


ABSTRACT

We observed the effect of radiation pressure on the angular sensing and

control system of the Laser Interferometer Gravitational-Wave Observa-

tory (LIGO) interferometer’s core optics at LIGO Hanford Observatory.

This is the first measurement of this effect in a complete gravitational

wave interferometer. Only one of the two angular modes survives with

feedback control, since the other mode is suppressed when the control

gain is sufficiently large. We developed a mathematical model to under-

stand the physics of the system. The model indicates that the current

system has substantial margin for higher laser power; angular instabil-

ity due to radiation pressure won’t occur until laser power reaches about

eight times the power used in the initial LIGO configuration. This analy-

sis was based on the degrees of freedom associated with differential motion

between the mirrors in the interferometer’s two arms. A more complete

analysis including the common mode degrees of freedom will be left for

future work.
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Chapter 1

Introduction
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1.1 LIGO gravitational wave detectors

There are three LIGO (Laser Interferometer Gravitational-Wave Observatory) detec-

tors in the United States: a 4km interferometer in Livingston Parish, LA (L1), and

two interferometers whose length are 4km (H1) and 2km (H2) near Hanford, WA.

Each LIGO detector is a Michelson interferometer with a pair of Fabry-Perot cavities

and a recycling cavity.

Figure 1.1: A Schematic of LIGO detector. There are two Fabry-Perot cavities (red)
whose arm length is about 4 km, and a recycling cavity (blue) to recycle reflected
light from the arms. Test masses (their conventional names are listed in the sketch)
are hung by wire from a suspension system and the interferometer is put in a vacuum
envelope. The detector is tuned to make dark fringes at the anti-symmetric port
where photodetectors (P.D.) sense phase changes from the destructive pattern caused
by differential arm length change.

It has been built to detect gravitational waves from space although the detection
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has not been successful yet as of December 2008. The fifth science run (S5) finished

in the fall 2007 and the two 4 km long detectors are being upgraded at this mo-

ment for an upcoming science run - roughly a factor of two better in sensitivity than

S5. Meanwhile the 2 km long detector has been running so as not to miss chances

for possible detection. Besides LIGO, worldwide efforts have been going on such as

VIRGO (French/Italian), GEO (English/German), and TAMA (Japanese) etc, and

they are actively collabolating to the same goal. Strain sensitivity reached order of

∆L
L
∼ 10−21 during S5 [9, 10]. Figure 1.2 shows the sensitivity curve of LIGO Hanford

Observatory during the S5 run.
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Figure 1.2: Sensitivity curve of LIGO Hanford 4-km detector from May 2007, which is
the spectra of calibrated signal of gravitational wave channel. SRD is the design sensi-
tivity. Best sensitivity is near 100 Hz. y-axis is displacement in m/

√
Hz which comes

from a fact that the displacement is measured as power spectrum on photodetectors
at the antisymmetric port.
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Gravitational waves are wave solutions of Einstein’s field equations and they were

predicted a couple of years after his theory General Relativity was published in 1915.

General relativity is a mathematical model of spacetime where gravity is the curva-

ture of spacetime. In the theory, spacetime is completely described by a metric on

a spacetime manifold [1, 2, 3, 4, 5]. Although the theory successfully passed sev-

eral tests in the past, its validity in the strong field limit has not been well tested

[12, 13, 14].

Figure 1.3: General relativity in a parameter space.

In 1899, Max Planck, using gravitational constant G, Planck constant ~, and speed

of light c, constructed fundamental units lp =
√

~G
c3
≈ 1.62 × 10−35m, tp =

√
~G
c5
≈

5.4 × 10−44s, and mp =
√

~c
G
≈ 2 × 10−8kg ≈ 1.2 × 10−19GeV . Suppose a system

is characterized by length l, time t, and mass m, and we construct some quantities

such as velocity v = l
t
, action s = ml2

t
, and X = l3

mt2
[57]. Then, we can view physics

we know in a cube characterized by three axes (G/X, v/c, ~/S). We know general

relativity works well on the (G/X, v/c) plane away from the region close to the very

end of G/X axis where gravity is very strong (i.e., G ∼ X). Likewise, the (v/c, ~/s)

plane is mostly covered by quantum field theory (QFT) except in the region close to

the very end of the ~/s axis. We do not yet (and may never) know a valid theory to

4



describe physics in the other region of the cube.

In 1974, Hulse and Taylor discovered that the orbital period of PSR B1913+16

changes at a rate predicted by general relativity, due to its emission of gravitational

waves. Since then, the direct detection of gravitational waves has been desired, espe-

cially so that we can explore the physics.

In the LIGO detectors, the light from the Fabry-Perot cavities are tuned to make

destructive interference at a beamsplitter such that a photodetector at the anti-

symmetric port does not get any light without any disturbances. Once a gravitational

wave arrives with detectable amplitude, it will disturb the destructive interference,

and the photodetector at the dark port senses a power change. The dark port condi-

tion minimizes some technical noise and allows the concept of ”recycling”. Since the

most laser light power go back to the upstream (the input laser direction), by placing

another high reflective mirror called recycling mirror, the light power in the Fabry-

Perot cavities can be increased. The more power in the cavity makes the shot noise

in the sensitivity curve smaller by a factor of the inverse square root of the power.

Each test mass is suspended by wires from a seismic isolation system to realize nearly

free fall motion and minimize local seismic disturbances. Arm cavities are put in

vacuum to minimize thermal noise and noise from index of refraction fluctuations. A

pre-stabilized solid state Nd:YAG laser, whose wavelength is 1064 nm, is injected and

it bounces back and forth in the Fabry-Perot cavities roughly 100 times to enhance

sensitivity of the detector. In order to hold high power in the cavities, fused silica

(SiO2) is used and the surface is polished and coated for more uniformity and less

losses. There are a lot of control loops to keep the operating condition: two cavities

and recycling cavity on resonance, dark fringe at antisymmetric port, stabilization of

the laser frequency, and alignment of mirrors to the laser beam etc. Specification of

the detector is summarized in table 1.1.

There are four length degrees of freedom (DOF) in the LIGO defined by the five

5



Laser / wavelength / input power Nd:YAG / 1064 nm / 10W
Core optics Suspended
Suspension Seismic isolation stack

Input test masses: ITM’s
Power reflectivity 96.995 %

Power transmission 3.00 %
Radius of curvature 14571 m
Diameter/thickness 0.25 m / 0.10 m
Index of refraction 1.44968

End test masses: ETM’s
Power reflectivity 99.9935 %

Power transmission 0.0015 %
Radius of curvature 7400 m
Diameter/thickness 0.25 m / 0.10 m

Recycling mirror: RM
Power reflectivity 97.5 %

Power transmission 2.44 %
Radius of curvature 99998.33 m
Diameter/thickness 0.25 m /0.10 m

Beam splitter: BS
Power reflectivity 49.9625 %

Power transmission 49.9625 %
Radius of curvature ∞
Diameter/thickness 0.25 m / 0.04 m
Arm cavity length 4 km

Recycling cavity length 9.38 m
Michelson asymmetry 0.210 m

Resonant sideband frequency 23.97 MHz
Non-resonant sideband frequency 35.96 MHz

Table 1.1: Initial LIGO’s specification copied from [34].

core optics (See figure 1.1. ITMX, ETMX, ITMY, ETMY, RM). The DOFs are two

Fabry-Perot arm cavity lengths L1, L2 and two Michelson lengths l1,l2. In order to

achieve the design sensitivity, these lengths must be controlled within order of 10−13

m. Besides that, each mirror has two orientation degrees of freedom pitch and yaw1,

so it makes total angular degrees of freedom 10. The LIGO detectors control the

angular orientation by a feedback control system called ASC (angular sensing and

1The pitch angle is defined as the orientation to the x-y plane, while the yaw angle is defined by
rotation on the x-y plane.
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control) system within 10−8 radian rms about the optical axis and the laser beam is

centered on the mirrors within 1 mm [34] to satisfy the design sensitivity. In order

for the ASC system to have high gain but not to spoil the sensitivity, the coupling

between angle and length has been reduced to order of 10−4 m rad−1 [9].
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1.2 Overview of this work

This thesis mainly consists of two parts. The first part is about calibration of the

detector, which is written in chapter 2. The second part is about angular instability,

which is written in chapter 4. Chapter 3 is devoted to preparation for chapter 4,

explaining the concept of angular sensing and control.

All contents in chapter 2 are from V3 calibration runs for S5. We briefly describe

response of a Fabry-Perot cavity and a full interferometer; each turns out to be a

simple cavity pole function up to some frequency where some corrections are needed.

In addition, the response of the detector is also affected by the pendulum suspension

of the test masses. Filter banks and electronics in various control loops will also

modify the response. The response of gravitational wave detector is the result of the

complicated system, and calibration is the job to find the relation between the output

from the detector and displacement ∆L(or strain ∆L
L

). The calibration takes place in

the frequency domain. For various reasons (from data analysys for searches of grav-

itational waves to false signal hunting, etc), time series of gravitational wave strain

h(t) is often preferred. The process to make the time series is called h(t) generation.

Instead of doing the inverse-Fourier transform of the frequency domain strain data,

we make use of digital filters to generate the h(t) directly from output of gravitational

wave channel.

The chapter 4 is about angular instability. Roughly above 100 Hz, the detector’s

performance is limited by shot noise. It is known that shot noise is inversely propor-

tional to the square root of laser power. This is why future detectors are geared more

toward higher power operation. The need for high sensitivity of the detector will

make radiation pressure from the laser beam noticeable. Not only the longitudinal

effect from the radiation pressure, but also the mirrors will experience torque when

the beam spot is off center. Once the torque exceeds the sum of restoring torque

from the wire and actuators attached to the surface of the mirror, the mirrors cannot

8



be controlled any more. D. Sigg and J. Sidles studied the phonomena theoretically

and predicted two different modes in a tilted optical resonator system. Recently we

experimentally confirmed for the very first time that the phenomenon exists in the

LIGO detector. We also developed a mathematical model to understand the physics.

According to the model, the LIGO detector will be stable until the cavity laser power

reaches about eight times higher than that of iLIGO if the same ASC system is em-

ployed. Although the model treats only one arm, we believe that the method will

be very useful for the future detector design, and that the model can be extended to

more complete interferometer models.
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Chapter 2

Interferometric Gravitational Wave

Detectors

11



2.1 Response of detector

2.1.1 Phase shift caused by a gravitational wave

It is known that there are two independent polarizations in gravitational waves, +

and × (see Appendix A). Although it is unlikely, suppose a + polarized gravitational

wave arrives perpendicular to our detector and the transverse components are per-

fectly along two arm cavities of our detector. (Discussion for more general case can

be found, for example, in [24, 25].)

Figure 2.1: + polarized GW and LIGO. An ideal situation that a + polarized gravi-
tational wave passes through the LIGO detector. Here, we assume the gravitational
wave propagates along the z-axis (perpendicular to the paper), and the transverse
directions are along LIGO’s two arms.

Proper distance is given by

12



dτ 2 = gµνdx
µdxν , (2.1.1)

where gµν is the Minkowski metric plus small perturbation, i.e., gµν = ηµν + hµν . In

the TT gauge, it will be given by as follows.

gµν =


−1 0 0 0

0 1 + h 0 0

0 0 1− h 0

0 0 0 1

 (2.1.2)

with

h = hxxe
−i(Ωt−kz), (2.1.3)

where Ω , k are the angular frequency and the wave number of the gravitational wave,

respectively. We assume that hxx � 1. Now, we calculate a phase shift of a light

whose angular frequency is ω when the light takes one round trip in the Fabry-Perot

cavity in the x-arm.

Φx
rt (t0) =

∫ t0+t(2L)

t0

ωdt (2.1.4)

Since dτ = 0 for light, the integration can be performed as follows.

Φx
rt (t0) =

ω

c

∫ L

0

dx
{√

1 + hxxe−i(Ωt0+kx) +
√

1 + hxxe−i(Ωt0+k(2L−x))
}

(2.1.5)

≈ 2
ωL

c
+
ωLhxx
c

sinΦΩ

ΦΩ

e−i(ωt0+ΦΩ) (2.1.6)

where ΦΩ = kL = ΩL
c

. The last line tells us that the light gets extra phase shift in

13



the presence of gravitational wave, i.e.,

∆Φx
rt =

ωLhxx
c

sinΦΩ

ΦΩ

e−iΦΩ (2.1.7)

Assuming the frequency of the gravitational wave is not so high, i.e., ΦΩ � 1,

∆Φx
rt =

ωhxxL

c
=
ω∆L

c
, (2.1.8)

where ∆L = hxxL. We can express the phase shift during light propagation in one

round trip in terms of the small arm length change hxxL. Therefore,

∆Φrt =
2π

λ
∆L (2.1.9)

We can calculate Φy
rt in the same way, and it will be

∆Φy
rt =

ωhyyL

c
= −ωhxxL

c
= −ω∆L

c
(2.1.10)

Assuming Lx ≈ Ly ≈ L, therefore, the phase difference between two arms for one

round trip will be

∆Φd ≡ ∆Φx
rt −∆Φy

rt =
4π

λ
∆L. (2.1.11)

The phase difference will go up if light bounces back and forth between two mirrors,

as it does in a Fabry-Perot cavity. It is known the rate of increase is characterized by

the finesse F .
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N =
2F
π

(2.1.12)

The finesse is defined using reflectivity coefficients of the resonator as follows.

F =
π
√
r1r2

1− r1r2

. (2.1.13)

Therefore, within the Fabry-Perot cavity, the overall phase difference between two

arms is given by

ΦFP
d = N∆Φd =

8F
λ

∆L. (2.1.14)

As discussed later, high finesse is an advantage in detecting gravitational waves since

the phase difference is proportional to arm length difference. 1

2.1.2 Pound-Drever-Hall technique

The purpose of this subsection is to introduce the powerful Pound-Drever-Hall tech-

nique [66]. In the previous sebsection, we learned gravitational waves make a phase

shift in a Fabry-Perot cavity. Here, we will learn how to extract the information using

a technique called the Pound-Drever-Hall technique. An extension of this technique

is also used in alignment sensing, which will be discribed in chapter 3.

1In reality, gravitational waves also produce phase shift in Michelson arms l1 and l2 (See figure
1.1), i.e.,

δLmeas =
(

1 +
2l
FL

)
δLGW , (2.1.15)

where δLmeas is measured length difference and δLGW is arm length difference caused by gravita-
tional waves. Since the seceond term is order of ∼ 10−5 in LIGO, we can ignore the coupling from
Michelson arm length.
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For locking a cavity on resonance, we calculate the reflected light from a Fabry-Perot

cavity. The cavity has two mirrors separated by distance L (input mirror an end

mirror), whose reflection and transmission coefficients are r1, t1 and r2, t2 respectively.

The electric field Ecirc circulating inside the cavity can be expressed in terms of the

incident field Ein as

Ecirc = t1Ein + PrtEcirc. (2.1.16)

Prt is round trip operator in the cavity, is simply the phase shift due to propagation

between the mirrors and amplitude change by reflection. Namely,

Prt = (−r1)e−ikL(−r2)e−ikL (2.1.17)

= r1r2e
−2ikL. (2.1.18)

Figure 2.2: A layout to lock a cavity to a laser. Light that has been phase modulated
by a Pockels Cell goes into a cavity. Demodulating the reflected light at mixer yields
an error signal that can tell you which way to push the actuator to hold the cavity
on resonance with the laser’s wavelength.

Therefore, the electric field inside the cavity is given by

16



Ecirc = t1(1− Prt)−1Ein (2.1.19)

=
t1

1− r1r2e−2ikL
Ein. (2.1.20)

The electric field reflected from the cavity is

Eref = r1Ein + t1Prtr2PrtEcirc (2.1.21)

= r1 −
r2t

2
1e
−2ikL

1− r1r2e−2ikL
(2.1.22)

=
r1 − r2(r2

1 + r2
2)e−2ikL

1− r1r2e−2ikL
. (2.1.23)

The resonant condition is simply the condition in which the electric field inside the

cavity becomes maximum.

e−2ikL = 1⇐⇒ kL = nπ ⇐⇒ L = n
λ

2
(2.1.24)

Here, λ is the wavelength of laser, and n is an integer.

Next, prepare a phase modulated electric field.

Ein = E0e
i(ωt+βsinΩt) (2.1.25)

With the Jacobi-Anger formula,

eiβsinΩt =
∞∑

n=−∞

Jn(β)einΩt, (2.1.26)

we can rewrite Ein as follows.
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Ein ≈ E0

[
J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t

]
(2.1.27)

We need to know the ratio of the reflected field to this input field. We already derived

it for the carrier,

O(ω) =
Eref
Ein

=
r1 − r2(r2

1 + r2
2)e−2ikL

1− r1r2e−2ikL
. (2.1.28)

For sidebands, we can still use this equation just by changing the frequency. Therefore,

Eref = E0e
iωt
[
O(ω)J0(β) +O(ω + Ω)J1(β)eiΩt −O(ω − Ω)J1(β)e−iΩt

]
. (2.1.29)

Since what photodetectors sense is not electric field but power, we need to calculate

power.2

Pref = |Eref |2 = (Eref )(Eref )
∗ (2.1.30)

After some calculation, we get

Pref�|E0|2 = |O(ω)|2J2
0 + |O(ω + Ω)|2J2

1 + |O(ω − Ω)|2J2
1 (2.1.31)

+ 2Re {O(ω)O∗(ω + Ω)−O∗(ω)O(ω − Ω)} J0J1cosΩt

− 2Im {O(ω)O∗(ω + Ω)−O∗(ω)O(ω − Ω)} J0J1sinΩt

+ 2Ωterms.

