

7.3.5.2 Usage
When used, the part name must be modified to
indicate the instance of the card. For example, when
using an 8 bit module (cdsRio), the name of the part
must be RIO_moduleNumber (RIO_0 for first instance of the module type on the bus). Same
needs to be done for the 16 bit part (cdsRio1_0).

The input to both parts is an integer, the lower 8 or 16 bits representing the output bit pattern to the
module.

In the case of the cdsRio part, two outputs are provided. Out1 simply returns the value written at
In1. Out2 will read the 8 bits of the module input register.

Out1 of the cdsRio1 part will return an integer, the lower 16 bits of which represent the 16 input
bits of the module.

7.3.5.3 Operation

7.3.5.4 Associated EPICS Records
None.

7.3.5.5 Auto-Generated MEDM Screens
None.

LIGO LIGO-T080135-v6

 33

7.3.6 cdsIPCx_PCIE, cdsIPCx_RFM, and cdsIPCx_SHMEM

7.3.6.1 Function
The purpose of these modules is to allow inter-process
communications (IPC), via a PCI Express (PCIE) Network or via a
Reflected Memory (RFM) Network for applications running on
different computers or via Shared Memory (SHMEM) for real-
time processes running on the same computer (but on separate
CPU cores). These modules supersede the cdsIPCx module.

7.3.6.2 Usage
The user must change the label to a signal name of the following
format (e.g.): H1:LSC-READOUT, where ‘H1’ is the IFO id. and
the part following the colon is a unique identifier for this particular
Inter-Process Communications (IPCx_<mmm>) module.

7.3.6.3 Operation
A separate IPC parameter file is maintained for each
interferometer (IFO). This file is located in the
/opt/rtcds/<site>/<ifo>/chans/ipc directory and its name must be
<IFO>.ipc (e.g., H1.ipc). This file must include a (five or more lines) data record for each IPCx
module being used. The first line should give the signal name (in all upper case) enclosed in
square brackets. The second line should give the IPC communication mechanism (SHMEM for
Shared Memory, RFM for Reflected Memory Network, or PCIE for PCI Express Network) in the
format ‘ipcType=<communication mechanism>’. The third line should give the sender data rate in
the format ‘ipcRate=<data rate>. The fourth line should give the host name in the format
‘ipcHost=<host name>’. The fifth line should give the the IPCx Number in the format
‘ipcNum=<number>’. This can be followed by one (or several) comment line(s), either beginning
with ‘desc=’ or beginning with a ‘#’ sign (and followed by a comment or descriptive text). The
entries in this file can either be generated manually or be generated automatically (during the make
process). Please note that automatic IPC entry generation is only possible for SENDER modules,
i.e., the make process must be repeated until all modules (both SENDER and RECEIVER type)
have been processed in two or more user models where all included IPCx modules are used as
SENDERs.

A SENDER module is defined by having a signal attached to its input, but NO signal attached to its
outputs (‘Out’ and ‘Err’). A RECEIVER module is defined by having a “Ground” attached to its
input and the output signal attached to some other module (e.g., and EPICS output module, a Filter
module, etc.). The ‘Err’ output is only defined for RECEIVER modules and it can either be
attached to some other module or be left un-attached.

LIGO LIGO-T080135-v6

 34

7.3.6.4 Associated EPICS Records
None.

7.3.6.5 Auto-Generated MEDM Screens
An IPC Status screen is generated for each RCG code model. An example is shown below.
Information includes:

• SIGNAL NAME: Name of the signal being received.
• SEND COMP: Name of the computer from which signal is being sent.
• SENDER MODEL: Name of the control model from which signal is being sent.
• IPC TYPE: Communication mechanism/network.
• STATUS: RED/GREEN indicator of IPC faults. Upon detection of fault, this indicator

remains latched RED until "DIAG RESET" is pushed on GDS_TP screen.
• ERR/SEC: Errors detected per second. If errors are continuing, this field will update every

second. If errors have stopped, number will be latched, as with STATUS above.
• ERR TIME: GPS time of the last error detection. If errors are continuing, this field will

update every second. If errors have stopped, number will be latched, as with STATUS
above.

LIGO LIGO-T080135-v6

 35

7.3.7 cdsCDO32

7.3.7.1 Function
This module provides I/O support for the Contec 32 bit, PCIe binary output module. The
specification sheet can be found at Contec32output.pdf.

7.3.7.2 Usage
In1 should be connected to a 32 bit value to be sent to the module. Out1 will return the value from
the board output register, which should be the same as the input value request.

7.3.7.3 Associated EPICS Records
None.

7.3.7.4 Auto-Generated MEDM Screen
None.

LIGO LIGO-T080135-v6

 36

7.3.8 cdsCDIO1616 and cdsDIO6464

7.3.8.1 Function
Used to connect Contec binary I/O modules.

NOTE: cdsDCIO1616 is designed only for use in an IOP to control the timing system.

7.3.8.2 Usage
The Contec1616 part should only be used in an IOP model. No input/output connections are
required.
Use of the Contec6464 is used differently in an IOP than a user application model:

- In an IOP model, there should be one instance of a Contec6464 part for each card of that
type in the I/O chassis. The NAME field should end in the card instance number, for
example DIO_0, DIO_1, etc.

LIGO LIGO-T080135-v6

 37

- Because of the large number of bits in this module and having to pass all of these as
significant bits to the EPICS interface, each Contec6464 card defined in the IOP is
presented as two 32 bit devices on the user side (lower 32 bit read/write and upper 32
bit read/write registers). Therefore, part naming is different on the user application
model side. For example, if the user model is to address the lower 32 bits of the first
Contec6464 card in the I/O chassis, the NAME field must end in _0. To access the
upper 32 read/write bits, the NAME field must be end in _1.

7.3.8.3 Operation
Values from the card are read once per second.

Outputs are written whenever the value at the input to this part changes.

7.3.8.4 Associated EPICS Records
None.

7.3.8.5 Auto-Generated MEDM Screen
None.

LIGO LIGO-T080135-v6

 38

7.4 Simulink Parts

The RCG supports a number of standard Simulink parts, as shown in the simLinkParts window (at
right). In general, the code generated by the RCG behaves as it would in a Simulink model. Special
cases are described in the following subsections.

LIGO LIGO-T080135-v6

 39

7.4.1 Unit Delay

7.4.1.1 Function
Typically, the RCG produces sequential code that
starts with ADC inputs, performs the required
calculations, and ends with the DAC outputs.
However, there are cases where calculations
performed within the code are to be fed back as
inputs on the next code cycle. In these cases, the
desired feedback signal must be run through a
UnitDelay block to indicate to the RCG that this
signal will be used on the next cycle

7.4.1.2 Usage
An example showing the use of the UnitDelay block is shown at right. If the output of Module 1
were to be tied directly back to the summing junction at the input, it would produce an infinite loop
in the code generator. By placing the UnitDelay in line, the output of Module 1 is sent back to its
input on the next cycle of the software.

