Status of Japanese Projects

Koji Arai

National Astronomical Observatory of Japan

Osamu Miyakawa

Institute for Cosmic Ray Research, Univ. of Tokyo

on behalf of LCGT collaboration

Introduction

LCGT

Large Cryogenic Gravitational wave Telescope
3-km interferometer in an underground mine
with cryogenic test masses

Introduction

LCGT

Large Cryogenic Gravitational wave Telescope
3-km interferometer in an underground mine
with cryogenic test masses

Overview

- Concepts of LCGT
- Recent situation
- Status of two prototype interferometers TAMA300 CLIO

Concepts of LCGT

Three key features

- 3-km interferometer
- Underground site
- Cryogenic sapphire test masses

Feature 1: 3-km IFO

3-km dual recycled interferometer

 We have made steady step-ups since '90s 3m, 20m, 100m, and 300m

=> km-class IFO

Experiences on RSE

- 4m prototype tests at NAOJ

now workingon RSE of TAMA300

Feature 2: Underground site

Kamioka mine

- Seismic activity:
 100~1000 times quieter than that of the TAMA site
 - => direct merit of small seismic motion
 - => indirect advantages
 e.g. upconversion noise, stationarity of the sensitivity
- Facilities:
 in-mine administratations
 offices / dormitories
 - => Well maintained for scientific activities
 - i.e. Super Kamiokande / KamLand / XMASS

Feature 3: Cryogenic mirrors

Use of sapphire mirrors at 20K

Benefit of mirror cooling

 Reduction of thermal noise mirror / suspension / coating / thermoelastic

 Better thermal conduction suppression of thermal lensing

Technical challenges

- Low-vibration cryogenics
- Sapphire wire suspension
- Low thermal absorption in the mirrors/coatings

Cryogenic interferometer => CLIO

Some news from LCGT

- New project manager
- LCGT invited Prof. I. Nakatani as a PM, formerly worked at JAXA (Japanese space agency) for many space missions
- => Enhancement of the management / the system engineering
- => Reorganizaton of TAMA/CLIO activities among the LCGT R&D
- Buget requesting ~ submitted for 2010
 The request went out from Univ. of Tokyo to MEXT
 (Ministry of Education, ...)
- Progress of the prototype development
 TAMA improved the sensitivity with SAS
 => Effort shifted to the new optical configuration
- CLIO reached to the thermal noise limit at room temp.
- => Proceed to the noise hunting at cryogenic temp.

TAMA300

300-m interferometer

- Located at Mitaka near Tokyo
- 300-m FP arms
- FP Michelson with power recycling

Current target of TAMA300

- Development of TAMA-SAS
- Establishment of interferometer technologies for LCGT
 - => Interferometer configuration / sensing and control

TAMA-SAS

Interferometer operation with TAMA-SAS

- TAMA-SAS: low frequency vibration isolation system developed by the international collaboration of LIGO Caltech / Univ. of Pisa / TAMA

- Passive vibration isolation

Inverted pendulum Vertical filters (MGAS) Double pendulum

Active damping

TAMA Sensitivity

Low freq motion

- Improvement above 0.2Hz

Observation band

- Sensitivity improvement => 4x10-19m/rtHz @1kHz

Achieved reduction of alignment control noise with TAMA-SAS

TAMA expresses our gratitude to the SAS team of LIGO Caltech & Univ of Pisa.

We also thank Dr. Grote for the WFS work during his stay at TAMA.

100

Freq [Hz]

1000

Toward TAMA-RSE

• TAMA RSE

Test for the LCGT optical configuration

- Integration of the past prototype tests at NAOJ

Preparation Status

- Length control design
- Alignment control design
- PRC mirror replacement (Jan-2009)
- Lock achieved
 with the new PRC
 (Feb-2009)

done in progress

- 2009: Constructions of the new RF systems
- 2010: Placement of SEM => RSE lock trial

CLIO 100m prototype underground

- 100 meter scale, cryogenic interferometer
- Underground in Kamioka mine, very quiet seismic environment
- Locked-FP type (Caltech old 40meter Mark II style)
- 2W laser, 9.5m MC, Suspensions designed for cooling
- Prototype for LCGT, km scale project of Japan
- Reached to suspension/mirror thermal noise in room temperature
- Ready to cool down soon!

Laboratories underground, in Kamioka mine

CLIO in Kamioka mine

CLIO reached to thermal noise in the room temperature

CLIO Displacement Noise Improvement from April/2008 to December/2008

Problem: Eddy current in aluminum coil holders induced by magnets attached on mirror added mechanical loss on pendulum thermal noise

Solution: Aluminum holders were exchanged to ceramic and daifron holders.

CLIO seismic attenuation for cooling

L-V meeting at Arcadia, CA 3/17/2009

Noise budget

We are ready for cooling to observe improved thermal noise!

Summary

LCGT 3km cryogenic interferometer at Kamioka mine

- Invited a new PM for prject enhancement

TAMA 300m prototype GW detector

- Achieved sensitivity improvement with SAS
- RSE preparation in progress

CLIO 100m cryogenic GW detector at Kamioka mine

- Aiming demonstration of noise reduction by cooling
- Test for the data quality at the underground site
- Demonstrated the thermal noise level at room temp.
- Noise hunting with cryogenic operation in preparation

Noise

Estimation of the noise contribution for TAMA300

Angular control noise reduced

=>Owing to the reduced angular motion of the test mass

in the 1Hz-10Hz band

=> Low freq. excitation experiment revealed upconversion noise limits the sensitivity at 100~500Hz