That is, the reflected power consists of terms at DC, at Ω, and at 2Ω. Demodulation

2We do not care some factor in the expression for convenience.
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is done by multiplying sinΩt or cosΩt and averaging over one period. The former case

is called in-phase (I-phase) and the latter case is called quadrature phase (Q-phase).

When the carrier is resonant in the cavity, only the quadrature phase (sinΩt) survives

in a reflected field. The demodulated signal called error signal.

Pdemod = 2J0J1|E0|2Im {O(ω)O∗(ω + Ω)−O∗(ω)O(ω − Ω)} (2.1.32)

Figure 2.3 shows above expression as a function of displacement from resonance. The

linear signal around the origin allows us to judge which way the mirror is offset so

that we can use the signal to keep the cavity on resonance by feedback control.
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Figure 2.3: Pound-Drever-Hall error signal. The parameters from table 1.1 are used
for the calculation except the modulation frequency. Four percent of FSR is used
here.
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Notice that the quadrature-phase of the error signal is nothing but the imaginary

part of e−iΩt term, and the in-phase is the real part of it. Thus, when we write the

electric field at output port as

Eout = ECR + ESB+ + ESB−, (2.1.33)

the demodulated signal becomes

S = ECR∗ESB− + ESB+∗ECR. (2.1.34)

And, in-phase and quadrature-phase is given by real part and imaginary part of it,

respectively. This view is very useful when we consider wave front sensing in the next

chapter.

This technique is implemented in the LIGO interferometer’s length sensing and con-

trol (LSC) system [28, 42]. Although the optical configuration is more complicated,

the basic scheme is the same. Each LIGO interferometer needs to control the length

of its two arm cavities and two Michelson arms, and suitable detection ports for each

degree of freedom have been chosen. For example, the anti-symmetric port is used to

sense differential arm cavity length dL.

SAS ∝ dL+
π

F
dl ≈ dL (2.1.35)

where F is finesse of arm cavity.3

3At the anti-symmetric port, sideband is used as the reference. In order to do it, asymmetry
in Michelson length called Schnupp asymmetry (l1 6= l2) is introduced to allow sideband to exist
there. Otherwise, Pound-Drever-Hall technique could not be used since sideband is also tuned to be
resonant in recycling cavity.
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2.1.3 Response of detector

We now know that a gravitational wave causes a phase change in a Fabry-Perot cavity

and it is related to arm length change. In gravitational wave detector, the output

of the detector is the time series of the arm length difference. The time series is

constructed through calibration, which will be discussed shortly, using photodetector

signals tuned to be sensitive to the phase shift in the two resonant arms. Here, we

derive the response of the photodetector signal to the presence of gravitational wave.

A electromagnetic field (the laser light with frequency ω), will be modulated by the

presence of gravitational wave of frequency Ω. Thus, the frequency spectrum of the

light consists of a carrier ω and two sidebands ω±Ω (up to the first sidebands). The

sidebands are sometimes called audio sidebands as opposed to RF sidebands used in

servo controls. Or, more explicitly, the electromagnetic field can be written as

E(t) =
(
E0 + E1e

−iΩt + E2e
iΩt
)
e−iωt. (2.1.36)

In the previous subsection, we saw that gravitational wave produces phase shift during

one round trip acting on carrier light. This can be understood as energy transfer from

carrier to sidebands [26, 27, 24]. So, the round trip operator X can be written as

E ′ =


1 0 0

− i
2
∆Φrt e−2iΩL/c 0

− i
2
∆Φ∗rt 0 e2iΩL/c



E0

E1

E2

 (2.1.37)

E ′ = XE, (2.1.38)

where we assume that L has been chosen so that e−2iωL/c+2iη is set to unity for resonant

condition. (η is the Gouy phase shift which will be discussed in chapter 3.) Since X

is analog to the phase shift e−2ikL in (2.1.18), we can calculate the electric field inside

the cavity and that reflected from the cavity using (2.1.20) and (2.1.23), respectively.
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Therefore, the operators to calculate the cavity field and the reflected field will be

Xcirc = t1 (I − r1r2X)−1 (2.1.39)

Xref =
[
r1 − r2

(
r2

1 + t21
)
X
]

(I − r1r2X)−1 (2.1.40)

where I is the identity matrix. By straightforward calculation, we will have the

following matrices.

Xcirc = t1


1

1−r1r2 0 0
i
2
r1r2∆Φrt

(1−r1r2)
(

1−r1r2e−i
2ΩL
c

) 1(
1−r1r2e−i

2ΩL
c

) 0

i
2
r1r2∆Φ∗

rt

(1−r1r2)
(

1−r1r2ei
2ΩL
c

) 0 1(
1−r1r2ei

2ΩL
c

)

 (2.1.41)

Xref =


r1−r2(t21r2

1)
1−r1r2 0 0

i
2
r2t21∆Φrt

(1−r1r2)
(

1−r1r2e−i
2ΩL
c

) r1−r2(t21+r2
1)e−i

2ΩL
c

1−r1r2e−i
2ΩL
c

0

i
2
r2t21∆Φ∗

rt

(1−r1r2)
(

1−r1r2ei
2ΩL
c

) 0
r1−r2(t21+r2

1)ei
2ΩL
c

1−r1r2ei
2ΩL
c

 (2.1.42)

If gravitational wave frequency is much smaller than the free spectral range (i.e.,

Ω � c
2L
≡ FSR), the (1,0) component and (2,0) component of the reflected field

operator Xref,10 and Xref,20 will be simplified as

Xref,10 =
i
2
r2t

2
1∆Φrt

(1− r1r2)2

1

1 + i Ω
ωc

(2.1.43)

Xref,20 =
i
2
r2t

2
1∆Φ∗rt

(1− r1r2)2

1

1− i Ω
ωc

, (2.1.44)
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where ωc is the cavity pole defined as follows

ωc =
c

2L

1− r1r2

r1r2

. (2.1.45)

Now, when the incident field is purely a carrier E = (E, 0, 0)T , the reflected field up

to the first sidebands will be immediately,

Eref
E

= (Xref,00 +Xref,10 +Xref,20) (2.1.46)

≈ r1 − r2 (t21 + r2
1)

1− r1r2

+
i

2

r2t
2
1

(1− r1r2)2

[
∆Φrte

iΩt

1 + i Ω
ωc

+
∆Φ∗rte

−iΩt

1− i Ω
ωc

]
(2.1.47)

For the other arm, we can calculate in the same way. The field at anti-symmetric

port EAS will be 4

EAS ≈ r6t6
(
Xx
ref −X

y
ref

)
ERC . (2.1.48)

ERC is the field in the recycling cavity and t6, r6 are the transmission and the re-

flection coefficient of the beamsplitter. LIGO employed Pound-Drever-Hall technique

where input laser light is modulated by some frequency, say ωm. Therefore, under

influence of gravitational waves, there are nine frequencies, (if we only consider the

first sidebands), namely, ω, ω ± ωm, ω ± Ω, (ω + Ω) ± ωm, and (ω − Ω) ± ωm. The

last four terms are relevant for the demodulation signal. We can calculate the de-

modulation signal in the same way as we showed in the previous subsection, but we

here use a fact that the demodulated signal is proportional to imaginary part of the

cavity field [25]. Therefore, From (2.1.41), the cavity field up to the first sidebands

is given by

4Phase shift in Michelson arm is ignored here. More complete formalism will be discussed in
chapter 3 where Michelson length is also taken into account.
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Ecirc,audio
t1E

= Xcirc,00 +Xcirc,10 +Xcirc,20 (2.1.49)

=
1

1− r1r2

− i

2

r1r2

1− r1r2

[
∆Φrte

iΩt

1− r1r2e
−i 2ΩL

c

+
∆Φ∗rte

−iΩt

1− r1r2e
i 2ΩL
c

]
(2.1.50)

≈ 1

1− r1r2

− i

2

r1r2

(1− r1r2)2

[
∆Φrte

iΩt

1 + i Ω
ωc

+
∆Φ∗rte

−iΩt

1− i Ω
ωc

]
(2.1.51)

≈ 1

1− r1r2

− i r1r2

(1− r1r2)2Re

[
∆Φrte

iΩt

1 + i Ω
ωc

]
(2.1.52)

Since the second term of (2.1.52) is the imaginary part of the cavity field modulated

by a gravitational wave, the demodulated signal VAS will be

VAS ∝
1√

1 +
(

Ω
ωc

)2
. (2.1.53)

This is the response of the detector to a gravitational wave under assumptions already

made. For high frequencies above the free spectral range, though, it is known that

some correction from the cavity pole function is necessary [24, 25]. The demodulated

signal is proportional to differential arm length and it allows us to model the detector

as a one DOF(= ∆L) control system.
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Figure 2.4: Normalized cavity pole function.

2.2 Calibration

This section summarizes calibration of differential arm (DARM) length in LIGO. The

gravitational wave channel at anti-symmetric (AS) port is the most sensitive to differ-

ential arm length ∆L = Lx−Ly of the detector. It is at the anti-symmetric port that

gravitational waves will appear if gravitational waves pass through detector. We de-

scribed that the cavity response is expressed by a cavity pole function in the previous

section. If test masses were attached in spacetime and the cavity were automatically

resonant, we would not need this section. In reality, however, test masses are hung

from a suspension system, and a lot of control servos work to keep cavities on res-

onance. Therefore, the output from the gravitational wave channel is the result of

the complicated system. The job of calibration is to get response of the gravitational

wave channel to gravitational waves. A fancy way of saying it is that calibration is the

25



filter definition of the detector in the sense that it modifies the gravitational wave’s

original spectral profile. The result of calibration is the response function R(f), which

is a mathematical model of detector response. Calibration runs take place to build

the model every few months to update the model and make corrections if they are

needed. The response function R(f) is made of a sensing function C that is a cavity

pole function, an actuation function A that gives test masses’ response to control sig-

nal, and digital servo filters D in the DARM control loop. The measurement is only

for A and C, not D. Since digital filter is well defined and will not change by definition.

In LIGO’s current length sensing and control (LSC) scheme, we only control the end

test masses (ETMX, ETMY) to keep the cavities resonant. For calibration purposes,

what we need is the relation between signals at the AS port, called DARM ERR, and

the differential arm length ∆L. Calibration in LIGO provides a mathematical model

(called DARM model) in every calibration run. The main focus in calibration, there-

fore, is to understand the cause of discrepancy between the model and measurement.

In the following, the DARM model and one of the conventional calibration techniques

is introduced.

2.2.1 DARM model

The detector has been modeled as a one-degree-of-freedom feedback control system.

The model consists of three functions: sensing function C which describes interfer-

ometer’s response to differential arm motion, servo filters D which describe several

digital filter banks, and the actuation function A which describes actuators to control

the end test masses. A and C contain some electronics and their Bode plots are given

in the Appendix B.

AS Q is quadrature phase (as oppose to in-phase) of demodulated signal of photode-

tectors at the AS port. DARM ERR, currently usually called ”the gravitational wave

channel”, is nearly equivalent to AS Q, but more insensitive to change of optical gain.

x(t) in figure 2.5 is the difference in two arm length ∆L due to either gravitational

wave signal or noise. The goal of calibration is to produce x(t) (or strain h(t) normal-
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Figure 2.5: DARM model. A , C, D are the actuation function, the sensing function,
and the digital filters respectively. Cavity senses Gravitational waves (GW) and
noise as fluctuation and the information is fed back to end mirrors to keep cavity in
resonant. DARM ERR, DARM CTRL, and DARM CTRL EXC are channel names
in LIGO.

ized by cavity arm length L = Lx+Ly
2

, i.e., ∆L
L

) from the gravitational wave channel

(DARM ERR, or AS Q). The function that associates them is called the response

function R(f) in frequency domain.

x(f) = R(f)d(f), (2.2.1)

h(f) ≡ x(f)

L
=

∆L

L
= R′(f)d(f). (2.2.2)
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Figure 2.6: Block diagram of DARM model

d(f) is DARM ERR, and R′ = R
L

. Since the model is a one DOF feedback control

system, the response function is simply the inverse of the closed loop transfer function

of the system

R =
1 +G

C
, (2.2.3)

where G is the open loop transfer function of DARM control loop.

G = CDA (2.2.4)

Although the response function is given by (2.2.3), we know it is dominated by the

sensing function in the high frequency region - roughly above 100 Hz because the open

loop transfer function G is small. In the low frequency region, R is approximately

the product of the actuation function and the servo function. Namely,
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f . 100Hz =⇒ R ∼ AD (2.2.5)

f & 100Hz =⇒ R ∼ 1

C
(2.2.6)

The next plot shows an overlay of Bode plots for R, 1
C

, and AD respectively.
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Figure 2.7: Response function. Low frequency part is governed by product of ac-
tuation and servo, while high frequency part is dominated by the inverse of sensing
function.

The sensing function

The sensing function is modeled as a simple cavity pole transfer function. Cavity pole

frequency is usually measured in both arms and the average is used in the model. The

following is the brief description of cavity pole frequency measurement. It is known
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that cavity buildup or decay follows exponential power law.

n = n0e
−γt (2.2.7)

where n is number of photons in cavity, t is time, and γ is decay rate, which is inverse

of storage time τc. Therefore, the cavity pole frequency is given by

fc =
2π

τc
(2.2.8)

Having a single arm locked (either x-arm, or y-arm), we unlock the arm cavity to

record one of photodetector signals at AS port. Since number of photons is propor-

tional to intensity of the field, we can use the DC output from photodetector to fit

the exponential curve. We do the measurement a couple of times in each arm, then

take the average of the two arms. The cavity pole frequency is about 90Hz according

to the measurement.

The electronics in the DARM model is straightforward since we know both analog

and digital components by design. The electronics around ADC (analog to digital

converter) are designed to compensate each other so that their net overall gain be-

comes unity. The optical gain fluctuates over time, so time-varying coefficient has

been introduced to absorb the fluctuation. We skip the description here, but the

detail can be found in [51, 52], for example. It makes the channel DARM ERR more

stable than AS Q in the sense that it does not see the effect of the overall loop gain

change much.

30



The actuation function

The actuation is essentially modeled as a pendulum, but the part has two streams

simply because there are two arms to make differential arm length. Similarly to

the sensing part, the electronics around the DAC (digital to analog converter) are

designed to have unity overall gain. The suspended mirrors are modeled as a simple

second order transfer function with the pendulum’s natural frequency (∼0.76 Hz) and

the Q value.

f =
ω2
n

s2 + ωn
Q
s+ ω2

n

(2.2.9)

Besides the pendulum, the model contains the output matrix, anti-imaging filters,

the suspension’s digital notch filters, some high frequency correction due to a test

mass internal mode called drumhead mode etc. The pendulum function needs a cor-

rection which defines conversion factor between physical unit meter and digital signal

unit counts and the calibration is called ”DC calibration”. The overall actuation is

modeled as

A = cxdxfxkxnx − cydyfykyny, (2.2.10)

where fx, fy are pendulum transfer functions, cx, cy are DC calibration values, kx, ky

are output matrix which is the feedback gain to each end test mass, nx, ny are notch

filters built in digital suspention control loops, and d contains the others listed the

above.

The servo function

The servo function is a direct copy from the complex of digital filter banks in DARM

(differential arm length) control loop.
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Figure 2.8: Bode plot of the actuation transfer function. The profile just looks like a
product of pendulum and some notch filters although it is, in fact, a more complicated
function.

The open loop transfer function

The open loop gain of the DARM control loop is measured in the following way. We

inject an excitation signal into DARM loop and take ratio of two signals from points

located in just upstream and downstream of the excitation point.

The response function

In this way, we build the response function - a mathematical model which is the

inverse of detector response in frequency domain. The validity of the mathematical
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Figure 2.9: Bode plot of the servo transfer function.

model is described in [51], so here we briefly introduce the concept.5 As we mentioned,

the servo function D is known by digital filter definition. The measurement of the

open loop transfer function G = CDA should be reliable. So, the choice is whether

we believe the sensing part is described by the cavity pole function, or the actuation

part is modeled by the actuation function. In either way, the response function can

be defined by (2.2.3).

Once we get the response function in frequency domain, we could produce time series

of displacement x(t) by using the inverse-Fourier transform. Another way of produc-

ing the x(t) time series is to make use of digital filtering techniques. The method

produces h(t) directly from the gravitational wave signal and it will be described

5The calibration committee members have been working hard to make the calibration as accurate
as possible. It is a very hard task.
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Figure 2.10: Bode plot of DARM open loop transfer function. Black is the model,
and blue is the measurement.

later in this chapter. One important thing is that the method relies on the frequency

domain calibration since h(t) production does not have a separate calibration process.

