ASC modeling for Advanced LIGO

Lisa Barsotti

ISC meeting @ Caltech

20th March 2009

Outlines

□ Some numbers for soft/hard angular modes

□ Results from a new Optickle model with:

- updated optical parameters (T0900043-03)
- Quad suspension transfer functions
- (more) reasonable input seismic noise

□ Side outcomes:

- expected ISI performance (based on Fabrice's measurement @ LASTI)
- residual PITCH and YAW motion of the test mass
- check of matching parameters

Hard/Soft Expectations

Parameter	LIGO	advLIGO
Р	15	830
g_1	0.460	± 0.927
<i>8</i> 2	0.726	± 0.927
<i>k</i> pendulum	~ 0.51	~ 6.0
κ _{major}	-0.96	∓ 301
κ _{minor}	0.25	± 11.5

$$\begin{split} f_{soft} &= \frac{1}{2\pi} \sqrt{\frac{k_{major} + k_{pend}}{I}} \\ f_{hard} &= \frac{1}{2\pi} \sqrt{\frac{k_{\min or} + k_{pend}}{I}} \end{split}$$

Sidles, Sigg - Physics Letters A 354 (2006) 167-172

PITCH	Pcav (kW)	fsoft (Hz)	fhard (Hz)
iLIGO	15.0	-0.28	0.7
eLIGO 25W	87.5	-1.5	1
advLIGO	830.0	-0.57	4.2

\rightarrow Better than eLIGO, worse than iLIGO

Final Advanced LIGO Design

□ Intra cavity power P:

 $P = \frac{125 \times 43.5}{2} \times \frac{2 \times 443}{\pi} \sim 770 \, \text{kW} \rightarrow 720 \, \text{kW} \qquad \text{Losses in the recycling cavity, PR2 transmission, Rar ITMs}$

□ Radiation pressure torque: kmajor = -9.9 kminor = + 218

Modes of Operation

INPUT POWER (W)	INTRA CAVITY POWER (kW)	fsoft PITCH (Hz)	fsoft YAW (Hz)
1	~6.15	+0.567	+0.597
10	~61.5	+0.545	+0.572
25	~155	+0.504	+0.528
100	~615	+0.205	+0.19
125	~770	-0.17	-0.21
125*	~720	-0.08	-0.14

 \rightarrow No unstable mode for intra-cavity power < 685 kW

 \rightarrow Ugf don't need to be more than 1 Hz for unstable modes

Optickle Model

- □ 125 W input power, stable cavities, broad band
- 100 mW on each WFS, 1% power taken at the AS port power (about 3mW with 10 pm DARM offset)
- Quad TFs, actuation from the PM
- □ Estimated PITCH motion for the Quad and for the Triple

Sensing Matrix

- □ Based on Valera's sensing matrix
- Optimized Gouy phases and demod phases

$\left(\text{POP I1}(140^{\circ}) \right)$	297	- 4956	0	0	0	0	CSoft]
$REFL_B I1(70^{\circ})$	0	8.82e5	0	0	0	0	CHard
$OMCr_B QM (106^{\circ})$	_ 0	0	-1.78e5	1.54e5	0	0	DSoft
$ASQ2(80^{\circ})$	0	0	-1.21e4	-1.96e5	0	0	DHard
REFL_A I1(160°)	0	- 3338	0	0	1966	0	PR
$\left(\text{OMCr}_{B} \text{I22}(106^{\circ}) \right)$	L -4303	5358	-1.28e4	1.2e4	0	697.44	SR]

$\left(\text{POP I1}(140^{\circ}) \right)$	[1	0	0	0	0	0	CSoft]
$\operatorname{REFL}_{B}\operatorname{I1}(70^{\circ})$	0	1	0	0	0	0	CHard
OMCr_B QM (106°)	0	0	1	0.62	0	0	DSoft
$AS Q2 (80^{\circ})$	= 0	0	0	-0.79	0	0	DHard
REFL_A I1(160°)	0	0	0	0	1	0	PR
$\left(OMCr_B I22(106^\circ) \right)$	0	0	0	0.05	0	1	SR]

Condition Number = 1.9

Loops (PM actuation)

Loops (PM actuation)

Pitch motion

Angular noise coupling to DARM

BSM * Angular motion for each mirror
1% coupling PR to DARM
2% coupling SR to DARM

Fixed coupling (400 um BSM RMS)

QPDs in transmission instead of POP?

Blending?

- QPDs high frequency, POP below
- QPDs nominally image ETM
 - Need to image cavity center
 - 90 degrees Gouy phase from ETM image
 - Need 2 QPDs at each end

The Message

- It doesn't look like radiation pressure will be an issue in advLIGO
- □ I need a signal for Common Unstable
- I have to write a "to do list" and actually do it.

Medium level of seismic noise, vertical attenuation (Z)

High level of seismic noise, actual X attenuation

PITCH motion QUAD

Mode Matching

□ ROC with Optickle:

- par.PRM.ROC = 9.65; (9.35) → +20 cm
- par.PR2.ROC = -2.27;
- par.PR3.ROC = 34.00;
- par.SR3.ROC = 34.00;
- par.SR2.ROC = -3.77;
- par.SRM.ROC = -11.9; (-11.77) → -12 cm

Beam Size

	Beam size(mm)	Z0(mm)	Z(mm)
PR	1.9	4.82e3	5.2e3
PR2	3.3	4.82e3	11.40e3
PR3	54.0	34.4	17.2e3
SR	2.1	•••	
SR2	5.5		• • •
SR3	54.0		