7.4.1.3 Operation
Introduces a one cycle delay between input and output.

7.4.1.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 40

7.4.2 Subsystem Part

7.4.2.1 Function
This is a standard MATLAB part for grouping individual parts into a
subsystem.

7.4.2.2 Usage
Any number of parts within the application model may be grouped into a
subsystem using the MATLAB subsystem part. The RCG uses the
assigned name as a prefix to all block names within the subsystem. This
is done in two ways:

Ø In the top example at right, if it is at the top level of the model, all
signal names for blocks within ASC would become
SITE:ModelFileName-ASC_xxxx. So, if the model file name is
omc.mdl and site defined as L1, names for parts within the ASC
subsystem part would become L1:OMC-ASC_xxxx.

Ø In the lower example (LSC), a tag has been added (using the Block Properties Window)
“top_names”. This is a flag to the RCG to use the name of this subsystem to replace the
model file name. Using the same example as above, all parts within this subsystem would
be prefixed L1:LSC-xxxx.

The use of the ‘top_names’ subsystem part tags provides a couple of useful features:
1) A single model may contain parts with multiple SYS names in the LIGO naming

convention. As seen in the example above, SYS is OMC (model name) for all ASC
subsystem parts (L1:OMC-ASC_), but L1:LSC- for all LSC subsystem parts. In the
same manner, ASC could also be defined ‘top_names’ and the results would be
L1:ASC- and L1:LSC-.

2) Multiple models may contain the same SYS name. This allows models running on
different processors to use the same SYS identifier in the signal names.

Warning: Since the name of all subsystems marked with the ‘top_names’ tag are used to
replace the three character SYS part in the LIGO naming convention, this name must be 3
characters in length, no more, no less!
Warning: Subsystems with the ‘top_names’ tag may only appear at the highest level of the
model, i.e., they may not be nested within other subsystems.

7.4.2.3 Operation
The subsystem part is only used by the RCG to produce appropriate signal names.

7.4.2.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 41

7.4.3 MathFunction

7.4.3.1 Function
This module is used to include one of several mathematical functions in a
model.

7.4.3.2 Usage
Currently, the following mathematical functions are supported:

- Square of input value.
- Square root of input value.
- Reciprocal of input value.
- Modulo of two input values.

7.4.3.3 Operation
When using this module, place it in the model window and double click on the icon. This brings
up a Function Block Parameters window. Click on the down arrow at the right end of the
“Function:” line. This brings up a list of mathematical functions. Click on one of the supported
functions (square, sqrt, reciprocal, or mod), followed by clicking OK. Please note that clicking on
any of the non-supported functions (exp, log, 10^u, log10, magnitude^2, pow, conj, hypot, rem,
transpose, or hermitian) will result in a fatal error when attempting to make (compile) the model.
The square function will calculate the square of any input (double precision) value and pass it on as
the output value (in double precision).
The square root function will calculate the square root of any positive (double precision) value and
pass it on as the output value (in double precision). If the input value is negative or equal to zero,
the output value will be set to zero.

The reciprocal function will calculate the inverse of any input (double precision) value and pass it
on as the output value (in double precision), unless the input value is equal to zero in which case
the output value will be set to zero.
The mod (modulo) function takes two input values, In1 and In2. Since the modulo function only
operates on integer values, the output value (Out1, in double precision) is calculated as:

 Out1 = (double) ((int) In1%(int) In2)

except if the In2 value is equal to zero in which case the output value will be set to zero.

7.4.3.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 42

7.4.3.5 Code Examples

The MathFunction module generates the following C code:

Square:

double mathfunction;

// MATH FUNCTION - SQUARE

mathfunction = <In1> * <In1>;

<Out1> = mathfunction;

Square root:

double mathfunction;

// MATH FUNCTION - SQUARE ROOT

if (<In1> > 0.0) {
 mathfunction = lsqrt(<In1>);

}
else {

 mathfunction = 0.0;
}

<Out1> = mathfunction;

LIGO LIGO-T080135-v6

 43

Reciprocal:

double mathfunction;

// MATH FUNCTION - RECIPROCAL

if (<In1> != 0.0) {

 mathfunction = 1.0/<In1>;

}

else {

 mathfunction = 0.0;

}

<Out1> = mathfunction;

Modulo:

double mathfunction;

// MATH FUNCTION - MODULO

if ((int) <In2> != 0) {

 mathfunction = (double) ((int) <In1>%(int) <In2>);

}

else {

 mathfunction = 0.0;

}

<Out1> = mathfunction;

LIGO LIGO-T080135-v6

 44

7.4.4 In-line (math) function

7.4.4.1 Function
This module is used to include a user defined in-line (math)
function in a model.

7.4.4.2 Usage
The module supports a number of different types of mathematical
functions:

- Polynomials.
- Non-polynomial combinations of variables and

constants.
- Sines and cosines.
- Floating-point absolute values.
- log10.
- Square root.
- Combinations of the above.

7.4.4.3 Operation
When using this module,
place it in the model
window and connect the
desired number of input
variables via a Mux and
one output that will pass on
the resulting value from the
(user defined) function.
Double click on the Fcn
icon and enter the desired
function in the Expression
field. The first (top) input
variable to the Mux is
defined as ‘u[1]’, the
second input variable (from
the top) is defined as
‘u[2]’, etc. (please note the
square brackets). The user
defined function can
consist of any combination
of terms made up of
constants multiplied with
variables, sine and/or
cosine functions, floating-
point absolute values, log10 values, and/or square roots.

LIGO LIGO-T080135-v6

 45

A (ficticious) example could be as follows (see next page):

LIGO LIGO-T080135-v6

 46

Once the function has
been defined, click on
OK and the function
will be incorporated
into the model. Please
note that it is up to the
user to ensure the
validity of entered
functions and values,
e.g., only positive
values for logarithms,
no negative values for
square roots, no
divisions by zero, etc.
Also, sine and cosine
values should, by default, be given in radians. If angles in degrees are desired, replace ‘sin’ with
‘sindeg’ and ‘cos’ with ‘cosdeg’.

In order to include polynomials, a special technique must be used. This is best explained with an
example. Let’s assume the following polynomial should be used:

 Out = 2.0 * In1 – 3.5 * In2 ** 2 + 5.0 * In3 ** 3

This would require a
Mux with six inputs:

In other words, the first
input variable (‘In1’) is
connected to the first
input to the Mux
(‘u[1]’), the second
input variable (‘In2’) is
connected to the second
and third inputs to the
Mux (and will be
referred to as ‘u[2]’ and
‘u[3]’ in the function
expression), and the
third input variable
(‘In3’) is connected to
the fourth, fifth, and
sixth inputs to the Mux
(referred to as ‘u[4]’,

LIGO LIGO-T080135-v6

 47

‘u[5]’, and ‘u[6]’, respectively).