2.2.2 DC calibration

The goal of DC calibration is to determine the relation between the excitation to

each test mass (in digital unit called ’counts’) and physical displacement in meters,

by applying slow excitation to test masses. Slow excitation means that excitation

is slow enough that the amplitude of test mass motion to the excitation can be

considered a constant. Since each test mass is hung from suspension system, the

amplitude should, in reality, depend on frequency of excitation, or should follow the

34



frequency response of the suspention system. Therefore, the frequency dependece will

be taken into account afterwards. The basic idea is that we calibrate the input test

masses first to AS Q, and propagate the relation to end test masses by the single arm

lock technique described later.

ITM DC calibration

ITM DC calibration takes place using the Michelson configuration: a Michelson in-

terferometer is made by using part of the full interferometer, which is comprised of

two input test masses (ITMX, ITMY) and the beamsplitter (BS) for our purpose.

The excitation signal is injected into the length control path of one of the ITM’s, and

the photodetector output AS Q at the anti-symmetric port is recorded. The input

test masses are controlled to hold the Michelson interference on a dark fringe.

Figure 2.11: Block diagram of Michelson configuration. M stands for Michelson
interferometer and S does for servo control transfer function. Michelson interferometer
consists of beam splitter (BS), input test mass (ITM). In the configuration, servo
controls the ITM’s to keep AS Q dark.

For following discussion, we define some variables: counts in excitation channel, dis-

placement due to the excitation, residual displacement, and AS Q as ε, x, xr and

q respectively. We do not distinguish the above variables from their Laplace trans-

formed (frequency domain ) variables here. From the block diagram, we can see that

the relation between the excitation x and AS Q signal’s output q is given by
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q =
M

1 +G
x, (2.2.11)

where G is the open loop gain (i.e., G = MS). We assume the excitation is large

enough so that we can ignore other noise such as seismic, thermal, and shot noise

during the measurement. Therefore,

∆x

∆ε
=

∆q

∆ε
× 1 +G

M
(2.2.12)

=
∆q

∆ε
× (1 +G)× xr

q
(2.2.13)

The three transfer functions making up the product in the last line are exactly what

we measure in the ITM DC calibration. They are called the ITM sweep, Michelson

open loop gain, and freeswing kick, respectively. Let’s take a look at them one by

one in the following.

ITM sweep The term ∆q
∆ε

is obtained by injecting the excitation signal ∆ε in the

Michelson’s length control path through either x-arm or the y-arm and take the

transfer function. The plot shows the Bode plot of the transfer function for both

x-arm(blue) and y-arm(green).

Michelson open loop gain The open loop transfer function is obtained by usual

technique injecting excitation signal in Michelson control path and take ratio of two

signals, just upstream and downstream of the excitation point.

Free swing kick This measurement is the core of ITM DC calibration in the sense

that it gives the relation between q and displacement of mirror x. We first align the

mirrors to make Michelson configuration and cut off the feedback control loop so that

two test masses(ITMX and ITMY) can move freely. Then, we excite one of the test

masses by gently applying injection signal and making sure that the interference pat-
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Figure 2.12: Bode diagram of ITM sweep.

tern ’blinks’. The plot shows time series of q when one of the test masses is ’kicked’.

The peak-to-peak range of ADC counts corresponds to the following quantity: Since

we know wavelength of laser beam, 1064 nm, peak-to-peak amplitude can be associ-

ated with the following quantity to figure out conversion factor between xr in meters

and q in counts.

Ap−p =
λ

2π
(2.2.14)

With all three the transfer functions, we get roughly 0.5 ∼ 1 nm per count for ∆x/∆ε.

So far, we ignored the frequency dependence of the amplitude response, assuming

excitation is very slow. In order to make the correction, we simply divide our DC

calibration result by input test masses transfer function, which is characterised by a
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Figure 2.13: Bode diagram of MICH open loog transfer function.

simple pendulum.

∆x

∆ε
|corr=

∆q

∆ε
(1 +G)

xr
q
/

ω2
p

s2 + ωp
Q
s+ ω2

p

(2.2.15)

The denominator is pendulum transfer function in which ωp, Q are pendulum natural

frequency and Q value respectively.

ETM DC calibration

End test masses (ETMX, ETMY) could be calibrated in the same way as the ITM

DC calibration using an asymmetric Michelson technique, where, instead of using two

input test masses, the pair of ITMX and ETMY, or the pair of ITMY and ETMX
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Figure 2.14: Time series of AS Q in freeswing kick measurement

is used. We here introduce a different method - single arm lock. The basic idea

is to propagate an excitation from an input test mass to an end test mass with a

single arm being locked. Namely, as we excite the input test mass, the end test mass

will follow the movement of the input test mass to keep the arm locked. The in-

phase signal called AS I is used for the measurement since AS Q is insensitive to this

configuration.6

Single arm lock measurement Since the ETM is controlled to keep a cavity res-

onant, the ETM tries to match the ITM’s motion when the ITM is dithered. We

use this fact to propagate displacement from the ITM to the ETM, exciting the ITM

very slowly so that we can ignore the pendulum. Figure 2.16 shows the Bode plot

6AS Q is tuned to be sensitive to differential arm length (both arm cavity’s length change ∆L
and Michelson arm length change ∆l). For the single arm lock configuration, AS I is more sensitive.
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Figure 2.15: Sketch of single arm lock measurement

of AS I signals to ITM’s excitation and to ETM’s excitation. The figure shows that

the AS I output response to ITM excitation, and to ETM excitation are very similar.

This backs up the concept of ’propagation’. As we considered in ITM DC calibration,

however, we need to take into account of pendulum motion. Let’s denote the excita-

tion of ITM, ETM as ε, δ and AS I signal as i. Considering difference of pendulum

normal frequency ωITM0 , ωETM0 between two masses, the excitation propagated from

the input test mass to the end test mass is given by

δ

ε

(
ωITM0

ωETM0

)2

=

(
i

ε

)(
δ

i

)(
ωITM0

ωETM0

)2

, (2.2.16)

where i/ε, i/δ are transfer functions measured as shown in figure 2.16. Combining

(2.2.15) and (2.2.16), we get relation between AS Q signal q and displacement of end

test masses x.

∆x

∆δ
=

∆x

∆ε
|corr ×

(ε
i

)
×
(
i

δ

)
×
(
ωETM0

ωITM0

)2

=
∆q

∆ε
(1 +G)

xr
q
/

ω2
p

s2 + ωp
Q
s+ ω2

p

×
(ε
i

)
×
(
i

δ

)
×
(
ωETM0

ωITM0

)2

(2.2.17)
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After all this work, this relation lets us know how much we must move the end mirrors

to keep Fabry-Perot cavities in resonance. It means, equivalently, we know how much

differential arm length ∆L is in terms of ADC counts.
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Figure 2.16: Bode plot of AS I measurement
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2.3 Generation of h(t)

As described in the previous section, the response function R(f) (transfer function

from photodetector output d(f) in gravitational wave channel to differential arm

strain h(f)) is determined in the frequency domain calibration. Strain in the time

domain can be generated by inverse-Fourier-transforming h(f). LIGO has developed

rather a different method using digital filters, which is called h(t) generation [50]. The

process is sometimes called time domain calibration, but it is somewhat of a misnomer

in the sense that there is no calibration per se in the h(t) generation process. What

we do in reality is to design digital filters to mimic time series of strain h(t) based on

the frequency domain calibration.

2.3.1 Z-transform

Generation of h(t) is based on the frequency domain calibration described in the

previous section. In the frequency domain, we have

R(iω) =
H(iω)

Q(iω)
. (2.3.1)

R, Q, H are response function, Fourier transformed signal in gravitational channel,

and Fourier transformed strain respectively. In principle, we could generate h(t) by

inverse Fourier transform once we have strain in Fourier domain H(iω). Mainly for

convenience, LIGO decided to use an alternative method similar to convolution in

the continuous world.

h(t) =

∫ ∞
−∞

r(τ)q(t− τ)dτ. (2.3.2)

The equivalent in the digital world can be given using an IIR filter,
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h(n) = Q(z)
N∑
k=0

b(k)q(n− k) +H(z)
M∑
k=1

a(k)h(n− k) (2.3.3)

R(z) =
H(z)

Q(z)
=

∑N
k=0 b(k)z−k

1−
∑M

k=1 a(k)z−k
(2.3.4)

or using an FIR filter,

h(n) =
m−1∑
k=0

b′(k)q(n− k) (2.3.5)

R(z) =
H(z)

Q(z)
=

N∑
k=0

b′(k)z−k. (2.3.6)

The z-transform [54][55] has been used in the above expressions. In general, the

z-transform is defined as follows.

X(z) =
∞∑

n=−∞

x(n)z−n (2.3.7)

where x(n) is digital time series and z is a complex number defined by z = reiω ⊂ C.

If we apply the z-transform to y(n) = x(n− 1),

Y (z) =
∞∑

n=∞

y(n)z−n =
∞∑

n=∞

x(n− 1)z−n (2.3.8)

=
∞∑

n=∞

x(k)z−(k+1) =
∞∑

n=∞

x(k)z−kz−1 (2.3.9)

∴ Y (z) = z−1

∞∑
n=−∞

x(k)z−k = z−1X(z). (2.3.10)

Therefore, we can identify time delay with multiplication of z−1 in z-domain.
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Figure 2.17: IIR filter structure. h(n) is generated using q(k) and h(k)(k < n). If all
a(k)s are zero, the structure will be the same as FIR filter, and h(n) is made only
from q(k)s.

Once we have response function in the z-domain, the time series h(n) is given im-

mediately. Therefore, the goal here is to define either a(k)s and b(k)s for the IIR

filter, or b(k)s for the FIR filter. In S5 V3, we employed FIR filters to replace all the

transfer functions in the DARM model, A, C, and D.

2.3.2 Bilinear transform and unit impulse response

We define IIR filters as intermediate products toward FIR filters - final products to

generate h(t). (We could have IIR filters as our final products. The choice of the

two filter types is essentially a matter of taste although each has some pros and cons

[58].) The bilinear transform method is used to approximate the response function

R(iω) with R(z). We make corrections, usually adding some delays, to minimize the

difference between the original frequency response and the new frequency response.

The correction is necessary since the bilinear transform is just an approximation to

the z-transfrom. Then, with the coefficients obtained in IIR filter design, using unit

impulse response, we design FIR filters. We use a commercial code MATLAB [60]
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in the filter design process. The following is a brief overview of the filter design

procedure.

Bilinear transform

In order to do the z-transform, we use the bilinear transform by the following substi-

tution.

s =
2

ts

(
1− z−1

1 + z−1

)
(2.3.11)

where ts is the IIR filter’s sampling period, or inverse of sampling rate 1/fs. We either

use the same sampling rate of gravitational wave channel 16384 Hz or use a somewhat

higher sampling rate (This is called upsampling), fs = pup× fg, where fg is 16384 Hz

in iLIGO, sampling rate of gravitational wave channel and the factor pup is usually

4 to 8. After the insertion, rewriting the new transfer function in the z-domain, the

IIR digital filter coefficients b(k)′s and a(k)′s are easily acquired by inspection. The

bilinear transform maps the whole s-plane to z-plane, and it conveniently maps entire

left-half s-plane into the interior of the unit circle around the origin in the z-plane.

Figure 2.18: Bilinear transform. It maps the s-plane into the z-plane. The entire left
half plane in the s domain (The stable region for pole locations in a linear system) is
transformed into the interior of the unit circle in the z domain.

When we design digital filters, stability is one of the most important things to be
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satisfied. Figure 2.19 shows the impulse response (will be described shortly) of the

IIR filter for the sensing function. The red curve does not converge while the blue

curve does. In general, we need the converging behavior like the blue one here in IIR

filter design. The red one will introduce an oscillatory behavior and it hardly matches

up with the original sensing function in the frequency domain when we compare the

frequency response of the two. We will explain how we obtained the blue one in the

description of filter design of the sensing function.
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Figure 2.19: Unit impulse response of sensing FIR filter. Red is the absolute value
of the impulse response of IIR filter calculated by bilinear transform of the inverse
of the original sensing function, while red is the modified one. We cannot use the
red one for two reasons: The frequency response is more different from the original
sensing function, and the filter introduces oscillatory behavior.
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Unit impulse response

Since our calibration model is linear-time-invariant (LTI), we can use unit impulse

response to get all digital filters b(k)′s in FIR filter. Unit impulse is the response

to input time series where x(n) = 1 for n = 1, otherwise x(n) = 0. The feature

time-invariant is characterized in such a way that for a system which results in y(n)

to some input x(n), the time shift caused in the input x(n+ k) will result in y(n+ k)

(k is some integer). If q in (2.3.5) is the unit impulse, output series is made of FIR

coefficients b(k)′s.
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Figure 2.20: Unit impulse response of actuation FIR filter. Curve contains 16384 ×
8 points which are identical to the FIR coefficients b(k)′s. Green curve is Hann-
windowed filter while blue is not windowed. The duration time is typically several
seconds, which is chosen after some trial and error process.

For example, figure 2.20 shows the impulse response of a FIR filter for actuation
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function. The plot is made of 16384× 8 points, and each of them is exactly the filter

coefficient of the FIR filter. The duration, 8 seconds, is chosen after some trial and

error process. Green curve shows Hann-windowed response while the blue curve is

not windowed at all. The Hann window is defined as follows. We use the right half of

the window whose value goes from one to zero in order for filter coefficients to reach

zero faster.

hann(n) = 0.5
(

1− cos
(

2π
n

N

))
, 0 ≤ n ≤ N

The response itself (the whole set of coefficients) is exactly what we need, i,e., the

b(k)′s

2.3.3 Filter design

In the following, we explain how we designed filters for each function to construct h(t).

The way is ad hoc - filters were designed through some trial and error method. We

design filters for A, D, and C separately and check whether the frequency response

reproduces the official function defined in the frequency domain calibration. In order

to have good agreement with the official functions, we usually adjust upsampling

factor, extra time delay, and length of filters (number of filter coefficients) etc. The

ad hoc method was allowed since h(t) is historically generated several months after

the data is acquired. However, for much smaller latency, we will need to come up

with a more automatic way where a designer is not needed any more. Some effort

toward this direction is being made by X. Seimens [55].

Actuation

Besides the pendulum transfer function, the actuation function contains some other

functions such as suspension digital notch filters, high frequency correction for the

test mass’s drumhead mode, anti-imaging filters etc as we mentioned earlier. In the

digital filter design, we z-transform the pendulum transfer function for both arms.
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Suspension filters are already digital by definition (LIGO employs digital control

system). All other functions are replaced by an extra delay. Namely, the actuation

function is given by

A = (dx,sysfxnx − dy,sysfyny) , (2.3.12)

where fx, fy are digitized pendulum functions, and nx, ny are digital suspension filter

implemented in digital control system. dsys is a delay function which absorbs all the

other functions that originally existed in frequency domain model. The output matrix

is already absorbed in the pendulum functions. As mentioned in the calibration

section, the pendulum is modeled as a second-order transfer function.

f =
ω2
n

s2 + ωn
Q
s+ ω2

n

(2.3.13)

Inserting s = 2
ts

1−z−1

1+z−1 into the above, we will get

fbl =

ω2
n

a2+ωna+ω2
n

(1 + 2z−1 + z−2)

1 + 2(ω2
n−a2)

a2+ωna+ω2
n
z−1 + a2−ωna+ω2

n

a2+ωna+ω2
n
z−2

, (2.3.14)

where a = 2
ts

. By inspection, we have the IIR filter coefficients as follows.
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b(0) =
ω2
n

a2 + ωna+ ω2
n

b(1) =
2ω2

n

a2 + ωna+ ω2
n

b(2) =
ω2
n

a2 + ωna+ ω2
n

a(1) = − 2 (ω2
n − a2)

a2 + ωna+ ω2
n

a(2) = −a
2 − ωna+ ω2

n

a2 + ωna+ ω2
n

Notch filters are digital filters defeined as follows.

n =
∏
k

nk (2.3.15)

nk =
1 + bk(1)z−1 + bk(2)z−2

1− ak(1)z−1 − ak(2)z−2
, (2.3.16)

where the a’s and b’s here are not related to the actuation function’s coefficients.7

Each function’s s-domain expression will be

nk (s) =
s2 + ωk

Q1
s+ ω2

k

s2 + ωk
Q2
s+ ω2

k

(2.3.17)

The bilinear transform is not a complete z-transform but rather an approximation,

so some corrections are needed. In addition, other functions in the frequency model

can be absorbed in the delay function together when we design the delay function.

As said, this is completely ad hoc since we do not know if this works or not a priori.

Nevertheless, our typical delay function in actuation is

7We are abusing a(k)′s and b(k)′s in this section, but hope there is no confusion judging from
the context.
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dsys = b(0) + b(1)z−1. (2.3.18)

Designing both for the x-arm and y-arm, putting everything together, we make an

actuation function by (2.3.12). If we chose an IIR filter as our h(t) product, the

expression would be our goal. In order to have the unit impulse response of the

actuation function, we use a unit impulse response as a cascade. Suppose we already

have the filter coefficients for a function y1 and a function y2, and denote the each

function as y1 = y1(X) and y2 = y2(X), where X is some input time series. Now,

we want to know the response of the function y1y2 to the unit impulse x(n). If we

denote y1’s response to a unit impulse x(n) as y1 [x(n)], then we can use the y1 [x(n)]

as the input for impulse response of y1y2, i.e.,

y1y2 [x(n)] = y2 (y1 [x(n)]) (2.3.19)

Using this method, we obtain FIR filter coefficients for actuation function.

Sensing function

The sensing function is a cavity pole function scaled by optical gain, as described

above. Without the optical gain scaling, the normalized sensing function is

C(iω) =
1

1 + i ω
ωc

=
ωc

s+ ωc
, (2.3.20)

where ωc = 2πfc. Now we perform a bilinear transform simply by substituting

(2.3.11),
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C(z) =
1 + z−1(

1 + 1
tsωc

)
+
(

1− 1
tsωc

)
z−1

. (2.3.21)

Since the response function has a form R = 1+G
C

, the inverse of the sensing function

will be used in the response function. Therefore, the zero in the above expression turns

into a pole in the z-plane, which will be trouble since z = −1 gives an oscillatory

impulse response (see figure 2.19) - not stable. So, in order to avoid the instability,

we place a zero at very high frequency (80 kHz for V3) by which the original cavity

pole function is not affected.
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Figure 2.21: Modified sensing function. Blue is the modified sensing function while
green is the original. In order to kill the oscillatory behavior in a z-transformed
sensing function, a zero is placed at 80 kHz. The inverse of the modified sensing
function is stable.
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The procedure to design a sensing FIR filter is very similar to the actuation filter

design. One difference, though, is that we use an upsampling factor when we digitize

the original cavity pole function. A bilinear transform is used to obtain the IIR filter

coefficients, and delay functions are introduced. Then using unit impulse response

with some appropriate duration time T (∼ 15 ms), we get the FIR filter coefficients.

Servo function

As mentioned, servo filters are digital from the beginning. There is no need to modify

them, except for one point. One of the filter banks contain a double pole at z = 1

which causes instability. Therefore, we replace the filter bank with one which has

coefficients very close to the original one but does not have pole at z = 1. The

procedure followed is similar to the other two functions.

Response function

Once we have the above functions (sensing C, actuation A, and servo D), the response

function R can be calculated by R = 1+ADC
C

. Below is shown the comparison between

the official response function R and the FIR response function Rfir in magnitude and

phase. The relative difference is defined by
Rfir−R

R
, and the phase difference is just

∠Rfir − ∠R

The relative difference in magnitude is at most 3 %, which is very reasonable given

the fact that the original response function has several percent systematic error plus

a few percent statistical error. The phase discrepancy is also within acceptable levels.

A thorough comparison can be found in [53].

Implementation

Now we have all the FIR filter coefficients to generate h(t). There are a couple

of ways to apply this filter to a data stream. We here introduce one of the most

straightforward ways. Modifying figure 2.6, we get the diagram in figure 2.24. We

split the DARM loop path into two, one is going backward from the DARM ERR,

the other one is the same as original. The split makes sense since the sensing function
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Figure 2.22: Relative difference of response function between the official function and
the FIR filter.

needs to be upsampled in frequency by the FIR filter definition, while the servo and

actuation function do not need the upsampling. The upsampling procedure is to place

extra zeros between the original samples at 16384 Hz and smooth with a lowpass filter

at a frequency lower than the Nyquist frequency. Details can be found in [54]. For

validation of our h(t) production, see [53, 56].
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Figure 2.23: Phase difference of the response function between the official function
and the FIR filter.

Figure 2.24: Generation of h(t). A,D, 1
C

are all FIR digitized filters for actuation,
digital servo, and inverse of sensing described in the document. ↑ and ↓ are upsam-
pling and downsampling, which are needed since the sensing function is designed with
upsampled sampling rate. LP and HP are lowpass and highpass filters respectively.
Overall multiplication to set the low frequency optical gain adjustment is omitted
from the diagram.
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Chapter 3

Alignment Sensing
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3.1 Gaussian Beam

3.1.1 Hermite-Gaussian modes

Laser beams produced in most cavities are approximately described very well using

Hermite-Gaussian functions [22, 23].

E(x, y, z, t) = eiωtE(x, y, z) (3.1.1)

E(x, y, z) =
∑
m,n

amnUmn(x, y, z) (3.1.2)

where Umn is the product of two Hermite-Gaussian functions

Umn(x, y, z) = Um(x, z)Un(y, z)e−ikz (3.1.3)

Um(x, z) =

(
2

π

) 1
4 1√

2mm!w(z)
Hm

(√
2x

w(z)

)

× exp

[
−x2

(
1

w(z)2
+

ik

2R(z)

)]
exp

[
i

(
m+

1

2

)
η(z)

]
, (3.1.4)

where η(z), w(z), R(z) are the Gouy phase shift, spot size, and radius of curvature

(ROC) of wave front at position z, and the beam profile is determined by these

parameters completely. The Gouy phase is the phase shift with respect to that of a

plane wave, the higher mode gains more Gouy phase shift as (3.1.4) indicates. The

place where the ROC is infinite is called the waist and usually set as z = 0. The

waist position is often chosen as the reference point from which the Gouy phase shift

is measured.
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Figure 3.1: Gaussian beam parameters

w(z) = w0

[
1 +

(
z

z0

)2
] 1

2

(3.1.5)

R(z) = z +
z2

0

z
(3.1.6)

η(z) = tan−1

(
z

z0

)
(3.1.7)

w0 is the waist size and z0 is the Rayleigh range defined by

z0 =
πw2

0

λ
. (3.1.8)

A fact that η(z), w(z), R(z) are functions of distance from the waist requires accurate

optical layout of an interferometer. As will be explained later, it is essential to have

proper beam size and Gouy phase settings in order to get good error signal at each

detection port. Figure 3.2 are some plots of Umn(x, y) at the waist position (z = 0).
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Figure 3.2: The first four Umn normalized by a number C =
√

2/π/w0. It turns out
U10, U01 can be associated with misalignment information in yaw and pitch directions.
That is the heart of alignment sensing.

3.2 Modal Analysis

As we saw above, the electromagnetic field in a cavity can be described using a

Hermite-Gaussian eigenmodes expansion

E (x, y, z) =
∑
mn

amnUmn (x, y, z) , (3.2.1)

where amn is a vector representation in modal space. Namely, amn = (a00, a10, a01, a11, ...)
T .

For convenience, we introduce bra, ket notation.
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Um(x, z) = |m〉 (3.2.2)

Umn(x, y, z) = Um(x, z)Un(y, z)e−ikz = |mn〉 (3.2.3)

Then, the orthogonality condition of the basis will be expressed as follows.

∫ ∞
−∞

U †m(x, z)Un(x, z)dx = δmn =
∑
mn

|m〉〈n| (3.2.4)∫ ∞
−∞

∫ ∞
−∞

U †mnUkldxdy = δmkδnl =
∑
mn,kl

|mn〉〈kl| (3.2.5)

Now, consider a situation in which the original electromagnetic field is modified by

some operator O, i.e.,

E ′(x, y, z2) = O(x, y, z2, z1)
⊗

E(x, y, z1) (3.2.6)

where z1, z2 are the original and transformed position in z direction. The operator

O includes the effect of spatial propagation and misalignment. The matrix represen-

tation of the operator will be given by

Omn,op =

∫ ∞
−∞

∫ ∞
−∞

U †mnOUopdxdy = 〈mn|O|op〉. (3.2.7)

We simplify the operator, separating the space propagation operator from the mis-

alignment. Namely,

O(x, y, zz, z1) = P (z2, z1)
⊗

M(x, y) (3.2.8)

where P and M are the propagation and misalignment operators respectively. P is
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essentially responsible for a significant phase shift, and M(x, y) is a small offset from

the original phase front in transverse directions by Z(x, y). The matrix representation

of the propagator P will be immediately

Pmn,op = 〈mn|P (z2, z1)|op〉 = δmoδnpe
−ik(z2−z1)ei[(m+n+1)η] (3.2.9)

where η = η(z2)− η(z1).

Figure 3.3: Reflection from misalinged surface. Phase shift is simplified by separating
the significant phase shift from the one caused by small deviations at the mirror
surface Z(x, y).

For M(x, y), considering the phase shift due to small deviation Z(x, y),

M(x, y) = e−2ikZ(x,y) (3.2.10)

where k = 2π
λ

is the wave number of the laser beam. Therefore, the matrix represen-

tation of the misalignment operator will become

Mmn,op = 〈mn|e−2ikZ(x,y)|op〉. (3.2.11)
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For instance, if the misalignment is only in the yaw direction (around the y-axis) by

a small angle θ, Z(x, y) can be expressed as

Z(x, y) = θx =
λΘ

πw
x, (3.2.12)

where Θ is called the normalized angle. Using the following definite integrals
∫∞
−∞ e

−x2
dx =

√
π and

∫∞
−∞ x

2e−x
2

=
√
π/2, M will be calculated as follows (up to 1,0 mode).

M = e−
1
2

(2Θ)2

 1 −i (2Θ)

−i (2Θ) 1− (2Θ)2

 (3.2.13)

≈

1− 1
2

(2Θ)2 −i (2Θ)

−i (2Θ) 1− 3
2

(2Θ)2

 (3.2.14)
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3.3 Detection Scheme

The Pound-Drever-Hall technique described in the previous chapter can be used to

sense the misalignment of the mirrors that make up a resonant cavity [29, 30, 31].

The main differences from length sensing are the following:

� Firstly, we make use of the fact that misalignment causes higher-order mode exci-

tation. The error signal is, therefore, made of beats between TEM00, TEM10 (yaw),

and TEM01 (pitch) of the carrier and the sidebands.

� The second difference is the influence of the Gouy phase. Since the Gouy phase

shift is different between the fundamental mode and higher order modes, the error

signal is affected by the Gouy phase in a crucial way.

3.3.1 Wave front sensing

Suppose the cavity is illuminated by the fundamental TEM00 mode and that the

cavity is on resonance and aligned as described in figure 3.4. Then, the field inside

the cavity is expressed by Gaussian beam U00(x, y, z). Now suppose that the end

mirror is tilted in the yaw direction by a small angle θ. The beam reflected from the

end mirror is still TEM00 along the new beam axis, but how does the beam look in

the original axis? The answer was already given in the previous section. Specifically,

using the misalignment operator M(x, y), the reflected beam from the misaligned

mirror can be calculated as

a′00

a′10

 =

1− 1
2

(2Θ)2 −i (2Θ)

−i (2Θ) 1− 3
2

(2Θ)2

a00

0

 =

[1− 1
2

(2Θ)2] a00

−i (2Θ) a00

 , (3.3.1)

where a00 is the amplitude of the input beam TEM00 mode. The point here is that

the new field contains the U10 mode with an amplitude that is linear to the misalign-

ment angle θ. Thus, the next question is how to extract the information from the
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Figure 3.4: A tilted optical cavity. Reflected light from the tilted end mirror(red)
can be decomposed into TEM00(blue) and TEM10(green) modes. The beat between
the TEM10 mode and the directly reflected sideband(black) from the front mirror
contains information about the angular tilt θ.

photodetector signal. That is the place where Pound-Drever-Hall technique comes

into play. We now calculate the error signal to see how we play the game. For the

simplest case, we consider only yaw motion of the end mirror, which requires two

dimensions for the field.

E =

a00

a10

 (3.3.2)

The operators to calculate the fields inside the cavity are similar to the one for length

control. The only difference is that we need to include the misalignment operator in

our description. Since we misalign the end mirror, the round trip operator will be

given by
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Prt = r1r2PM2P, (3.3.3)

where P , M2 are the already derived space propagation operator and misslignment

operator

P = e−ik(z2−z1)

eiη 0

0 e2iη

 , (3.3.4)

M =

1− 1
2
(2θ)2 −2iθ

−2iθ 1− 3
2
(2θ)2

 . (3.3.5)

Therefore, just as with length control, the field inside the cavity and that reflected

from the cavity can be calculated by

Ecirc = t1(I − Prt)−1Ein (3.3.6)

Eout = r1E0 − t1r2PMPEcirc (3.3.7)

= r1

[
I − r2

1 + t21
r2

1

Prt

]
(I − Prt)−1Ein. (3.3.8)

where I is the identity matrix. Since our input field is phase modulated, we can

express the reflected field in the following way.

Eout = ECR + ESB+ + ESB− (3.3.9)

The power at the output port will be, analogue to (2.1.34),

P = [P (η)Eout]
†DΩ [P (η)Eout] . (3.3.10)

P (η) is a propagator for the Gouy phase shift to account for the phase change between
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the cavity and the output port 1. DΩ is the operator for the geometric shape of the

photodetector. Here, we use a split photodetector as described in figure 3.4 and it

has the following form.

DΩ =

0 1

1 0

 . (3.3.11)

Notice that we did not need DΩ in the length sensing system since there was no

need to take beats between the fundamental TEM00 mode and any other mode. The

demodulated signal is therefore

S =
(
ECR

)†
DΩESB− +

(
ESB+

)†
DΩECR (3.3.12)

The plot in figure 3.5 shows the field inside the cavity and also the error signal as a

function of misalignment angle. As with length control, we can use the linear part

around the zero-misalignment condition as an error signal for the alignment feedback.

3.3.2 ABCD matrix and beam parameters

It is someimes useful to use the complex beam parameter defined by

1

q
=

1

R
− i λ

πw2
, (3.3.13)

where R is the radius of curvature of the phase front, w is the beam size, and λ is

the wavelength. Once the parameter is given, we can propagate the parameter via

the ABCD formalism as described below, which is useful even if the optical layout

becomes complicated. ABCD matrices (or ray matrices) are 2×2 ray transfer matrices

which tell us the path of optical rays.

1In this subsection, we ignore it assuming output port exists just in front of the cavity (looking
from incoming beam side). But, as will be shown later, it is important to find the Gouy phase which
gives the maximum error signal.
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Figure 3.5: Angular error signal. The field inside the cavity (top) and error signal
(bottom) as a function of misalignment angle. As with length sensing, the deflection
from resonance is sensed as a linear signal of misalignment angle. All parameters
from table 1.1 are used. Modulation index = 0.45.

x2

x′2

 =

A B

C D

x1

x′1

 (3.3.14)

Here, x is the displacement of a ray from the optical axis and x′ is its slope. The

details of ABCD matrix can be found in [22, 23]. The usefulness comes from the fact

that a new beam parameter is given simply by

1

q2

=
Cq1 +D

Aq1 +B
(3.3.15)

The radius of curvature and beam size are
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R2 = Re

[
1

q2

]
(3.3.16)

w2 =

√[
−Im

[
1

q2

]
π

λ

]−1

(3.3.17)

The formalism of ABCD matrices is convenient especially for complicated optical

systems. For alignment sensing, it is crucial to calculate the Gouy phase and beam

size accurately along the optical path. Details can be found in [49].
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3.4 A matrix model of a full interferometer

Using matrices introduced in the previous section, we develop matrices representing a

full interferometer [34, 35, 36, 37, 38, 39, 40, 41]. The goal in this section is to derive

operator expressions for the three detection ports (anti-symmetric port, reflected port,

and recycling cavity port) where the wave front sensors are located. First, consider a

Fabry-Perot cavity.

Figure 3.6: Fabry-Perot cavity.

Using the propagator, misalignment operator, reflection coefficient, and transmission

coefficient, the round trip operator can be written in the following.

Prt = (−r1)(−r2)M1PM2P. (3.4.1)

We use a convention where we multiply −1 every time light is reflected from coated

surface. Therefore, the field inside the cavity is

Eins = PrtEins + t1E0 (3.4.2)

∴ Eins = t1(I − Prt)−1E0. (3.4.3)

The reflected field is
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Eref = r1M
†
1E0 − t1r2PM2PEins (3.4.4)

= r1M
†
1

[
I − t21

r2
1

Prt(I − Prt)−1

]
E0 (3.4.5)

= r1M
†
1

[
(I − Prt)(I − Prt)−1 − t21

r2
1

Prt(I − Prt)−1

]
E0 (3.4.6)

∴ Eref = r1M
†
1

[
I − r2

1 + t21
r2

1

Prt

]
(I − Prt)−1E0 (3.4.7)

The last expression is exactly what we need to have reflected light from the arm

cavities (either the x-arm or the y-arm). We treat cavity as a ”big” operator G.

Namely,

E1ref = G1E1in (3.4.8)

E2ref = G2E2in. (3.4.9)

E1in, E2in are the electromagnetic field going into the x-arm cavity and y-arm cavity

respectively, and E1ref , E2ref are reflected from each cavity.

The cavity operators G1, G2 allow us to treat each arm as a (complicated) mirror.