7.4.4.4

Associated EPICS Records

None.

7.4.4.5 Code Examples
The in-line (math) function generates the following C code:

(This first example is identical to the first example in section 7.3.4.3.)

double fcn;
double conv = 3.141592654/180.0;

double lcos1, lsin1;

double mux[4];

// MUX
mux[0]= <In1[0]>;

mux[1]= <In1[1]>;
mux[2]= <In1[2]>;

mux[3]= <In1[3]>;

// Inline Function: Fcn
mux[2] *= conv;

sincos(mux[2], &lsin1, &lcos1);
fcn = 3.0 * mux[0] - 2.0/mux[1] + lsin1 * lsqrt(lfabs(mux[3]));

LIGO LIGO-T080135-v6

 48

<Out1> = fcn;

LIGO LIGO-T080135-v6

 49

(This example is identical to the second example in section 7.3.4.3.)

double fcn;

double mux[6];

// MUX
mux[0]= <In1[0]>;

mux[1]= <In1[1]>;
mux[2]= <In1[2]>;

mux[3]= <In1[3]>;
mux[4]= <In1[4]>;

mux[5]= <In1[5]>;

// Inline Function: Fcn
fcn = 2.0 * mux[0] - 3.5 * mux[1] * mux[2] + 5.0 * mux[3] * mux[4] * mux[5];

<Out1> = fcn;

LIGO LIGO-T080135-v6

 50

7.4.5 From/Goto

7.4.5.1 Function
Connect signals between components in a model without the use of
lines ie help provide a cleaner diagram.

7.4.5.2 Usage
GOTO part must be defined with a unique name. To connect that signal
to a FROM, the name of the GOTO must be provided.

7.4.5.3 Operation
Only used by RCG for signal routing in compilation.

LIGO LIGO-T080135-v6

 51

7.4.6 Bus Creator / Bus Selector

7.4.6.1 Function
Support for the Matlab standard bus creator/selector parts has been added
in version 2.x of the RCG. It’s primary function is to allow signal
connections between various model components with fewer line drawings
required, which in turn, provides for a cleaner model appearance.

7.4.6.2 Usage
1) Place the part in the model.
2) Double click the part, which brings up a dialog box.
3) Enter the number of inputs or outputs desired.
4) Connect inputs/outputs to other parts within the model.

LIGO LIGO-T080135-v6

 52

7.5 EPICS Parts

EPICS parts are used to input/output signals from/to the real-time application and EPICS. Some are
used primarily to communicate with operator displays, while others are intended to allow multiple
FE computers to communicate with each other using EPICS Channel Access (CA) via Ethernet
connections.

LIGO LIGO-T080135-v6

 53

7.5.1 cdsEpicsOutput/cdsEpicsIn

7.5.1.1 Function
The cdsEpicsOutput module is used to write data into an EPICS channel
and the cdsEpicsIn module reads in data from an EPICS channel. NOTE:
The resulting EPICS channels are built on and communicate with EPICS
on the local computer. To access EPICS channels on other computers,
use the cdsEzCaRead/Write modules.

7.5.1.2 Usage
For the EpicsOutput, connect the signal to be sent to EPICS via the ‘In1’
connection. The ‘Out1’ connection may be used to continue the signal
into another RCG part.

For EpicsInput, use the ‘Out1’ connection to pick up the EPICS data.
For both, modify the name to the desired EPICS channel name.

7.5.1.3 Operation
The RCG will produce local EPICS records with the assigned names and the real-time software
will communicate data to/from the EPICS records via shared memory.

7.5.1.4 Associated EPICS Records
A single ‘ai’ EPICS record will be produced using the assigned name.

7.5.1.5 Setting EPICS Database Fields
EPICS database records have a number of parameters, or fields, which may be set as part of the
database record definition file. For each model compiled with the RCG, a corresponding EPICS
database file is created for runtime support.
By default, the RCG only sets the precision of EPICS input and output records in the database file
(PREC=3), which provides 3 decimal places of precision when viewed on an MEDM screen.
The RCG does allow users to define parameter fields for the EPICS Input and Output part types
within the user model, as described below. A complete list of parameters supported by EPICS AO
and AI record types can be found in the EPICS user guide online.

To define these EPICS fields:

• Place an EPICS Input or Output part into the model and provide a name for the part.
• Open the block properties window for the part. By default, the Description field provides

some basic info on the part (Figure 1 below).

LIGO LIGO-T080135-v6

 54

• Delete the provided Description information. (While RCG will ignore this default
information, it is probably best to delete it for ease of reading later).

• Add EPICS database parameter information, as shown in Figure 2 below, in the Description
area.

o Each entry must be of the form ‘field(PARAM,”VALUE”)’, where:
§ PARAM = The EPICS parameter definition, such as PREC, HIGH, LOW,

etc. The most commonly used are:
• PREC (Precision), number of decimal places returned to MEDM

screens for viewing. Note that this does not affect the calculation
precision ie all EPICS values are treated as doubles in the runtime
code.

• HOPR (High Operating Range)
• LOPR (Low Operating Range)
• Alarm Severities: HHSV, HSV,LSV,LLSV.
• Alarm Setpoints: HIHI, HIGH, LOW, LOLO

§ VALUE = Desired default setting, which must be in quotes.
• Alarm Severities are limited to the following:

o MAJOR
o MINOR
o INVALID
o NO_ALARM (Default, if not specified)

LIGO LIGO-T080135-v6

 55

• Other entries listed above are all taken as floating point numbers.
• Field definition entries may be separated by white space or new lines, or both, as shown in

the example below.

WARNING: Presently, the RCG does not perform any checking of the validity of user definitions
provided with the field entries. As long as the entry is of the right form, the RCG will add it to the
database definition file. Therefore, it is the user responsibility to ensure entries are correct. Entry
error checking is presently being worked for RCG release V2.7 and later.

LIGO LIGO-T080135-v6

 56

7.5.2 cdsEpicsBinIn

7.5.2.1 Function
This part is used to interface a standard EPICS binary input record into
the real-time application.

7.5.2.2 Usage
Connect the output to where in EPICS value is to be passed.

7.5.2.3 Operation
Out1 = EPICS value placed in shared memory.

7.5.2.4 Associated EPICS Records
A single ‘bi’ EPICS record will be produced using the assigned name.

LIGO LIGO-T080135-v6

 57

7.5.3 cdsRemoteIntlk

7.5.3.1 Function

7.5.3.2 Usage

7.5.3.3 Operation

7.5.3.4 Associated EPICS Records
A single ‘ai’ EPICS record will be produced using the assigned name.

LIGO LIGO-T080135-v6

 58

7.5.4 cdsEzCaRead/cdsEzCaWrite

7.5.4.1 Function
These blocks are used to communicate data, via EPICS channel access,
between real-time code running on separate computers.