Then, we define common Michelson and differential Michelson operators as

MC = t26Pl1G1Pl1 + r2
6Pl2G2Pl2 (3.4.10)

MD = r6t6(Pl1G1Pl1 − Pl2G2Pl2) (3.4.11)

Pl1 , Pl2 are the propagation opetators for the short Michelson lengths l1 and l2. r6

and t6 are the reflection and transmission coefficients of the beam splitter. We can

use MC and MD to get the electromagnetic field in each detection port. Next, we
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Figure 3.7: Matrices. Carrier light(red) is resonant both in the arm cavities(x and
y) and the recycling cavity, while the resonant sideband(blue) is only resonant in the
recycling cavity. The non-resonant sideband(green) is not resonant anywhere, but it
is reflected from the recycling mirror immediately.

repeat this trick, and represent the whole Michelson interferometer consisting of the

x and y arm and the beamsplitter as another (complicated) mirror, and then obtain

the electric fields Erec, Eref , and Eas at the three different places such as inside the

recycling cavity (rec), just outside the recycling mirror (ref), and the dark port (as),

respectively.

Erec = t5(I + r5M5MC)−1E0 (3.4.12)

Eref = r5M
†
5(I +

r2
5 + t25
r5

M5MC)(I + r5M5MC)−1E0 (3.4.13)

Eas = MDErec (3.4.14)
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Figure 3.8: Combined matrices. We can view full interferometer in the same way as
Fabry-Perot cavity is treated.

In principle, we can calculate matrices of any complicated configuration in the same

manner. In the next section, we will look at error signal calculated by the formalism

in this section.
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3.5 Sensing Matrix

3.5.1 Theory

Now are we ready to calculate the error signals at the detection ports, such as anti-

symmetric port, refl port, and pick-off port (inside the recycling cavity). The final

goal is, at the three ports, to sense misalignment of the five core optics: ITMX, ITMY,

ETMX, ETMY, RM, and to correct the misalignment by feedback control servos. Be-

cause of the complexity of the detector and of the Gouy phase shift along the optical

path, it is not clear where we can find good sensing signals until we perform the cal-

culation. Even when we include only first excited mode, the analytical expression at

each detection port will become complicated. Then, numerical calculation is usually

employed.

Of the ten alignment degrees of freedom - yaw and pitch direction for each of the five

core optics, we only consider the five degrees of freedom for yaw. And, instead of

using each angle, a new basis will be used as defined below.



∆θETM

∆θITM

θETM

θITM

RM


=

1√
2



0 −1 0 1 0

−1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

0 0 0 0
√

2





θITMX

θETMX

θITMY

θETMY

RM


(3.5.1)

First, we need to have the interferometer in operating condition which is summarized

below.

Making sure that the operating condition is satisfied, we introduce a misalgnment in

one degree of freedom at a time and observe the demodulated signal at each port.

For instance, we introduce a small angle ∆θETM and look at the detection signals.

Since the signals depend on the Gouy phase, study of graphs like the one in figure
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frequency arm cavity recycling cavity

CR X X
SB X
NR

Table 3.1: LIGO’s operating condition. CR, SB, NR are carrier, resonant sideband,
and non-resonant sideband respecively. CR is resonant in both the arm cavity and
recycling cavity. SB is resonant only in the recycling cavity. NR is not resonant
anywhere, but it reflects immediately from recycling mirror.

3.9 allows us to find the Gouy phase that gives maximum signal.

The plot in figure 3.9 shows the demodulated signals in response to small differential

misalignment in ETM. The top plot shows that the I-phase signal and the bottom

plot shows Q-phase signal. Of the three detection ports, we see that the AS port is

the most sensitive to this dof (dETM), and the maximum appears in the Q-phase at

a Gouy phase of 90 degrees. The other plots are shown in Appendix C. Following a

similar procedure, we can find a combination of the most efficient port, demodulation

phase, and Gouy phase for each DOF, and this set will be our alignment sensing

scheme.

In order to sense ten degrees of freedom, four quadrant photodetectors have been used

in LIGO. They are WFS1, WFS2, WFS3, and WFS4. WFS1 is at the anti-symmetric

port and is the most sensitive to dETM and dITM. WFS2 picks up the signal from

the recycling cavity port and it works as two different sensors by demodulation phase.

The Q-phase is called WFS2B, and it senses dITM, while the I-phase is called WFS2A

and it measures cITM and RM DOFs. WFS3 and WFS4 are placed in the reflected

port and they get the same light, but in different Gouy phases. WFS4 senses the

common mode degrees of freedom, cITM and cETM, while WFS3 is sensitive to RM.

These are summarized in figure 3.10, which is a copy from [34].

3.5.2 Measured sensing matrix

This subsection describes how the sensing matrix is measured in reality. The previous

subsection described the theory, in which everything is perfectly aligned but one dof
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Figure 3.9: Error signals to dETM at detection ports as a function of the Gouy phase.
The color scheme is as follows. blue:antisymmetric port, magenta:refl, green:pick-off,
red :refl(NR).

Figure 3.10: The table from [34]. A table by which initial LIGO’s angular sensing
and control (ASC) scheme was initially designed. Boxes are added to show which
photodetector covers which DOF.
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to which we introduce misalignment. In reality, the interferometer is under the in-

fluence of various noise such as seismic noise, thermal noise, shot noise etc, and each

mirror is controlled to satisfy the running condition. Given that the natural frequency

of the angular mode (either yaw or pitch) of the mirror suspension is around 0.5 Hz,

the most influential noise will be seismic noise. It is impossible to measure the sens-

ing matrix, completely equivalent to what we have in the theory where everything is

static. So we take, instead, the transfer function from exciting each mirror at a cer-

tain frequency 9.7Hz [44]. If one mirror is shaken, everything will start responding to

the fluctuation due to feedback control loops - everything is coupled in reality. Then,

we use a notch filter which passes all frequencies except for 9.7 Hz. We activated

the filters related to angular control, which allows us to see the WFS’s uncontrolled2

signals in response to each mirror’s excitation at 9.7Hz, while allowing the angular

control servos to keep the interferometer aligned. The assumption here is that the

relative response of each WFS will be the same at lower frequencies - around 0.5 Hz.

The excitation signal at 9.7 Hz is injected into the control path to each mirror (the

five core optics, plus BS and MMT3) 3 one at a time, and record the transfer function

of WFS signals (WFS1, WFS2, WFS3, WFS4), QPDX, and QPDY.

The table shows response of photodetectors to each mirror excitation in counts per

micro radian [45]. For instance, when ETMX is excited by one micro radian, WFS1

senses the motion by 169079.631 cts and the relative phase difference to the exci-

tation motion is -3.121532 radian. Some of these values will be used in the model

we developed for understanding of angular instability (see chapter 4). Values for the

pitch direction are acquired in the same manner. As we see, if we excite one mirror,

all photodetectors sense the excitation. In other words, everything is coupled here

2We want each WFS’s response when a misalignment is introduced in a mirror, which is the
situation we have in the theory. The situation can be called uncontrolled, since if ASC system senses
the misalignment in reality, all optics immediately respond to fix the misalignment. We need to cut
off the control to measure sensing matrix, but need the IFO in the operating condition. That is why
we need the notch filter to make the system uncontrolled at 9.7Hz.

3BS and MMT3 are controlled for beam centering of the laser beam. Quadrant photodiodes
called QPDX, QPDY are located behind end mirrors (ETMX, ETMY) to sense beam centering and
the signal is fed back to BS and MMT3.
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WFS ETMX ETMY ITMX ITMY RM BS MMT3

WFS1 169079.631 131788.0265 -51572.22852 -55658.32425 6642.757075 -813.8707905 2520.927769
(-3.121532) (-3.12098) (3.168657) (3.163367) (-0.13606) (-3.112959) (-0.314514)

WFS2A 3300.800189 144.3731638 -27364.04886 -20897.09309 156612.4084 -71214.44234 5219.263222
(-3.070222) (0.1379) (0.022006) (3.171583) (-0.00586) (0.020085) (-0.185835)

WFS2B 722.1845287 298.2350085 -8228.773865 -15452.7151 76653.71285 -52745.26995 2422.408771
(-2.953122) (0.00891) (0.004467) (3.164843) (-0.01646) (0.009492) (-0.080297)

WFS3 2961.088764 1657.873538 -10350.24362 -7797.50872 93092.46622 -24248.55425 60825.90474
(-0.025724) (-3.13538) (-0.040866) (3.166531) (-0.00616) (0.018053) (3.132466)

WFS4 9759.176994 7474.121764 -1812.04814 -1929.186009 25890.10953 -4953.629098 25325.76183
(0.015053) (-3.12392) (0.2162715) (3.178285) (3.126379) (-3.140449) (-0.018053)

QPDX 1046.681723 10.35131097 -1182.245404 -5.012753643 34.72445802 -8.257156132 11.80078105
(0.013721) (-0.32177) (0.022899) (5.03053) (2.550526) (1.981451) (-2.596754)

QPDY 18.11150978 725.3134442 -10.50703441 -1103.853674 9.690568406 -21.18291435 42.43329428
(-0.4296799) (-3.10841) (-0.76179) (3.170551) (4.34081) (-2.379739) (-1.578234)

Table 3.2: Measured sensing matrix which is extracted from a file
yawH1 051206 1823.txt: transfer function to excitation of each mirror. The
unit is counts per microradian calibrated by optical lever [43], and numbers in the
bracket are phase relative to the excitation, in radian.

to some extent. Feedback gains are calculated by taking the inverse of the sensing

matrix with some truncation based on the significance of each component [46]. The

matrix is called the output matrix. Table 3.3 is an output matrix determined by

commissioners at some point during S5.

WFS1 WFS2A WFS2B WFS3 WFS4 QPDX QPDY

ETMX 0.946 0.800 -0.466 -0.605 -0.952 0.330
ETMY 1.054 -0.880 -0.520 0.667 1.048 -0.200
ITMX 0.952 -0.830 -0.640 0.165 4.560
ITMY -1.048 -1.170 0.740 -0.181 -2.160
RM 0.365 -1.00 0.153 0.370
BS 0.100 -0.100

MMT3 1.00

Table 3.3: Output matrix in S5. It defines how feedback takes place after sensing
misalignment angle via the wave front sensors. Essentially, it is the inverse of the
sensing matrix, but some components are truncated based on significance of the
signals.

In table 3.3, we can see the basis is fit to differential and common motion. For

example, the WFS1 is fed back to the ETMX and ETMY by a feedback gain 0.946,

1.054 respectively. As discribed already, the WFS1 is responsible for differential angle

change dθETM = θETMX − θETMY . So, all signs in the table seem flipped here (i.e.,

the common motion has different sign while differential mode has the same sign.). In
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this way, we determine the output matrix to control misalignment of each mirror. It

is essentially the inverse of the sensing matrix. In the next chapter, we will discuss

the effect of radiation pressure on the ASC system.
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Chapter 4

Angular Instability
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4.1 Sigg-Sidles instability

As the laser power that is stored in an optical resonator like a LIGO arm cavity

becomes larger, so does the radiation pressure or photon recoil force exerted on the

mirrors. This force is resisted by the mechanical restoring force of the mirror suspen-

sion. In the context of LIGO-like cavities, such a coupling to longitudinal motion of

the mirrors has been experimentally demonstrated by Nergis Mavalvala et. al [43].

In this chapter, we describe a measurement of an instability coupling of the radiation

pressure to the angle of the mirrors, which was first theoretically predicted by D. Sigg

and J. Sidles [32]. They studied the angular instability in an optical resonator caused

by radiation pressure; this might be a problem at high power operation in future

gravitational wave detectors [32][33]. The physics of the problem can be described as

follows. Let’s consider an optical resonator described in the figure below.

Figure 4.1: Tilted Optical Resonator. Two mirrors are coupled by radiation pressure
caused by the power of the laser beam P , pushing at distance x1 and x2 away from
the center line when tilted angles are θ1, θ2 respectively. I1, I2 are moment of inertia
of the mirrors. R1, R2, L are radius of curvature of the mirrors and distance between
the mirrors respectively. The sketch can be viewed as either yaw or pitch motion.

The sketch shows two tilted coated mirrors whose moment of inertia are I1, I2 with
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very large radius of curvature R1, R2 (larger than distance between two mirrors in

LIGO), optical axis defined by a line connecting centers of curvature of the mirrors.

The sketch can be viewed either as yaw motion or pitch direction. The angles of the

mirror θ1, θ2 are defined as sketched. The two mirrors have a mechanical restoring

force from the wire loop holding them onto the suspension system. The force is

proportional to the small angle measured from equilibrium position, for which we

use a spring constant of torsion pendulum µ1 and µ2. Due to high reflectivity of the

mirror, when the optical resonant condition is satisfied, the force due to laser power

2P
c

will become recognizable, where P is the laser power and c is the speed of light.

And, if pointing of the laser beam is off-centered, the mirror will experience torque

due to the radiation pressure

τ1 =
2Px1

c
(4.1.1)

τ2 =
2Px2

c
, (4.1.2)

where x1 and x2 are the distance of the beam spot from the center of the mirror.

With no light, each mirror can exhibit torsional oscillations independent of the other

arm. When the cavity is filled with light, there are two coupled modes in the opto-

mechanical system.

Suppose that both mirrors tilt in such a way that the ray axis runs across the center

line 1. In this situation, radiation pressure works so as to enhance the restoring force

from the wire which pushes the mirrors back to the original angles. This is sometimes

called an ”auto-alignment mechanism”. It is a stable mode. If the tilt angle becomes

larger, the beam spot will move outward and the torque due to radiation pressure will

become larger, which means mirrors experience bigger restoring torque to reduce the

1The figure 4.2 and figure 4.3 are the projections to a plane perpendicular to the mirror rotation
axis. We are only considering either yaw motion or pitch motion in the sketches.
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angle. The eigenfrequency of this mode will be bigger than the original uncoupled

pendulum natural frequency, since the net spring constant is bigger than the original.

Figure 4.2: Stiff mode of angular motion in optical resonator. Radiation pressure
works to enhance the mechanical restoring force, resulting in auto-alignment. The
larger tilt, the bigger torque due to radiation pressure to enhance restoring force.

On the other hand, suppose that both mirrors tilt in such a way that the ray axis

does not run across the center line. In that situation, the radiation pressure works

against the restoring force from the wire.

Figure 4.3: Soft mode of angular motion in optical resonator. Radiation pressure
works against restoring force from wire, and if power exceeds a critical value, laser
light will walk off from the cavity.

So, if the tilt angle becomes larger, the beam spot will move outward and the torque

will become larger, which means the net restoring force will become smaller. When

the power inside the optical resonator reaches a critical value, the net restoring force
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will become zero, or negative - i.e., not a restoring force any more. Above the critical

power, the mode is unstable, since once the system is in the situation, the beam spots

will walk away from the cavity.

In order to discuss the above quantitatively, we will consider the equations of motion

of the system. Kinetic energy K and potential V of the system are as follows.

K =
1

2
I1θ̇1

2
+

1

2
I2θ̇2

2
(4.1.3)

V =
1

2
µ1θ

2
1 +

1

2
µ2θ

2
2 −

∫
τ1dθ1 −

∫
τ2dθ2 (4.1.4)

The relation between θ and x are given by the following geometrical relations [23].

x1 =
g2

1− g1g2

Lθ1 +
1

1− g1g2

Lθ2 (4.1.5)

x2 =
1

1− g1g2

Lθ1 +
g1

1− g1g2

Lθ2, (4.1.6)

where g1 and g2 are so-called g-parameters

g1 = 1− L

R1

(4.1.7)

g2 = 1− L

R2

(4.1.8)

Therefore, the potential energy terms due to torque can be rewritten as follows.
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∫
τ1dθ1 =

2P

c

∫
dθ1

(
g2

1− g1g2

Lθ1 +
1

1− g1g2

Lθ2

)
∫
τ2dθ2 =

2P

c

∫
dθ2

(
1

1− g1g2

Lθ1 +
g1

1− g1g2

Lθ2

)
∴ ∫

τ1dθ1 +

∫
τ2dθ2

=
PL

c

(
g2

1− g1g2

θ2
1 +

g1

1− g1g2

θ2
2 +

2

1− g1g2

θ1θ2

)
(4.1.9)

The Lagrangian of the system is, therefore

L =
1

2
I1θ̇1

2
+

1

2
I2θ̇2

2 − 1

2
µ1θ

2
1 −

1

2
µ2θ

2
2 +

PL

c

[
g2

1− g1g2

θ2
1 +

g1

1− g1g2

θ2
2 +

2

1− g1g2

θ1θ2

]
. (4.1.10)

The first line is for the mechanical aspect of the two mirrors, and the second line is

radiation pressure effect from the laser inside the optical resonator. The equations of

motion of the system are,

I1θ̈1 +

(
µ1 −

2PL

c

g2

1− g1g2

)
θ1 −

2PL

c

1

1− g1g2

θ2 = 0 (4.1.11)

I2θ̈2 +

(
µ2 −

2PL

c

g1

1− g1g2

)
θ2 −

2PL

c

1

1− g1g2

θ1 = 0. (4.1.12)

Now, we consider small oscillations around the equilibrium position, denoting the

kinetic energy term and potential energy term as K = 1
2
Kij θ̇iθ̇j, V = 1

2
Vijθiθj respec-

tively (i, j = 1, 2).