7.5.4.2 Usage
Insert the block into the model and modify the name to be the exact name
of the remote EPICS channel to be accessed. This must be the full name,
in LIGO standard format, including IFO:SYS-.

7.5.4.3 Operation
The EPICS sequencer which supports the real-time code will have
EzCaRead/EzCaWrite commands added to obtain/set the desired values
via the Ethernet. Values are passed out of/into the real-time code via
shared memory.

7.5.4.4 Associated EPICS Records
Each of these two modules will produce a double precision floating-point EPICS channel access
record.

7.5.4.5 Code Examples

LIGO LIGO-T080135-v6

 59

7.5.5 EPICS Momentary

7.5.5.1 Function
The cdsEpicsMomentary module is used to flip one bi

7.5.5.2 Usage
…

7.5.5.3 Operation

7.5.5.4 Associated EPICS Records
A momentary ‘ai’ EPICS record switch will be produced using the name
assigned to this block.

LIGO LIGO-T080135-v6

 60

7.6 Osc/Phase

The Osc/Phase section groups together
two different phase rotators, a software
oscillator, and a saturation count
module.

LIGO LIGO-T080135-v6

 61

7.6.1 cdsPhase

7.6.1.1 Function
This block replicates an I&Q phase rotator used in the LIGO LSC control
software.

7.6.1.2 Usage
This module is used to change the phase of the input values by a specific
phase angle.

7.6.1.3 Operation
The EPICS code reads in the user variable and calculates the sine and
cosine for this entered value. These two values (sinPhase, cosPhase) are then passed to the real-
time software, which performs the following calculations:

Out1 = In1 * cosPhase + In2 * sinPhase
Out2 = In2 * cosPhase – In1 * sinPhase

7.6.1.4 Associated EPICS Records
A single ‘ai’ EPICS record is produced to support this module. Entries in this record are in units of
degrees.

LIGO LIGO-T080135-v6

 62

7.6.2 cdsWfsPhase

7.6.2.1 Function

7.6.2.2 Usage

7.6.2.3 Operation

7.6.2.4 Associated EPICS Records
A single ‘ai’ EPICS record is produced to support this module. Entries in
this record are in units of degrees.

LIGO LIGO-T080135-v6

 63

7.6.3 cdsOsc

7.6.3.1 Function
This block is a software oscillator, developed to support dither locking where two signals with 90
degrees phase rotation are required.

7.6.3.2 Usage
This module is used to produce a sine wave at a
specific frequency.

NOTE: This part still requires a GROUND at its input
to compile properly (bug yet to be fixed).

7.6.3.3 Operation
The three outputs are a sine wave at the user
requested frequency. The 'CLK' and 'SIN' outputs are
in phase with each other and the 'COS' output is 90
degrees out of phase. The block internal sine wave varies in amplitude from -1 to +1. The three
outputs are then multiplied by their individual gain settings to produce the 'CLK', 'SIN', and 'COS'
outputs.
When changing a gain, if the TRAMP channel is set to 0 (or below), it will instantly change the
gain. A positive TRAMP value will cause the gain to perform a spline ramp ot the new gain over
the a number of seconds equal to the value.

When changing frequency, if the TRAMP channel is set to 0 (or below), it will change frequency at
the next GPS second (as clocked by the front end). It will have an initial phase of 0. If the TRAMP
channel is positive, it will immediately start ramping to the new frequency over a number of
seconds equal to the value. It will have a phase such that at the next GPS second after it finishes
ramping it will have a phase of 0.

7.6.3.4 Associated EPICS Records
Four EPICS records are produced for user entries:

_FREQ: Desired frequency in Hz

_CLKGAIN: CLK gain setting
_SINGAIN: SIN gain setting

_COSGAIN: COS gain setting
_TRAMP: Time to do gain and frequency ramping, in seconds.

LIGO LIGO-T080135-v6

 64

7.6.4 cdsSatCount

7.6.4.1 Function
The purpose of this block is to count the number of times a channel
has saturated since the last time the counter was reset.

7.6.4.2 Usage
This block is used to monitor a data channel in order to keep track
of whether or not the input datum is greater than or equal to a
saturation threshold value and also keep counts of how often this
happens.

7.6.4.3 Operation
Both the TotalCount counter and the RunningCount counter are
zeroed on initialization.

The TotalCount counter will keep incrementing (by one per cycle) as long as the absolute value of
the channel (input) datum is greater than or equal to the TRIGGER (EPICS input) threshold value.
The TotalCount counter can only be reset (to zero) by entering a one in the RESET (EPICS input)
switch.

The RunningCount counter will keep incrementing (by one per cycle) as long as the absolute value
of the channel (input) datum is greater than or equal to the TRIGGER (EPICS input) threshold
value. This counter will be reset (to zero) when the channel (input) datum becomes less than the
TRIGGER (EPICS input) threshold value or, conversely, when the TRIGGER (EPICS input)
threshold value is modified to a value greater than the channel (input) datum.

7.6.4.4 Associated EPICS Records
Two EPICS records are produced for user inputs:

_RESET: This is a momentary RESET switch that zeroes the TotalCount output (when set to

one; initial default value is equal to zero and the RESET switch returns to zero after
the TotalCount output has been zeroed).

_TRIGGER: The TotalCount and RunningCount counters (and outputs) will increment as long as

the absolute value of the channel (input) datum is greater than or equal to the
TRIGGER threshold value (initial default TRIGGER value is equal to zero)

LIGO LIGO-T080135-v6

 65

7.6.5 cdsNoise

LIGO LIGO-T080135-v6

 66

7.7 Filters
The key servo control functions provided by the RCG are in the form of digital filters, as shown in
the Filter Parts section.

For most applications, the IIR Filter Module is used. The PolyPhase FIR Filter is designed only for
the Ligo HEPI (Hydraulic External Pre-Isolator) controls application and is not intended for
general use.

LIGO LIGO-T080135-v6

 67

7.7.1 CDS Standard IIR Filter Module

7.7.1.1 Function
All CDS FE processors use digital Infinite Impulse Response (IIR) filters to
perform a majority of their signal conditioning and control algorithm tasks.
In order to facilitate their incorporation into FE software and to provide a
standard set of DAQ and diagnostic capabilities, the Standard Filter Module
(SFM) was developed.

7.7.1.2 Usage
Desired input signal is connected at ‘In1’ and output at ‘Out1’. ‘IIR Filter
Module’ name tag is replaced with user name.

7.7.1.3 Operation
To help illustrate the operation of the LIGO CDS Standard Filter Module (SFM), an operator
MEDM screen shot is shown below. Signal flow is from Input (left) to Output (right).