Kij =

I1 0

0 I2

 (4.1.13)
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Vij =

µ1 − 2PL
c

g2

1−g1g2
−2PL

c
1

1−g1g2

−2PL
c

1
1−g1g2

µ2 − 2PL
c

g1

1−g1g2

 . (4.1.14)

In order to find the eigenfrequencies ω of the system, we solve det (V − ω2K) = 0.

Namely,

∣∣∣∣∣∣µ1 − 2PL
c

g2

1−g1g2
− ω2I1 −2PL

c
1

1−g1g2

−2PL
c

1
1−g1g2

µ2 − 2PL
c

g1

1−g1g2
− ω2I2

∣∣∣∣∣∣ = 0. (4.1.15)

After some calculations, we get the following characteristic equation.

I1I2ω
4 − I1

(
µ2 −

2PL

c

g1

1− g1g2

)
ω2 − I2

(
µ1 −

2PL

c

g2

1− g1g2

)
ω2

+

(
µ2 −

2PL

c

g1

1− g1g2

)(
µ1 −

2PL

c

g2

1− g1g2

)
− 4P 2

c2

(
L

1− g1g2

)2

= 0 (4.1.16)

In the following discussion, we assume I1 = I2 = I, and µ1 = µ2 = µ, which is

reasonable approximation for LIGO. The above equation will be, therefore

I2ω4 − 2I

(
µ− PL

c

g1 + g2

1− g1g2

)
ω2

+

(
µ2 − 2PL

c

g1 + g2

1− g1g2

µ− 4P 2L2

c2

1

1− g1g2

)
= 0. (4.1.17)

This will give two eigenfrequencies as follows.

ω2
± = ω2

0 +
PL

Ic

− (g1 + g2)±
√

4 + (g1 − g2)2

1− g1g2

 , (4.1.18)

where ω0 is the normal angular frequency of a torsion pendulum.
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ω0 =

√
µ

I
(4.1.19)

ω+ goes up as P goes up, while ω− goes down. Therefore, ω− will hit zero at some laser

power. We name the mode corresponding to ω+ as stiff, and the mode corresponding

to ω− as soft. The eigenvectors for these eigenfrequencies are

~θ+ =

 2
1−g1g2

g1−g2−
√

4+(g1−g2)2

1−g1g2

 (4.1.20)

~θ− =

 2
1−g1g2

g1−g2+
√

4+(g1−g2)2

1−g1g2

 . (4.1.21)

These eigenvectors correspond to figure 4.2 and figure 4.3, respectively.

In order to investigate the system’s behavior, we apply a sinusoidal external torque

Tcosωt to one of the mirrors and observe the response of the mirror, where T is the

amplitude of the torque, ω is the angular frequency of the excitation. Modifying

(4.1.12), the system’s equations of motion now will become as follows2

I1θ̈1 +

(
µ1 −

2PL

c

g2

1− g1g2

)
θ1 −

2PL

c

1

1− g1g2

θ2 = 0 (4.1.22)

I2θ̈2 +

(
µ2 −

2PL

c

g1

1− g1g2

)
θ2 −

2PL

c

1

1− g1g2

θ1 = Tcosωt. (4.1.23)

From now on, we denote 1 and 2 to express ITM and ETM. So, we apply an external

torque to the ETM in this case. Letting θ1, θ2 as follows, we will determine the

coefficients .

2The first equation is identical to (4.1.12).
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θ1 = Acosωt+Bsinωt (4.1.24)

θ2 = Ccosωt+Dsinωt (4.1.25)

The straightforward calculation gives

A

T
=

α

I2 (ω2 − ω2
+) (ω2 − ω2

−)
(4.1.26)

C

T
=

(ω2 − ω2
z)

I (ω2 − ω2
+) (ω2 − ω2

−)
(4.1.27)

B = D = 0 (4.1.28)

where

ω2
± = ω2

0 +
PL

Ic

− (g1 + g2)±
√

4 + (g1 − g2)2

1− g1g2

 (4.1.29)

ω2
z = ω2

0 −
2PL

cI

g2

1− g1g2

(4.1.30)

α =
2PL

c

1

1− g1g2

. (4.1.31)

As we expect, (4.1.29) is identical to (4.1.18). In the following, we will look into the

transfer function C
T

, which is the transfer function of the mirror-angle to the torque

applied to the mirror. Or, redefining it in the Laplace domain (s-domain),

H(s) =
− (s2 + ω2

z)

(s2 + ω2
−) (s2 + ω2

+)
. (4.1.32)

Two pairs of poles ω± correspond to the previous eigenfrequencies of the system and

ωz is a pair of zeros. As shown in figure 4.4, ω+ increases as P goes up, while ω−

and ωz decrease as P goes up. Then, both ω− and ωz will eventually hit zero and

become imaginary numbers. The corresponding poles and zeros become real. Bode di-
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agrams and a pole map of (4.1.32) are shown in Figure 4.5 and Figure 4.6 respectively.
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Figure 4.4: How angular frequency of poles and zeros moves according to cavity laser
power.

When P = 0, the two mirrors are un-coupled. So, the transfer function will be

that for a simple torsion pendulum. When P is smaller than P1, the two mirrors

will be coupled and the Bode diagram will have two peaks associated with the two

pairs of poles and one dip from the pair of zeros. In the s-plane, a pair of poles

can be seen as ones going away from s = ±iω0 (triangles in the fugure 4.6). When

P becomes larger than P1, ω− will become negative, which means one of the two

pairs of poles will become real. At that point, a peak corresponding to ω− in the

Bode diagram will disappear. In the s-plane, the pair hit the origin, then move away

from it on the real axis. When P reaches P2 (above which a pair of zeros become

imaginary), the dip corresponding to ωz will disappear from the Bode diagram. The
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Figure 4.5: Bode plot of two-mirror system in various powers., Top left P = 0, top
right 0 < P < P1, bottom left P1 < P < P2, bottom right P2 < P

circles in the s-plane are the poles at the operating laser power in iLIGO. Poles in

the right half plane indicate instability. Physically, it means when p > P1, in a mode

corresponding to ω−, torque due to radiation pressure overtakes restoring torque of

pendulum. Therefore, iLIGO would be unstable without angular control. In the

next section, we introduce experiment performed in the 4-km LIGO interferometer in

Hanford Observatory (LHO), WA.

4.2 Measurement

The angular sensing and control system (ASC) has ten degrees of freedom (DOF).

They are the pitch and yaw motion of the five core optics (The two pair of mirrors

in the Fabry-Perot cavities and the recycling mirror located upstream of the Michel-
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Figure 4.6: Pole movement in s-plane at various powers.

son interferometer). These DOFs are measured by quadrant photo detectors called

wave front sensors (WFS) and controlled by electromagnetic actuators attached to

the mirror surface. The principles of how the WFS works were already described in

the previous chapter. We reduce the ten degees of freedom to two by looking at only

two WFSs which are sensitive to the differential degrees of freedom.

Besides these WFSs for global angular sensing, there are sensors called optical levers

[48], which work only locally. An optical lever consists of a diode laser and a quadrant

photodiode which senses the position of the laser spot reflected by the mirror, and

thus allows a measurement of the angle of the mirror. We use the optical lever signal

to monitor the response of the mirrors to angular excitation since that is the transfer

function H(iω) we investigated in the previous subsection. As we mentioned in the
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Figure 4.7: Extraction of the system from LIGO detector. An excitation signal is
injected into the WFS1 path that dithers ETMX and ETMY in differential basis,
i.e., dθETM = θETMX − θETMY . Both WFS1 and WFS2B are sensitive to differential
angles (dETM, dITM), we only care the contribution to the x-arm. The symbols next
to each core optics shows the rotation axes for pitch and yaw tilts. A positive tilt
angle follows a right-handed rotation about the axis.

previous chapter, the wave front sensing scheme is not perfectly diagonal but there

is always some contamination from other degrees of freedom. For example, WFS1 is

the most sensitive to differential motion of end test masses, but it is also sensitive to

all the other degrees of freedom. Therefore, we use optical lever output to monitor
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pure mirror response3.

In order to start the measurement, we first have the interferometer in the running

condition where the two arm cavities and the recycling cavity are resonant, and the

complete control system is engaged. Then, we inject an excitation signal into the

WFS1 control path that results in dithering the end test masses differentially based

on the output matrix, i.e., dθETM = θETMX − θETMY . Both WFS1 and WFS2B are

sensitive to differential angles (dETM, dITM), we only extract the contribution to

the x-arm for our study. Therefore, if we look at the yaw motion of the ITMY and

ETMX, we can reduce 10 degrees of freedom into two 4. WFS1’s signal is fed back

to the ETMs, while WFS2B’s signal is fed back to both the ETMs and ITMs. This

is why we chose WFS1 path for the excitation injection. During the excitation, we

monitor the optical lever signal of the end mirror in the x-arm and a signal which

goes into the driver of actuator attached to the mirror. Since the driver signal is

proportional to the torque produced by the actuator, we are able to monitor the

transfer function of the mirror angle D to torque C applied to the same mirror up to

some overall gain. The transfer function is the direct analog to the one we introduced

in the previous section, i.e., the response of the ETMX mirror angle to the torque

applied to the mirror. In addition, we record signals from two points located in just

upstream A and downstream B of the excitation point in the WFS1 control loop.

This enables us to calculate open loop transfer function of the WFS1 control loop.

We here call the two transfer functions OPLEV and OLG respectively.

3I do not want to give wrong impression about WFS here. The WFS is less noisier than the
optical lever. Also, since the WFS does not require extra reference to the interferometer, it does not
suffer from DC drift like the optical lever does

4Although we can investigate the pitch motion as well, we omit it here. We know the pitch’s
torsion pendulum frequency is very close to that of yaw’s. And, the moment of inertia should be
almost identical for both the yaw and the pitch. So, we concentrate on the yaw motion in this thesis
although we need to verify in the future that the pitch motion does not have something completely
new. Besides, we could extract the x-arm cavity by looking at the common degrees of freedom with
the other WFSs. These are left for the future.
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OPLEV =
D

C
(4.2.1)

OLG =
A

B
(4.2.2)

We made the measurement at three different input laser powers such as 0.8 W, 4.0 W,

and 6.8 W [46]. We kept the entire control system activated during the measurement.

Figures 4.8 and 4.9 show Bode diagrams of the measured transfer function as well

as simulated results described in the next section. Different markers in the figures

correspond to different input powers - 0.8 W :circles, 4.0 W :triangles, and 6.8 W

:squares. Coherence of the measurement is listed in the Appendix E.

First, we notice there is only one peak observed in the optical lever transfer function.

The peak is associated with a pair of poles s = ±iω−, but the transfer function is

much more complicated than (4.1.15) due to the control loops. The reason why we

only have one peak is that when loop gain is high enough as iLIGO, a pair of zeros

and the other pair of poles s = ±iω+ asymtotically approach the same value and

cancel each other. This will be explained in the next section using our mathematical

model.

Second, the phase of optical lever transfer function at 6.8W has a 180 degree phase

lead, which indicates again that iLIGO would be unstable without control. Since the

transfer function OPLEV should not be affected by the control, the transfer function

should tell us the system’s behavior without control. Precisely speaking, however,

it is not completely true, since the ITM is under the influence of control as will be

described shortly. Nevertheless, this is evidence that the radiation pressure effect on

tilted optical resonators predicted by Sigg and Sidles really exists in the interferom-

eter and the system is already naturally unstable 5.

5By ”naturally” we here mean the system without control.
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Third, the frequency associated with the peak shifts toward lower frequencies as laser

power goes up. This is understood as a radiation pressure effect, since the peak we

observed corresponds to a pair of poles s = ±iω− and ω− goes down as shown in the

figure 4.4. But, the frequency does not go down as fast as the system we described

in the previous section, which is a case without control, since the WFS control servos

enhance the effective restoring force on the ITM. This will be confirmed using our

modeling in the next section as well.

Finally, the radiation pressure effect is also observed in phase of the open loop transfer

function.

4.3 Modeling

In order to understand the physics of the system6, we developed a mathematical

model with feedback control loops using Matlab/Simulink package [60]7.

Figure 4.11 shows the block diagram of the model, which is comprised of a mechani-

cal part and a control part. The mechanical part is circled like C-shape in the block

diagram. This part models the ( Laplace transformed) equations of motion (4.1.11)

and (4.1.12).

The feedback control part is located in the middle of the diagram. WFS sensing and

control matrix which are labeled as a, b, c, d and B,C,D respectively. Both WFSs

have some sensitivity to the angles of both mirrors (We already showed this in both

theoretically and experimentally in the last chapter). As mentioned earlier, WFS1’s

signal is fed back to only ETM, while WFS2B’s signal is fed back to both the ITM and

the ETM. These are controlled by the control matrix (B, C, and D) and the matrix is

essentially the inverse of the sensing matrix(a,b,c, and d) with some truncation based

6The mathematical model helped our understanding a lot. Initially, we did not understand why
we observed only one peak in the transfer function OPLEV, for instance.

7The package is very useful especially a model contains complicated filter banks as our case is.

98



on the significance as described in chapter 3. We imported the output matrix as of

February 2007, which is listed in table 3.3, while we used a sensing matrix measured

in December 2005 (See table 3.2). The signals are fed back to each mirror to control

the deflection angles. In this model, we assume misalignment angles of the mirrors

are perfectly sensed by the WFSs.

Figure 4.10: Block diagram of oplev compensation. (a) describes the original WFS-
pendulum(T) system, while (b) describes the WFS-pendulum(T)-optical lever(G)-
optical lever compensation system.

There is also a local loop for each mirror called an optical lever as well as the com-

pensation loop to make the optical lever invisible to WFS’s. Figure 4.10 shows a

conceptual block diagram of the idea of the optical lever compensation. The diagram

(a) does not have optical lever control nor the compensation. In reality, the situation

is like the diagram (b). We have the optical lever since the WFS’s bandwidth is small

(The unity gain frequency is roughly order of a couple of Hz), we added the optical

lever loop to enhance the stability of suspended mirrors. The optical lever control

loop will modify the transfer function from T to T
1+TG

, but as we discussed in the

chapter 3, the WFS’s sensing matrix is measured at a frequency which is free from

influence of control. Therefore, the optical lever control will mess up the WFS scheme
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unless we add a filter 1 +TG in the upstream. This is the concept of the optical lever

compensation. However, as we have seen, the torsion pendulum is not static but

under influence of radiation pressure from the laser light. So far, T in the 1 + TG

is fixed, so the compensation will not work well once the cavity stores very high power.

All of the real filter banks associated with the two WFS’s are built in the model.

The Bode plots of these filters can be found in Appendix D. Commissioning activities

in the past done by many people give very useful information to develop the model,

such as sensing matrix, WFS’s unity gain frequencies, optical lever gain etc. Gains

in loops are set to satisfy that information, so the only adjustable parameter comes

down to the laser power P inside the arm.

We run the model for a variety of values of P . Following the method of our measure-

ment, we inject an excitation signal in the WFS path which is denoted EXC in the

diagram. The transfer function OPLEV is modeled as θ2
T

here while OLG is mod-

eled as Y
X

. As already shown in figure 4.8 and figure 4.8, the simulated results agree

with our measurement very well. The laser power P in the model for the plots are

1600 W (blue), 7000 W (green), and 12500 W (red) respectively. Knowing that the

full interferometer is a much more complicated system with more control loops, the

agreement is somewhat surprising. In fact, we have not taken into account common

angular motion here, which is sensed and controled by the other WFS’s. We could in

principle perform the calculation for the common mode in the similar manner, which

would involve extension of our model to full interferometer, but this will be left for

future work.

Given the agreement between our model and the measurement, we believe our analysis

will be very useful for design of future ASC system, especially for Advanced LIGO

(AdvLIGO) where laser power is about twenty times the current LIGO’s power level.
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Figure 4.11: Block diagram of coupled torsion pendulum with feedback control loop.
a, b, c, d and B,C,D are sensing and control matrix respectively. Rectangular blocks
stand for filter banks. kp = 2PL/ [cI(1− g1g2)]

.

4.3.1 Effects of WFS gain

We briefly mentioned that under influence of WFS control, a pair of poles s = ±iω+

and a pair of zeros s = ±iωz in the transfer function cancel each other with suffi-

ciently high WFS gain. In order to see the effect clearly, we disable the optical lever

loops and the compensation loops when we run the model. The next plots show the

transfer function D
C

changing gains of WFS1 and WFS2B without the optical lever

and the compensation.

101



10
−1

10
0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency  Hz

G
ai

n 
 d

B

10
−1

10
0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency  Hz

G
ai

n 
 d

B

10
−1

10
0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency  Hz

G
ai

n 
 d

B

10
−1

10
0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency  Hz

G
ai

n 
 d

B

Figure 4.12: Effect of WFS gain on the transfer function D
C

. (a)Top left : The same
model as one that creates the figure 4.8 except lack of optical lever control and the
compensation. Let’s say the gain GWFS = a. (b)Top right : GWFS = 0.1 × a.
(c)Bottom left : GWFS = 0.01 × a. (d)Bottom right : GWFS = 0.001 × a. The color
scheme is as follows - blue: P = 1600W , green: P = 7000W , red: P = 12500W .