7.7.1.3.1 Input Section
The SFM input is as defined by the user in the MATLAB Simulink model. At run-time, this signal
is available to EPICS (_INMON) and is available to diagnostic tools as a test point (_IN1) at the

Input

Input
On/Off

Input
DC

Offset

Offset
On/Off

AWG
Input

IIR Filters
(10)

Filter Name

Test Point
(IN1)

Test Point
(IN2)

Clear
Filter

Histories

Load
New

Coeffs

Output
Gain

Output
Limit

Setting

Limiter
On/Off

Test Point
(OUT)

Output
On/Off

16Hz
Decimation

On/Off

Hold Output
Value
On/Off

Gain
Ramp
Time

LIGO LIGO-T080135-v6

 68

sampling rate of the software. This signal may continue on or be set to zero at this point by use of
the Input On/Off switch.

Each SFM also has an excitation signal input available from the Arbitrary Waveform Generator
(AWG). This signal is available for EPICS (_EXCMON). The AWG signal is summed with the
input signal, and available to diagnostic tools as a second test point (_IN2).

To this resulting signal, a DC offset may be added (Input DC Offset) and this offset may be turned
on/off via the Offset on/off switch. The sum of the input, AWG and offset signal is then fed to the
IIR filtering section.

7.7.1.3.2 F
iltering
Section

The
filter

section
may

have up
to 10

IIR
filters

defined,
with up
to 10

Second Order Sections (SOS) each. The software allows for any/all of these filters to be redefined
“on the fly”, i.e., an FE process does not need to be rebooted, restarted or otherwise interrupted
from its tasks during reconfiguration.

Each filter within an SFM may be individually turned on/off during operation. Various types of
input/output switching may be defined for each individual filter.

The filter

LIGO LIGO-T080135-v6

 69

coefficients and switching properties are defined in a text file produced by the foton tool. Filter
coefficient files used by the SFM must be located in the /cvs/cds/<site>/chans directory. This file
contains:

• The names of all SFMs defined within an FE processor. Each SFM within a front end is given a unique
name in the EPICS sequencer software used to download the SFM coefficients to the front end. These
names must be provided in this file for use by foton. This is done by listing the SFM names after the
keyword ‘MODULES’. As an example, from the LSC FE file:
• # MODULES DARM MICH PRC CARM MICH_CORR
• # MODULES BS RM AS1_I

• A line (or lines) for each filter within an SFM, describing filter attributes and coefficients. These lines
must contain the information listed in the following table, in the exact order given in the table.

Field Description

SFM Name The EPICS name of the filter module to which the remaining parameters are to
apply.

Filter
Number

The number of the filter (0-9) within the given SFM to which the remaining
parameters are to apply.

Filter
Switching

As previously mentioned, individual filters may have different switching
capabilities set. This two digit number describes how the filter is to switch on/off.
This number is calculated by input_switch_type x 10 + output_switch_type.
The supported values for input switching are:

• 0 – Input is always applied to filter.
• 1 – Input switch will switch with output switch. When filter output switch goes to

‘OFF’, all filter history variables will be set to zero.

Four types of output switching are supported. These are:
• 0 – Immediate. The output will switch on or off as soon as commanded.
• 1 – Ramp: The output will ramp up over the number of cycles defined by the RAMP

field.
• 2 – Input Crossing: The output will switch when the filter input and output are within

a given value of each other. This value is contained in the RAMP field.
• 3 – Zero Crossing: The output will switch when the filter input crosses zero.

Number of
SOS

This field contains the number of Second Order Sections in this filter.

RAMP The contents of this field are dependent on the Filter Switching type.

Timeout For type 2 and 3 filter output switching (input and zero crossing), a time-out value
must be provided (in FE cycles). If the output switching requirements are not met
within this number of cycles, the output will switch anyway.

Filter Name This name will be printed to the EPICS displays which have that filter. It is
basically a comment field.

Filter Gain Overall gain term of the filter.

Filter The coefficients which describe the filter design.

LIGO LIGO-T080135-v6

 70

Coefficients

A skeleton coefficient file is produced the first time ‘make-install’ is invoked after compiling a
model file. Thereafter, whenever ‘make-install’ is executed, the install process will make a back-up
of the present coefficient file, then patch the present file with any new filter modules or renaming
of filter modules.

7.7.1.3.3 Output Section
The following figure shows the output section. The output section provides for:

• A variable gain to be applied to the filter section output. This gain may be ramped over time from one
setting to another by setting the gain ramp time.

• This output to be limited to a selected value (the output limiter can be switched on or off).
• A GDS TP. This TP is always on, regardless of whether the output is turned on or off.
• Ability to turn output on or off.
• A decimation filter to provide a 16Hz output (typically used by EPICS; the decimation filter can be

switched on or off).
• A “hold” output feature. When enabled, the output of the SFM will be held to its present value.

LIGO LIGO-T080135-v6

 71

Associated EPICS Records
For each filter module, the following EPICS records are produced, with the filter name as the
prefix:

_INMON = Filter module input value (RO)
_EXCMON = Filter module excitation signal input value (RO)

_OFFSET = User settable offset value (W/R)
_GAIN = Filter module output gain (W/R)

_TRAMP = Gain ramping time, in seconds (W/R)
_LIMIT = User defined filter module output limit (W/R)

_OUTMON = Output test-point value (RO)
_OUT16 = Filter module output, decimation filtered to 16Hz (RO)

_OUTPUT = Filter module output value (RO)
_SW1 = Momentary filter switch selections, lower 16 bits (WO)

_SW2 = Momentary filter switch selections, upper 16 bits (WO)
_RSET = Momentary clear filter history switch (WO)

_SW1R = Filter switch read-backs, lower 16 bits (RO)
_SW2R = Filter switch read-backs, upper 16 bits (RO)

_SW1S = Saved filter switch selections, lower 16 bits (RO)
_SW2S = Saved filter switch selections, upper 16 bits (RO)

_Name00 thru _Name09 = Individual filter names, as defined in the coefficient file (RO)

7.7.1.4 Auto-Generated MEDM Screens
For each IIR filter module defined in the user model, a standard MEDM screen will be produced as
part of the build process. An example screen is shown below.

LIGO LIGO-T080135-v6

 72

This screen contains the following EPICS I/O:
• INMON and Input On/Off: Displays the filter module input value. The following on/off

switch applies/removes the input signal from the filter bank.
• EXCMON: The value of an excitation input. This field is typically 0.0 except when a GDS

excitation signal is being applied.
• OFFSET value and Offset On/Off switch: Allows the user to add a DC offset to the input

prior to entering the filter bank. The indicator below the offset value will be green if turned
on and red if turned off.

• Filter module names and selections: The 10 available filters per bank appear to the right of
the offset value field. Names, as defined using the foton tool, appear above each filter
selection button. The filter selection buttons are used to turn the filters on/off. Below each
filter button are two status indicator block. The left box indicates if a filter has been selected
to be turned on (green) or off (red). The right box indicates when the real-time code has
actually turned on (green) the filter or turned off (red) the filter.

• Gain and Ramping: The signal out from the filter bank may be multiplied by the gain
setting. To avoid a sudden excursion of the signal when a new gain is selected, this gain
may be ramped over the number of seconds entered into the Ramp Time setting. This
ramping is performed by the real-time code. When the real-time code gain is not the same
as the entered gain, i.e., during the ramping, the background of the triangle surrounding the
gain setting will be yellow. Once the ramping is complete, the triangle will become black.

• LIMIT setting and on/off switch: The output of the filter bank may be limited by the user by
setting the limit field and turning the limit switch on (green indicator). The real-time code
will then limit the output to +/- the limit setting.

• Output On/Off and OUTPUT monitor: Turns the output on/off, with the filter bank output
value displayed in the OUTPUT field. Note that the OUTMON (output test-point) will still
have the output of the filter bank.

• DECIMATION On/Off switch and OUT16 field: The real-time code decimates the filter
bank output to 16Hz, the resulting value being placed in the OUT16 field.

LIGO LIGO-T080135-v6

 73

• HOLD OUTPUT: When selected, the output of the filter module is held to the present value
(seldom used).

• CLEAR HISTORY: When selected, clears the history of all filters within the filter module.
This is typically used when integrators have been defined and have rung up to a large value.

• LOAD COEFFICIENTS: Loads new filter coefficients and reloads existing filter
coefficients for this filter module.

LIGO LIGO-T080135-v6

 74

7.7.2 IIR Filter Module with Control

7.7.2.1 Function
This module is a standard filter module, with the addition that the
SFM switch and filter status are output and a second input has been
added.

7.7.2.2 Usage
The additional input must be connected to ground or some other
module (e.g., cdsEpicsIn) for the code to compile. The additional
control output is used to provide some downstream control or
decision making based on the switch settings within the SFM.
Typically this output is tied to a bitwise operator to select the
desired bits, often to then go to binary output modules to switch relays based on filters being
on/off.

7.7.2.3 Operation
In addition to the SFM operation, this block outputs the internal switch information in the form of a
32-bit integer. The bits of this integer are defined in the following table.

Bit Name Description

0 Coeff Reset This is a momentary bit. When set, the EPICS CPU will read in new
SFM coeffs from file and send this information to the FE via the RFM
network. The FE SFM will read and load new filter coefficients from
RFM.

1 Master Reset Momentary; when set, SFM will reset all filter history buffers.

2 Input On/Off Enables/disables signal input to SFM.

3 Offset Switch Enables/disables application of SFM input offset value.

Even
bits 4-
22

Filter
Request

Set to one when an SFM filter is requested ON, or zero when SFM filter
requested OFF (bit 4 is associated with filter module 1, bit 6 with filter
module 2, etc.).

Odd
bits 5-
23

Filter Status Set to one by SFM when an SFM filter is ON, or zero when SFM filter is
OFF (bit 5 is associated with filter module 1, bit 7 with filter module 2,
etc.).

24 Limiter
Switch

Enables/disables application of SFM output limit value.

25 Decimation
Switch

Enables/Disables application of decimation filter to SFM OUT16
calculation.

LIGO LIGO-T080135-v6

 75

26 Output
Switch

Enables/Disables SFM output (SFM OUT and OUT16 variables)

27 Hold Output If (!bit 26 && bit27), SFM OUT will be held at last value.

28 Gain Ramp If set, gain of filter module != requested gain. This bit is set when SFM
gain is ramping to a new gain request.

7.7.2.4 Associated EPICS Records

Same as cdsFilt module.

7.7.2.5 Auto-Generated MEDM Screens
Same as those provided for cdsFilt part.

LIGO LIGO-T080135-v6

 76

7.7.3 IIR Filter Module with Control 2

7.7.3.1 Function
This part is similar in function to the IIR Filter Module with Control, described in the previous
section. However, it has additional inputs/outputs defined to control more settings from within a
user control model. The three new inputs allow for setting of the FMC2 offset, gain and ramp time
from within the user control model. The new outputs provide information on the present settings
for these three filter module parameters, regardless of whether or not a value is under local or
remote control.

7.7.3.2 Detailed Description

The bit patterns for the Cin and Mask inputs and Ctrl output are also changed for the FMC2 part.
These are all now 16bit words, as defined in the following table. Note that “Local Control” is
defined as setpoint control from within the real-time code (user model) and “Remote Control” is
defined as control from outside of the real-time code via EPICS Channel Access (ECA), such as
from operator MEDM screens, EPICS scripts, etc.

Table 1: Cin and MASK Input and Ctrl Output Word Bit Definitions

Bit Cin
Setting Request
0 = Off, 1 = On

MASK
Local/Remote Control Set
0 = Remote, 1 = Local

Ctrl
Switch Setting Readout
0 = Off, 1 = On

LIGO LIGO-T080135-v6

 77

0 Filter 1 on/off Filter 1 L/R control Filter 1 on/off

1 Filter 2 on/off Filter 2 L/R control Filter 2 on/off

2 Filter 3 on/off Filter 3 L/R control Filter 3 on/off

3 Filter 4 on/off Filter 4 L/R control Filter 4 on/off

4 Filter 5 on/off Filter 5 L/R control Filter 5 on/off

5 Filter 6 on/off Filter 6 L/R control Filter 6 on/off

6 Filter 7 on/off Filter 7 L/R control Filter 7 on/off

7 Filter 8 on/off Filter 8 L/R control Filter 8 on/off

8 Filter 9 on/off Filter 9 L/R control Filter 9 on/off

9 Filter 10 on/off Filter 10 L/R control Filter 10 on/off

10 FM Input Switch on/off FM Input Switch L/R FM Input Switch on/off

11 FM Offset Switch on/off FM Offset Switch L/R FM Offset Switch on/off

12 FM Output Switch on/off FM Output Switch L/R FM Output Switch on/off

13 Not Used FM Offset Setting L/R FM Offset Setting L/R

14 Not Used FM Gain Setting L/R FM Gain Setting L/R

15 Not Used FM Ramp Time L/R FM Ramp Time L/R

It should be noted that the Cin input only requires, and RCG code only recognizes, bits 0 through
12. Bits 13 through 15 appear as part of the Ctrl output as a reflection of the upper 3 bits in the
MASK input.

7.7.3.3 Usage
Local control of FMC2 settings is enabled/disabled via the MASK input. If the MASK input is zero
(0), then all settings are controlled remotely. In this case, the part operates in a manner similar to
the standard filter module part, with all settings coming via ECA and EPICS data base records. The
values presented at the Cin, Offset, Gain and Ramp inputs are ignored.