As WFS gain goes down, the transfer functions start regaining a property of two

pairs of poles. Namely, the peak corresponding to a pair of poles s = ±iω+ and the

dip corresponding to a pair of zeros s = ±iωz are coming out as the WFS gain is

decreased. One important feature is that frequency for ω− goes up as WFS gain goes

up. Namely, WFS gain enhances the system stability. Since our transfer function

should not see the effect of control on WFS1, this enhancement must come from the

effect of the other WFS, i.e., WFS2B. In order to confirm it, we will discuss the case

where ITM does not move at all.
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4.3.2 Effect of ITM’s motion

In the measurement description, we mentioned briefly that frequency corresponding

to a pair of pole s = ±iω− in the transfer function D
C

does not go down as fast as one

without control. The transfer function D
C

is the response of the end mirror’s angle

to torque applied to the same mirror, so the transfer function won’t see the effect of

WFS control. Thus, the effect must come from the front mirror ITM. In order to

confirm this, we force ITM’s motion to be zero. Figure 4.13 shows that the transfer

function D
C

with ITM’s angle zero. We clearly see the peak frequencies at each laser

power are higher when we fix the ITM’s motion.

10
−1

10
0

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency  Hz

G
ai

n 
 d

B

12500 W
7000 W

1600 W

Figure 4.13: Effect of ITM on the transfer function D
C

. The dashed lines are identical
to 4.8 while solid lines are cases when input test mass does not move at all. The plot
indicates why peak frequency shift more slowly in the presence of ITM control. The
plot also shows the benefit will become larger as radiation pressure is higher.
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4.4 Stability

It is very important to know how more power can be handled with the current control

scheme for coming high power laser operation. In particular, an upgrade to the iLIGO

interferometer is now being developed. It will have laser power three times greater

than iLIGO, and will have an almost identical control system to that in iLIGO. As

described already, it is understood that if pole location of the closed loop transfer

function is in the right half plane, it will make the system unstable.

When we discussed stability of the system without control above, an external torque

was applied to the system from ’outside’ the system. That corresponds to T . Now

we have control loops, so the T is not really ’outside’, but is included within the whole

system that consists of a mechanical part and a control part. Therefore, in order to

judge stability of the whole system, we need to consider another torque T ′, which is

located outside the whole system.

H? =
θ2

T ′
. (4.4.1)

Figure 4.14 shows how the system poles move in the s-plane as a function of the cavity

laser power. We immediately notice the difference between figure 4.14 and figure 4.6.

Circles which describe iLIGO full laser power level are now in the left half plane as

expected. According to this study, the system will be stable until cavity laser power

reaches roughly P/PiLIGO = 8.5. Even with the current control settings, then, the

radiation pressure effect on ASC should not be an issue at eLIGO (enhanced LIGO)

laser power level. As for AdvLIGO (Advanced LIGO), we need to take into account

the detailed control design since it is crucial (as we have seen difference between figure

4.14 and figure 4.6). But, we believe, the technique developed here will be useful in

AdvLIGO ASC design.

Also, a new approach on this issue is being tested in eLIGO commisioning [65]. They
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use a different basis on stiff and soft for the ASC scheme.

4.5 Conclusions

We observed the radiation pressure effect on ASC of LIGO core optics at LHO.

This is the first measurement of this effect performed in the full gravitational wave

interferometers. Only one of two angular modes survives with feedback control since

the other mode is suppressed when control gain is large enough as it is the case. A

mathematical model has been developed to understand the physics, and it indicates

that the current system has some margin for higher laser power. Angular instability

due to radiation pressure won’t happen until laser power reaches about eight times

the iLIGO power level. This analysis was based on the differential mode. A more

complete analysis including the common mode will be left for future work.
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Appendix A

General Relativity

In the following, we will briefly go through the derivation of the wave equation,

propagation of gravitational waves, and finally response of test masses to see the two

different polarizations + and ×, starting with the Einstein-Hilbert action.

A.1 Field equation

Einstein’s field equation is derived from the Einstein-Hilbert action

S =

∫
d4x
√
−g(LG + Lm) (A.1.1)

where g is the determinant of the metric g = det(gµν), LG and Lm are Lagrangian

densities for the action of the gravitational field and the action of matter fields on

spacetime respectively.

LG =
c3

16πG
R (A.1.2)

R is the Ricci scalar defined by the Ricci tensor Rµν , i.e.,
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R = Rµ
µ = gµνRµν (A.1.3)

Rµν = Rλ
µλν . (A.1.4)

Varying SG by the metric gµν , we get

δSG =
c3

16πG

∫
d4xδ(

√
−gR). (A.1.5)

For the variation in the above, we use the following relations

δ(
√
−g) = −1

2

√
−ggµνδgµν (A.1.6)

δR = −δgµνRµν +∇µ(gαβδΓµαβ − gµνδΓανα) (A.1.7)

to have

16πG

c3
δSG =

∫
d4x{
√
−g(Rµν −

1

2
gµνR)δgµν +

∇µ

[√
−g
(
gαβδΓµαβ − gµνδΓανα

)]
. (A.1.8)

The second term will dissapear using Gauss’s theorem. Therefore, variation of SG

becomes

δSG =
c3

16πG

∫
d4x
√
−g
(
Rµν −

1

2
gµνR

)
δgµν , (A.1.9)

while the variation of SM becomes
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δSm =

∫
d4xδ

(√
−gLm

)
(A.1.10)

= −1

2

∫
d4x
√
−gTµνδgµν , (A.1.11)

where Tµν is the stress-energy tensor

Tµν ≡
−2√
−g

δ (
√
−gLm)

δgµν
. (A.1.12)

Thus, requiring δS = 0, we will get the field equations.

Rµν −
1

2
gµνR =

8πG

c3
Tµν (A.1.13)

A.2 Linearized theory

Einstein’s equations have wave solutions. When spacetime is nearly flat, the metric

can be described as a Minkowski metric plus a small deviation, i.e.,

gµν = ηµν + hµν . (A.2.1)

Then, the Christoffel symbols are obtained by a straightforward calculation as
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Γµαβ =
1

2
(∂αgµβ + ∂βgαν − ∂νgαβ)

=
1

2
gµν (∂αhνβ + ∂βhαν − ∂νhαβ)

∴ Γµαβ =
1

2
(∂αh

µ
β + ∂βhα

µ − ∂µhαβ) . (A.2.2)

Therefore, the Ricci tensor will be

Rµν = Rα
µαν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓ

β
µα

=
1

2
{∂α (∂µh

α
ν + ∂νh

α
ν − ∂αhµν)

−∂ν (∂µh
α
α + ∂αh

α
ν − ∂αhµα) +O(h2)}

≈ 1

2
{∂α∂µhαν − ∂α∂αhµν − ∂ν∂µhαα + ∂ν∂

αhµα}.

∴ Rµν ≈
1

2
{∂α∂µhαν − ∂α∂αhµν − ∂ν∂µhαα + ∂ν∂

αhµα}. (A.2.3)

The Ricci scalar is therefore given by

R = gµνRµν

= ηµνRµν +O(h2)

≈ 1

2
(∂α∂

νhαν − ∂α∂αhνν − ∂µ∂νhαα + ∂ν∂
αhνα)

≈ ∂α∂
νhαν − ∂α∂αhνν

∴ R ≈ ∂α∂
νhαν − ∂α∂αhνν (A.2.4)

Plugging (A.2.3) and (A.2.4) into the Einstein equations (A.1.13),
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L.H.S. =
1

2
{∂α∂µhαν − ∂α∂αhµν − ∂ν∂µhαα + ∂ν∂

αhµα}

− 1

2
ηµν(∂α∂

νhαν − ∂α∂αhνν) +O(h2)

∴ ∂α∂µh
α
ν − ∂α∂

αhµν − ∂ν∂µhαα

+ ∂ν∂
αhνα − ηµν∂α∂βhαβ + ηµν∂α∂

αhββ =
16πG

c3
Tµν

∴ −�ψµν + ∂α∂µψ
α
ν + ∂ν∂

αψµν − ηµν∂α∂βψαβ =
16πG

c3
Tµν , (A.2.5)

where

ψµν = hµν −
1

2
ηµνh

α
α (A.2.6)

� = ∂α∂
α (A.2.7)

Now, using the harmonic gauge condition,

∂αψ
α
µ = 0, (A.2.8)

we get a wave equation.

�ψµν = −16πG

c3
Tµν (A.2.9)

A.3 Generation of gravitational waves

A.3.1 Quadrupole formula

The wave equation in electromagnetism is given by
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�Aµ = − 1

cε0
Jµ, (A.3.1)

and the solution is known to be

Aµ(x) =
1

4πcε0

∫
d3x′

Jµ (x0 − |x− x’|,x’)

|x− x’|
. (A.3.2)

Applying this result to the wave equation (A.2.9), we can write down the wave solution

in terms of the stress-energy tensor. Namely,

ψµν =
4G

c4

∫
d3x′

Tµν (x0 − |x− x’|,x’)

|x− x’|
(A.3.3)

Using conservation of the energy-momentum tensor ∂µT
µν = 0,

∂0

∫
T 0ixjdV =

∫ (
∂0T

0i
)
xjdV

= −
∫
∂kT

kixjdV = −
∫
∂k
(
T kixj

)
dV +

∫
T ijdV.

The first term in the last line will dissapear by Gauss’ law.

∴ ∂0

∫
T 0ixjdV =

∫
T ijdV (A.3.4)

Similarly,
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∂0

∫
T 00xixjdV = −

∫
∂kT

k0xixjdV

=

∫
T k0∂k

(
xixj

)
dV =

∫ (
T i0xj + T j0xi

)
dV

∴ ∂2
0

∫
T 00xixjdV = ∂0

∫ (
T i0xj + T j0xi

)
dV = 2

∫
T ijdV.

Therefore, for x� x′, we can rewrite (A.3.3) in the following way.

∴ ψij =
2G

c4R

∫
T ijxixjdV =

2G

c4R
∂2

0

∫
ρxixjdV =

2G

c4R
∂2

0Iij, (A.3.5)

where Iij is the second moment of the mass distribution.

Iij =

∫
ρxixjdV (A.3.6)

For TT gauge,

ψTTij =

(
pki p

l
j −

1

2
pijp

kl

)
ψkl = hTTij (A.3.7)

where

pij = δij − ninj (A.3.8)

ni =
xi

r
. (A.3.9)

Because of the TT, the second moment of mass distribution is identical to the original

one,

hTTij =
2G

c4R
∂2

0Iij =
2G

c4R
∂2

0
/I
TT
ij . (A.3.10)
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where

/I ij = Iij −
1

3
δijI

k
k (A.3.11)

Using Isaacson’s formula [58], gravitational wave power emition is given by

(
Ė
)
GW

=
c5

32πG

∫
r→∞

dΩr2
〈
ḣijTT ḣij

TT
〉

(A.3.12)

Now,

ḣijTT ḣij
TT =

4G2

c8r2

(
pki p

l
j −

1

2
pijp

kl

)(
pimp

j
n −

1

2
pmnp

ij

) ...
/I kl

...
/I
mn

(A.3.13)

Knowing some properties of the projection operator such as pjlplk = pjk and pkk = 2,

ḣijTT ḣTTij

=
4G2

c8r2

(
δkmδ

l
n − δkmnlnn − δlnnknm −

1

2
δmnδ

kl +
1

2
δmnn

knl +
1

2
δklnmnn +

1

2
nmnnn

knl
) ...
/I kl

...
/I
mn

=
4G2

c8r2

(
δkmδ

l
n − δkmnlnn − δlnnknm +

1

2
nmnnn

knl
) ...
/I kl

...
/I
mn
.
(
∵ /I

k
k
TT = 0

)
Using the following integral formulas

∫
dΩ = 4π,

∫
ninjdΩ = 4π

3
δij, and

∫
ninjnknldΩ =

4π
15

(δijδkl + δikδjl + δilδjk),

∫
dΩr2

〈
ḣijTT ḣTTij

〉
= 4π

[
δkmδ

l
n −

1

3
δkmδ

l
n −

1

3
δlnδ

k
m +

1

30

(
δmnδ

kl + δkmδ
l
n + δlmδ

k
n

)] 〈...
/I kl

...
/I
mn
〉

= 4π

(
1− 2

3
+

2

30

)〈...
/I mn

...
/I
mn
〉

=
8π

5

〈...
/I mn

...
/I
mn
〉
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Finally, we get the Landau-Lifshitz quadrupole radiation formula

∴
(
Ė
)
GW

=
G

5c5

〈...
/I mn

...
/I
mn
〉
. (A.3.14)

A.3.2 Application of quadrupole formula

Based on the previous calculation, here are some numerical estimations of gravita-

tional radiation, produced by a rotating bar and binary pulsar.

Rotating rod

Suppose we design a gravitational wave generator using a metal rod as shown in figure

A.1. The mass, length, density, cross section are M , L, ρ, and A, respectively.

Figure A.1: A rod whose mass, length, cross sectional area are M , L, A is rotating
around the origin with angular velocity ω.

First, we calculate the reduced quadrupole moments.
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/Ixx =
ρAL3

24

(
cos2ωt+

1

3

)
=
MAL2

24

(
cos2ωt+

1

3

)
(A.3.15)

/Iyy =
ρAL3

24

(
−cos2ωt+

1

3

)
=
MAL2

24

(
−cos2ωt+

1

3

)
(A.3.16)

/Ixy = /Iyx =
ρAL3

24
(sin2ωt) =

MAL2

24
(sin2ωt) (A.3.17)

The strain measured by an observor R away from the detector is given by

|h| = 2G

Rc4

ML2ω2

6
(A.3.18)

Stress in the rod can be calculated by

σ =
MLω2

8A

(
1− 4r2

L2

)
. (A.3.19)

So, maximum stress occurs at the center of the rod, i.e.,

σmax =
MLω2

8A
=
ρL2ω2

8
. (A.3.20)

Suppose we plan to detect the waves by a state-of-the-art gravitational wave detector

on the Earth, LIGO in which the best sensitivity of the detector comes around 100Hz.

The material of the rod is, say, Titunium-64 whose density is 4400
[
kg
m3

]
and UTS

(Ultimate Tensile Strength) is roughly 1000 MPa. Plugging in these numbers,

∴ L .

√
8σmax
ρω2

u 2 [m] (A.3.21)

We choose A = 1 m2 (It makes the bar’s mass about 9 tons!), and R = 10 m.

Assuming that we find a motor to drive the monster bar, which is also so quiet that

118



the LIGO detector does not sense it,

|h| u 10−30. (A.3.22)

The monster is not going to generate observable gravitational waves.

PSR B1913+16

Hulse and Taylor found that the rate of change of the orbital period (of a binary

pulsar) predicted by general relativity fits their observation of PSR B1913+16 very

well [63, 64]. It is known that the rate of change of the semimajor axis for a system

of two point masses in elliptical orbit is given by

〈
da

dt

〉
= −64

5

G3m1m2(m1 +m2)

c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
, (A.3.23)

where e is eccentricity. And, from Kepler’s third law,

(
T

2π

)2

=
a3

G(m1 +m2)
. (A.3.24)

From these equations,

Ṫ =
2π√

G(m1 +m2)

3

2
a

1
2 ȧ (A.3.25)

= −192

5

πG
5
3

c5

(
T

2π

)− 5
3

(1− e2)−
7
2

×
(

1 +
73

24
e2 +

37

96
e4

)
m1m2(m1 +m2)−

1
3 (A.3.26)

A fact that the rate of change of orbital period predicted by general relativity fits their

observation of PSR B1913 (figure A.2), strongly support emission of gravitational

waves. The difficulty of making observable gravitational wave generator on the Earth,
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Figure A.2: Orbital decay of PSR B1913+16: copy from [64].

as discussed in the rotating rod case, and the discovery of PSR B1913+16 binary

pulsar have motivated us to look for gravitational wave sources in the space.

A.4 Propagation of gravitational waves

In order to see how gravitational waves propagate in vacuum, we consider plane wave

solutions to the Einstein field equations in the harmonic gauge (A.2.8). Using the

same quantity as (A.2.6),
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�ψ = 0 (A.4.1)

∂αψ
α
µ = 0 (A.4.2)

And we take the ansatz as follows.

ψµν = aµνe
ik·x (A.4.3)

Plugging this ansatz into (A.4.1),

�ψ = ∂α∂
αaµνe

ikσxσ

= −kαkαaµνeik·x = 0

∴ kαk
α = 0. (A.4.4)

While plugging into (A.4.2),

∂αψ
α
µ = ikαψ

α
µ = 0

∴ kαa
α
µ = 0 (A.4.5)

(A.4.4) means k is lightlike while (A.4.5) means aµν is perpendicular to the direction

of propagation. Therefore, the solution describes a transverse wave that propagates

with the speed of the light. Since these conditions do not completely fix the degree

of freedom, we introduce another gauge condition. That is equivalent to just having

transverse traceless (TT) gauge in the initial perturbed metric hµν , but here we rather

explain how it leads to the condition. In order to do it, we introduce a new coordinate

x′ slightly different (to order h) from the original coordinate x.