Setting a bit to one (1) at the MASK input changes control of the associated parameter to local
control. The Cin word is now used to select switch settings, and Gain, Offset and Ramp inputs are
used to set those parameters (if associated MASK bit set to one (1)). Rather than being read from
EPICS (remote control), the selected parameter settings at the FMC2 input are now sent back to
EPICS. Since the EPICS records are updated with the local control settings, switching back to
remote control will not change the present settings of the FMC2 ie FMC2 will receive the same
settings as last written via local control prior to the switch over.
Whether a parameter is in local or remote control, the Ctrl and Offset, Gain and Ramp outputs
always reflect the present FMC2 settings. These outputs are provided to allow user code to
determine present state prior to switching to local control and/or verification of settings while in
local control.

LIGO LIGO-T080135-v6

 78

It should be noted that the lower 10 bits of the Ctrl output reflect the present on/off state of the
individual filters, not the requested state. Therefore, depending on filter design, there may be a
delay between on/off request at the Cin input and the associated on/off bit setting in the Ctrl output
word. For example, if a filter is designed, using foton, to switch only on zero crossing, there may
be a delay between switching request and actual filter turn on/off.

7.7.3.4 EPICS Database Records
Beyond those provided for standard IIR filter modules, an additional record is provided to reflect
the MASK input setting. This record is of the form FILTER_MODULE_NAME_MASK.

7.7.3.5 Auto-Generated MEDM Screen
The RCG produces a screen that is similar to that produced for the standard IIR filter part. An
added feature is indication of which filter module parameters are presently under control by the RT
code model. Near each setting on the screen, an LC (local control) will appear when under RT code
control.

LIGO LIGO-T080135-v6

 79

7.7.4 PolyPhase FIR Filter

7.7.4.1 Function
This module allows the use of Polyphase FIR (Finite Impulse Response)
filters, typically used in seismic isolation system controls.

7.7.4.2 Usage
This part is placed into the model and functions exactly as the cdsFilter part.
To load an FIR at runtime, a separate coefficient file must be provided for
FIR filters (/cvs/cds/site/chans/modelName.fir).
N.B. The sample rate must be either 2K or 4K when PolyPhase FIR Filters
are being used.

7.7.4.3 Operation
Use of this part simply sets a compiler flag to allow the use of FIR filters. In all other respects, it
functions in the same way as the cdsFilter part described previously. In fact, this part allows a mix
of IIR and FIR filters to be assigned to the 10 available digital filters within the module. The
difference between IIR and FIR is determined by the runtime software by the number of
coefficients loaded (>10 SOS = FIR).

7.7.4.4 Associated EPICS Records
Same as cdsFilt module.

LIGO LIGO-T080135-v6

 80

7.7.5 Single Pole / Single Zero (SPSZ) Filter
This part is in the process of being added and presently in beta test.

7.7.5.1 Function
Provides a single pole, single zero filter function, with input settings provided via EPICS.

7.7.5.2 Usage

7.7.5.3 Operation
Given:

• Overall high frequency gain = K
• Z and P are in Hz.
• Fs = code sampling frequency

Calculation:

a = (1-πP/fs)/(1+πP/fs)
b = (1-πZ/fs)/(1+πZ/fs)

val = K * (Input + Offset)
output = val – (b * val_previous) + (a * input_previous)

7.7.5.4 Associated EPICS Records
1) _OFFSET : Input offset value
2) _TRAMP: Ramp time, in seconds
3) _K: Gain term
4) _P: Pole term
5) _Z: Zero term
6) _Load: Momentary switch that starts load of new settings over the time specified by

TRAMP.

7.7.5.5 Auto-Generated MEDM Screens
As shown in figure above.

LIGO LIGO-T080135-v6

 81

7.7.6 RMS Filter

7.7.6.1 Function
This block computes the RMS value of the input signal.

7.7.6.2 Usage
This module is used to calculate an RMS value.

7.7.6.3 Operation
The output value is the RMS value of the input value, within the limits of
±2000 counts.

7.7.6.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 82

7.7.7 True RMS Filter

7.7.7.1 Function
This block computes the RMS value of the input signal. It takes the root mean square value of a
number of samples equal to the window_size parameter.

7.7.7.2 Usage
After placing the part in the user model, adjust the window_size parameter in the block properties
description field. The window-size = number of code cycles over which to calculate the RMS
value.

LIGO LIGO-T080135-v6

 83

7.7.8 Test Point

7.7.8.1 Function
The test point part allows the definition of a GDS test point anywhere in
the model without having to use a “Filter Module” part.

7.7.8.2 Usage
The desired test point signal is connected to the part input and given an
appropriate signal name.

7.7.8.3 Operation
The test point variable will be set equal to the input variable at the full
rate of the compiled code. Upon request, this value will become available to the real-time data
acquisition software for transmission to the DAQ system.

Note: These signals are also available to be assigned as DAQ channels at user defined rates.

7.7.8.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 84

7.7.9 Excitation

7.7.9.1 Function
Provide an input from the GDS arbitrary waveform generator at any
point within a user model without having to use a filter module.

7.7.9.2 Usage
Connect output to any model part with a signal input.

7.7.9.3 Operation
Upon selection via one of the GDS tools, the real-time DAQ process will inject a signal from the
arbitrary waveform generator into this variable. If not selected, the output is always zero (0.0).

LIGO LIGO-T080135-v6

 85

7.8 Matrix Parts

Matrix parts are those which perform calculations based on array data. The most commonly used
is the cdsMuxMatrix part.

LIGO LIGO-T080135-v6

 86

7.8.1 cdsMuxMatrix

7.8.1.1 Function
The primary function of this block is to produce output signals based on
the scaling and addition of various input signals.

7.8.1.2 Usage
Inputs are connected via the Mux part and outputs are connected via the
Demux part. The number of connections available at the input/output
may be modified to any size by double clicking on the Mux/Demux
parts and modifying the number of connection fields in the pop-up
window.

7.8.1.3 Operation
Basic code function is:

Output[1] =

 Input[1] * Matrix_11 + Input[2] * Matrix_12 + Input[n] * Matrix_1n, where Matrix_xx is an
EPICS entry field.

7.8.1.4 Associated EPICS Records
The RCG will produce an A x B matrix of EPICS records for use as input variables, where B is the
number of inputs and A is the number of outputs. The EPICS record names will be in the form of
PARTNAME_AB, starting at PARTNAME_11.

7.8.1.5 Auto-Generated MEDM Screen
For each matrix defined in a model, a matrix screen is automatically generated, as in the following
example screen. By default, matrix elements which are set to 0.0 have their backgrounds set to
gray. Any other value results in a green background.

LIGO LIGO-T080135-v6

 87

LIGO LIGO-T080135-v6

 88

7.8.2 cdsFiltMuxMatrix

7.8.2.1 Function

7.8.2.2 Usage

7.8.2.3 Operation

7.8.2.4 Associated EPICS Records

7.8.2.5 Auto-Generated MEDM Screen

LIGO LIGO-T080135-v6

 89

7.8.3 cdsBit2Word/cdsWord2Bit

7.8.3.1 Function
The purpose of these two blocks is to convert from 16
single bit inputs to one 16-bit output word
(cdsBit2Word) and from one 16-bit input word to 16
single bit outputs (cdsWord2Bit), respectively.

7.8.3.2 Usage
For cdsBit2Word, connect 16 binary inputs to ‘B0’
through ‘B15’, with the least significant bit connected
to 'B0', the second least significant bit connected to
‘B1’, etc., and connect ‘Out’ to the module that should
receive the 16-bit output word.

For cdsWord2Bit, connect the module that supplies the
16-bit input to ‘In’ and 16 binary outputs to ‘B0’
through ‘B15’, with the least significant bit connected
to ‘B0’, the second least significant bit connected to ‘B1’, etc.

7.8.3.3 Operation
cdsBit2Word will calculate the output as Out = B0 * 1 + B1 * 2 + B2 * 4 + ... + B15 * 32,768 (i.e.,

Out = B0 * 2**0 + B1 * 2**1 + B2 * 2**2 + ... + B15 * 2**15), where B0 through B15 are equal
to 1 or 0, e.g., if the binary inputs connected to B1, B2, B5, and B12 are equal to one and all other
binary inputs are equal to zero, then the output (16-bit) word would be equal to (1 * 2 + 1 * 4 + 1 *
32 + 1 * 4,096 =) 4,134.

cdsWord2Bit will convert the 16-bit (integer) input, ‘In’, into 16 bits, e.g., the ‘In’ value 33,609
will result in the following bit pattern on the output: B15 = 1, B14 = 0, B13 = 0, B12 = 0, B11 = 0,
B10 = 0, B9 = 1,

B8 = 1, B7 = 0, B6 = 1, B5 = 0, B4 = 0, B3 = 1, B2 = 0, B1 = 0, and B0 = 1.

7.8.3.4 Associated EPICS Records
None.

LIGO LIGO-T080135-v6

 90

LIGO LIGO-T080135-v6

 91

7.9 WatchDogs

Watchdogs are used to monitor their input
signals and produce an error signal at their
output to automatically trigger some fault
handling code/modules. The modules to date
were designed to implement similar tasks in
initial LIGO controls.

LIGO LIGO-T080135-v6

 92

7.9.1 WD
This part was developed to provide watchdog protection for aLIGO large optics. A further
description of this part and its usage can be found in LIGO-G1200172.

7.9.2 cdsDacKill

7.9.2.1 Function
The purpose of this part is force the code to output a zero (0) value to all DAC channels defined in
the model, regardless of the actual application code requested value. This part typically receives a
fault condition input from user specified fault monitoring logic/code within the RCG model.
NOTE: Only one (1) DacKill part may exist in a given RCG model.

7.9.2.2 Usage
This part has two inputs and two outputs, as described below. Input connections are required, but
output connections are optional.
Inputs

1) Signal (0 = Fault, 1 = OK)
2) Bypass Time (Number of seconds WD can be bypassed)

Outputs
1) Watchdog Status (0 = Tripped, 1 = OK, 2 = Bypassed
2) Reset (Held HIGH (1) for one code cycle when WD reset. This output is intended for use
within the user model to reset any fault detection code/logic.

7.9.2.3 Operation
This part has three defined states, as described in the following subsections.

7.9.2.3.1 MONITOR State
In this state, the code monitors the Sig input. As long as this input is one (1), all DAC outputs are
sent as calculated by the user application. If the Sig input goes to zero (0), the code state will go to
FAULT.
To achieve this state requires two things:

1) Sig input must be set to one (1)
2) After 1 above, a reset must be sent via the EPICS RESET channel (see next section).

On code startup, the default condition of the DacKill part is “FAULT”, and requires the above two
conditions to clear the fault condition.

LIGO LIGO-T080135-v6

 93

7.9.2.3.2 FAULT State
A fault state is entered when:

1) Application containing this part is first started, regardless of the Sig input value.
2) Sig input is zero and code is not presently in Bypass state.
3) Panic input is set to one via the EPICS PANIC input.

In this state, DAC outputs are set to zero. Which DAC channels are set to zero is dependent on the
code model type:

1) IOP: All channels of all DAC modules connected to the computer will be set to zero.
2) User Application: Only those DAC channels defined in the user application will be set

to zero. For example, if two user applications (app1 and app2) are sharing channels on
the same DAC module, and the Sig input goes to zero only in app1, then:

a. DAC channels defined by app1 will go to zero
b. Those defined by app2 will continue to

function normally

Note that once in this state, it will become “latched” ie
even if the Sig input returns to one (OK), a RESET will be
required to return to the MONITOR state. This state is also
maintained as long as the PANIC input from EPICS is set
to one.
7.9.2.3.3 BYPASS State
Entering this state requires:

1) PANIC is not set to one, via the PANIC EPICS
channel

2) BPSET EPICS channel momentarily set to one.

While in this state, the Sig input is ignored and all DAC
channel outputs will continue to be passed normally from
the user application code until either:

1) Bypass time expires. Note that once in the
Bypass state, all further BPSET requests are
ignored ie one cannot force reset of the Bypass timer and thereby extend the Bypass
time. Once the timer has expired, the code will return to the MONITOR state (no
RESET required).

2) EPICS PANIC is set to one. This will force the Bypass timer to be cleared and code to
go to the FAULT state.

7.9.2.4 Associated EPICS Records
- Three EPICS Input Channels

1) _RESET: Momentary that:
- a) Clears Trip State, if, and only if, Sig Input = OK
- b) Turns OFF WD Bypass Mode
- c) Sends 1 to RST output

LIGO LIGO-T080135-v6

 94

2) _BPSET: (Momentary) Turns ON Bypass mode (all DAC outputs enabled) for number
of seconds specified at Bypass Time input. During this time, the WD ignores Sig Input.
3) _PANIC: Binary input, trips and holds WD in a trip condition until PANIC turned OFF
(0). Also clears BPSET, such that WD will not come back up in Bypass mode when PANIC
turned OFF.

- Two EPICS Output Channels

 1) _STATE: The part output (wD) status:
 a. 0 = Tripped (Fault)
 b. 1 = OK
 c. 2 = In BYPASS Mode
 2) _BPTIME: Amount of time, in seconds, remaining on the bypass timer when in bypass
mode.

LIGO LIGO-T080135-v6

 95

7.10 DAQ Parts

7.10.1.1 Function
The function of this part is to define model channels that are to be sent to the DAQ system for data
storage.

7.10.1.2 Usage
This part may be placed at any level within an RCG
model. Entries must be made as:
ChannelName AcquisitionRate

7.10.1.3 Operation
During the code installation process, these channels
will be set within the MODELNAME.ini file to
acquire data at the desired rate. This file is used by
both the RT runtime code and the DAQ system to
determine which channels are to be recorded and at
what rate. Presently, all values are stored by the
DAQ as 32 bit floating point numbers.