ξµ = x′µ − xµ (A.4.6)
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∴
∂x′µ

∂xν
=

∂ξµ

∂xν
+
∂xµ

∂xν

= δµν + ∂νξ
µ (A.4.7)

∂xν

∂x′µ
=

∂x′ν

∂x′µ
− ∂ξν

∂x′µ

= δνµ − ∂µξν (A.4.8)

Therefore,

g′ (x′) =
∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ

=
(
δλµ − ∂µξλ

)
(δρν − ∂νξρ) gλρ

=
(
δλµδ

ρ
ν − ∂νξρδλµ − ∂µξλδρν

)
gλρ

∴ g′ (x′) = gµν − ∂νξρgµρ − ∂νξλgλν (A.4.9)

From (A.2.1),

g′µν = ηµν + hµν − (ηµρ + hµρ)∂νξ
ρ − (ηλν + hλν)∂µξ

λ

= ηµν + hµν − ∂nuξµ − ∂µξν −O(ξ2)

∴ h′µν = hµν − ∂νξµ − ∂µξν . (A.4.10)
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Similarly,

ψ′µν = h′µν −
1

2
h′ηµν

= hµν − ∂νξµ − ∂µξν −
1

2
ηρσh′ρσηµν

= hµν − ∂νξµ − ∂µξν −
1

2
ηρσ(hρσ − ∂ρξσ − ∂σξρ)ηµν

= hµν − ∂νξµ − ∂µξν −
1

2
(hσσ − ∂σξσ − ∂σξσ)ηµν

∴ ψ′µν = ψµν − ∂νξµ − ∂µξν + ∂αξ
αηµν (A.4.11)

Now, in order to fix the gauge freedom , let’s consider the following gauge transfor-

mation.

ξµ = bµe
ik·x (A.4.12)

Using (A.4.3) and (A.4.11),

a′µνe
ik·x = aµνe

ik·x − ikµbνeik·x − ikνbµeik·x + ikαb
αeik·xηµν

∴ a′µν = aµν − i(kµbν + kνbµ − k · bηµν) (A.4.13)

In particular, for the spatial part,

a′jj = ajj − i(kjbj + bjk
j − k · bηjj)

= ajj − i(2k · b− 3(k0b
0 + k · b))

= ajj + i(k · b + 3k0b
0).

So, choosing b0 properly, we can have

ajj = 0 (A.4.14)
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Similarly,

a′jlk
l = (ajl − i (kjbl + klbj − k · bηjl)) kl

= ajlk
l − i

(
kjblk

l + klk
lbj − k · bkj

)
= ajlk

l − i
(
|k|2bj −

(
k0b0

)
kj
)
.

Choosing bj properly, we can have

ajlk
l = 0. (A.4.15)

We see that the gauge transformation has added four more constraints. (A.4.5) adds

four constraints, so the degree of freedom becomes six from ten. (Ten comes from

symmetry of aµν .) And, (A.4.14) and (A.4.15) add four more constraints to make the

degree of freedom two. Now, consider a gravitational wave traveling along the z zxis.

k = (k0, k1, k2, k3) = (
ω

c
, 0, 0,

ω

c
) (A.4.16)

From (A.4.5), (A.4.14), and (A.4.15),

aµ0 + aµ3 = 0 (A.4.17)

a11 + a22 + a33 = 0 (A.4.18)

aj3 = 0. (A.4.19)

From these, we finally get
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aµν =


0 0 0 0

0 a11 a12 0

0 a12 −a11 0

0 0 0 0

 . (A.4.20)

After all, this is just equivalent to having the so-called TT gauge.

ψ0µ = 0 (A.4.21)

ψjj = 0 (A.4.22)

∂kψ
k
j = 0 (A.4.23)

Or, even knowing ψTTij = hTTij ,

h0µ = 0 (A.4.24)

hjj = 0 (A.4.25)

∂kh
k
j = 0 (A.4.26)

If we look at the spatial part of aij, it can be expressed as

aij = a11


1 0 0

0 −1 0

0 0 0

+ a12


0 1 0

1 0 0

0 0 0

 . (A.4.27)

They are considered two different modes choosing x-y axes as principal axis. Then,

the first term can be considered as the normal stress while the second term can be

viewed as the shear stress acting on spacetime.

These modes are called ’+ mode’ and ’x mode’ respectively.
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Figure A.3: Two modes.

A.5 Response of test mass

We now consider two masses close to each other falling freely whose worldlines are

xµ(τ) and xµ(τ) + δxµ(τ) respectively. They obey geodesic equations.

d2xµ

dτ 2
+ Γµνλ(x)

dxν

dτ

dxλ

dτ
= 0 (A.5.1)

d2

dτ 2
[xµ + δxµ] + Γµνλ(x+ δx)

d

dτ
[xν + δxν ]

d

dτ

[
xλ + δxλ

]
= 0 (A.5.2)

Subtracting (A.5.1) from (A.5.2),

d2δxµ

dτ 2
+ ∂ρΓ

µ
νλδx

ρdx
ν

dτ

dxλ

dτ
+ 2Γµνλ

dxν

dτ

dδxλ

dτ
= 0. (A.5.3)

Covariant derivative of δxµ along xµ(τ) is

D(δxµ)

Dτ
=
d(δxµ)

dτ
+ Γµνλ

dxλ

dτ
δxν . (A.5.4)

Therefore,
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D2

Dτ 2
(δxµ) =

d

dτ

[
d(δxµ)

dτ
+ Γµαβ

dxα

dτ
δxβ
]

+ Γµνλ
dxλ

dτ

[
d(δxν)

dτ
+ Γναβ

dxα

dτ
δxβ
]

=
d2

dτ 2
δxµ + ∂ρΓ

µ
αβ
dxρ

dτ

dxα

dτ
δxβ + Γµαβ

d2xα

dτ 2
δxβ

+ Γµαβ
dxα

dτ

d(δxβ)

dτ
+ Γµνλ

dxλ

dτ

d(δxν)

dτ
+ ΓµνλΓ

ν
αβ
dxλ

dτ

dxα

dτ
δxβ.

Using (A.5.1) and (A.5.3),

D2

Dτ 2
(δxµ) = −∂ρΓµνλδxρ

dxν

dτ

dxλ

dτ
− 2Γννλ

dxν

dτ

d(δxλ)

dτ

+ ∂ρΓ
µ
αβ
dxρ

dτ

dxα

dτ
δxβ + Γναβδx

β

(
−Γανλ

dxν

dτ

dxλ

dτ

)
+ Γµαβ

dxα

dτ

d(δxβ)

dτ
+ Γννλ

dxλ

dτ

d(δxν)

dτ
+ ΓµνλΓ

ν
αβ
dxλ

dτ

dxα

dτ
δxβ

= (∂ρΓ
µ
νβ − ∂βΓµρν + ΓναρΓ

α
νβ − ΓναβΓαρν)

dxρ

dτ

dxν

dτ
δxβ.

∴
D2

Dτ 2
δxλ = Rλ

νµρ
dxρ

dτ

dxν

dτ
δxµ (A.5.5)

Assuming slow motion, i.e.,

dx0

dτ
v 1

dx(i)

dτ
≪ 1,

d2δxi

dt2
= Ri

0j0z
j. (A.5.6)

Under TT gauge,
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Γi00 = 0

Γij0 =
1

2
∂0h

i
j

Ri
0j0 = ∂kΓ

i
00 − ∂0Γik0 + ΓikmΓm00 − Γi0mΓmk0

v −1

2
∂2

0h
i
j.

Therefore, (A.5.5) can be rewritten as

d2δxi

dt2
=

1

2
∂2

0h
i
jδx

j. (A.5.7)

From (A.4.3),

h11 = a11cos {(ω (t− z/c))} (A.5.8)

h12 = a12cos {(ω (t− z/c))} . (A.5.9)

So, for the + mode, having a12 = 0, rewriting δx with normal x

ẍ =
1

2

∂2

∂t2
a11x (A.5.10)

ÿ =
1

2

∂2

∂t2
a22y. (A.5.11)

Integration gives

x = x(0) +
1

2
a11cos {(ω (t− z/c))}x(0) (A.5.12)

y = y(0)− 1

2
a11cos {(ω (t− z/c))} y(0). (A.5.13)

where x� x(0) was used. Similarly, for the × mode,
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x = x(0) +
1

2
a12cos {(ω (t− z/c))} y(0) (A.5.14)

y = y(0) +
1

2
a12cos {(ω (t− z/c))}x(0). (A.5.15)

The Sketch in the figure shows how test particles move according to the analysis

above at z = 0. Test particles are initially on unit circle (black) at T = 0. Then as a

gravitational wave arrives, they are stretched in one direction and compressed in the

other direction as blue curves. The sketch shows one full cycle.

Figure A.4: How test particles move when GW passes through them. left shows +
mode while right shows × mode

This picture can be understood as the very basic concept of gravitational wave detec-

tors. By placing test masses along the x-axis and the y-axis and forming a Michelson

interferometer, we can sense the displacement due to the gravitational wave. Since

the strain level is so tiny, a lot of techniques are needed to make the gravitational

wave observable.
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Appendix B

Bode plots of some electronics in

DARM control loop chain

Here are some Bode plots measured after S5. These are all analog parts in the DARM

control loop as described in chapter 2. ASQ1, ASQ2, ASQ3, ASQ4 are names of

different photodiodes and the legend in the plots are electronics for those. Similarly,

UL, LL, UR, LR are upper left, lower left, upper right, and lower right respectively.
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Figure B.1: Bode plot of the whitening filter in the sensing chain in the DARM loop.
Un-whitening in digital domain is supposed to be the inverse of this to keep the overall
gain constant.
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Figure B.2: Bode plot of the anti-aliasing filter in the sensing chain in the DARM
loop. It cuts off beyond a frequency a half the sampling rate 16384 Hz.
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Figure B.3: Bode plot of the anti-imaging filter in the actuation chain in the DARM
loop.
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Figure B.4: Bode plot of the de-whitening filter in the actuation chain in the DARM
loop.
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Figure B.5: Bode plot of the coil driver filter in the actuation chain in the DARM
loop.
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Appendix C

WFS error signals

Here are some plots of WFS error signals described in chapter 3. The x-axis is the

Gouy phase shift from each port to a place where WFSs are located. The y-axis is

the I-phase and the Q-phase error signal. The color scheme is the following: antisym-

metric port - blue, reflected port - magenta, pickoff port - green, and reflected port

(NR) - red.
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Figure C.1: Error signals to dETM
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Figure C.2: Error signals to dITM
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Figure C.3: Error signals to cETM
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Figure C.4: Error signals to cITM
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Figure C.5: Error signals to RM
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Appendix D

Filters in the Angular Control

Model

Here are filters built in the mathematical model described in chapter 4. All filters are

exported from the real control system in LIGO when our measurement was done in

Feburuary 2007. In order to fit a continuous model, all digital filters are replaced by

the zpk model.
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Figure D.1: WFS1 YAW filter
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Figure D.2: WFS2B YAW filter
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Figure D.3: SUS ITMX YAW filter
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Figure D.4: SUS ETMX YAW filter
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Figure D.5: ITMX optical lever compensation filter
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Figure D.6: ETMX optical lever compensation filter
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Figure D.7: ITMX optical lever compensation filter
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Figure D.8: ETMX optical lever compensation filter
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Appendix E

Coherence of the measurement

described in 4.2

153



10
0

0

0.
51

F
re

qu
en

cy
  H

z

Coherence

C
oh

er
en

ce
 1

W

 

 

O
LG

O
P

LE
V

10
0

0

0.
51

F
re

qu
en

cy
  H

z

Coherence

C
oh

er
en

ce
 4

W

 

 

O
LG

O
P

LE
V

10
0

0

0.
51

F
re

qu
en

cy
  H

z

Coherence

C
oh

er
en

ce
 7

W

 

 

O
LG

O
P

LE
V

F
ig

u
re

E
.1

:
C

oh
er

en
ce

of
O

P
L

E
V

an
d

O
L

G
in

4.
2.

T
h
e

se
tt

in
g

of
th

e
m

ea
su

re
m

en
t:

40
cy

cl
es

,
1

se
c,

av
e

=
3

154



Bibliography

[1] S. W. Hawking, G. F. R. Ellis, The large scale structure of space-time, Cam-

bridge University Press (1973)

[2] Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, W.

H. Freedman and Company (1973)

[3] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press

(1975)

[4] Steven Weinberg, Gravitation and Cosmology, John Wiley & Sons (1972)

[5] Hideo Kodama, The Theory of Relativity, Baifukan (1997)

[6] Edited by S. W. Hawking, W. I. Israel, 300 Years of Gravitation, Cambridge

Universiy Press (1987)

[7] Barry C. Barish, Rainer Weiss, LIGO and the Detection of Gravitational Waves,

Physics Today, 52, pp.44-50 (1999)

[8] Peter R. Saulson, Fundamentals of Interferomeric Gravitational Wave Detec-

tors, World Scientific (1994)

[9] Samuel J Waldman (for the LIGO Scientific Collaboration), Status of LIGO at

the start of the fifth science run, Class. Quantum Grav., 23, S653-S660 (2006)

[10] Daniel Sigg (for the LIGO Scientific Collaboration), Status of the LIGO Detec-

tors, LIGO-P070113-B-D (2007)

155



[11] Daniel Sigg, Gravitational Waves, LIGO-P980007-00-D (1998)

[12] Clifford M. Will, Gravitational Radiation and the Validity of General Relativity,

Physics Today, 52, pp.38-43 (1999)

[13] Clifford M. Will, Theory and experiment in gravitational physics, Cambridge

University Press (1993)

[14] Clifford M. Will, The Confrontation between General Relativity and Experiment,

Living Review in Relativity, http://relativity.livingreviews.org/Articles/lrr-

2006-3/

[15] Peter Kurt Fritschel, Techniques for Laser Interferometer Gravitational Wave

Detectors, PhD thesis Massachusetts Institute of Technology (1984)

[16] Rana Adhikari, Sensitivity and Noise Analysis of 4km Laser Interferometric

Gravitational Wave Anntene, PhD thesis, Massachusetts Institute of Technol-

ogy (2004)

[17] Stefan W. Ballmer, LIGO interferometer operating at design sensitivity with

application to gravitational radiometry, PhD thesis, Massachusetts Institute of

Technology (2006)

[18] Matthew Evans, Lock Acquisition in Resonant Optical Interferometer, PhD the-

sis, California Institute of Technology (2002)

[19] Keita KAWABE, Development of a 3-meter Fabry-Perot-Michelson Interferom-

eter for Gravitational Wave Detection, PhD thesis, Massachusetts Institute of

Technology (1998)

[20] Nergis Mavalvala, Alignment Issues in Laser Interferometric Gravitational-

Wave Detectors, PhD thesis, Massachusetts Institute of Technology (1990)

[21] Marin W. Regehr, Signal Extraction and Control for an Interferometric Gravi-

tational Wave Detector, PhD thesis, California Institute of Technology (1995)

156



[22] H. Kogelnik, T. Li, Laser Beams and Resonators, Appl. Opt. 5, 1550-1567

(1966)

[23] A.E. Siegman, Lasers, University Science Books (1986)

[24] Daniel Sigg, Strain Calibration in LIGO, LIGO-T970101-B-D (1997, 2003)

[25] M. Rakhmanov, R. L. Savage, Jr, D. H. Reize, D. B. Tanner, Dynamic Response

of Light in Fabry-Perot Cavities, arXiv:physics/0110061v1 (2001)

[26] Jean-Yves Vinet, Brian Meers, Catherine Nary Man, Allen Brillet, Optimization

of long-baseline optical interferometers for gravitational-wave detection, Physi-

cal Review D. 38, 433-447 (1988)

[27] J-Y Vinet, Recycling interferometric antennas for periodic gravitational waves,

J. Physique. 47, 639-643 (1986)

[28] M. W. Regehr, F. J. Raab, S. E. Whitcomb, Demonstration of a power-recycled

Michelson interferometer with Fabry-Perot arms by frontal modulation, Optics

Letters 20, 1507-1509 (1995); LIGO-P50001-00-R

[29] Dana Z. Anderson, Alignment of resonant optical cavities, Appl. Opt. 23, 2944-

2949 (1984)

[30] Euan Morrison, Brian J. Meers, David I. Robertson, Henry Ward, Automatic

alignment of optical interferometers, Appl. Opt. 33, 5041-5049 (1994)

[31] Euan Morrison, Brian J. Meers, David I. Robertson, Henry Ward, Experimental

demonstration of an automatic alignment system for optical interferometers,

Appl. Opt. 33, 5037-5040 (1994)

[32] John A. Sidles, Daniel Sigg, Optical torques in suspended Fabry-Perot interfer-

ometers, Phys. Letters A. 354, 167-172 (2006)

[33] Daniel Sigg, Angular Instabilities in High Power Fabry-Perot Cavities, LIGO-

T030120-00 (2003)

157
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