The HAM ISI Watchdog
LIGO-T0900011-x0

J. S. Kissel
January 14, 2009

Contents

1 Introduction

2 Functionality

3 Implementation
3.1 Simulink Model
3.2 CCode e e
3.3 Scripts e
3.4 Medm Screens

List of Figures

= O 000 Ui Wi -
_= O

— =
wW N

State diagram for HAM ISI watchdog.
Overall ISI system diagram in Simulink. 00 0000
ISI-OMC subsystem diagram in Simulink. 0oL
ISI-OMC-WD subsystem diagram in Simulink.
ISI-OMC-WD-DISP and GEO subsystem diagram in Simulink.
ISI-OMC-WDMON subsystem diagram in Simulink.
ISI-OMC-MUXS subsystem diagram in Simulink.
ISI-OMC-MUXS-CHOICE block menu under MUXS subsystem in Simulink.
ISI-SUS-OMC subsystem diagram in Simulink.
HAM ISI Watchdog MEDM screen oo
HAM ISI Watchdog MEDM screen. The top, middle, and bottom panels show the
overview screen in state 1, 2&3, and 4, respectively.
HAM IST Watchdog MEDM screen.o v
HAM ISI Watchdog MEDM screen. The four panels, starting in the bottom left
and continuing clockwise (as in figure 1) show the screen in state 1, 2, 3, and 4.

13
17
20

Jeff Kissel January 14, 2009 HAM ISI Watchdog

1 Introduction

This document serves as the source for all information concerning the eLIGO HAM ISI Watchdog.
Section 2 defines the watchdog in a more abstract sense, where section 3 describes each portion of
how the Watchdog is actually implemented in the CDS system. This includes the simulink model,
the non-standard front end code, and medm interface.

2 Functionality

There are two paths which the watchdog oversees. The damping loop path is the local damping
control system that uses only inertial sensors (geophones), designed to be unconditionally stable,
and very robust against perturbations. The isolation loop path provides most of the seismic
isolation using both displacement and inertial sensor signals. This path is only conditionally
stable. The point at which the signals are blocked is just after the control filter banks, before the
two paths are added together and fed to the actuators.

The watchdog triggers on user-defined thresholds of five inputs: the displacement sensors, the
geophones, the ground STS-2, the actuator drive level, and payload’s (suspension) watchdog. The
displacement, geophones, and ground STS-2 are observed directly from the inputs into the active
control system. The actuator signal is sampled just before the digital control signal is sent back
to the isolation system. Finally, the payload trigger is piped in directly from payload’s watchdog.
All watching is done on the front end computers, which has a 2048 Hz sampling rate.

The watchdog is a four state, finite state machine. Figure 1 is a state diagram showing the flow
of the machine. In state 1, the watchdog is armed, sampling each of the four signals. In this state,
the digital signals for both the isolation loop and damping loop paths are allowed to pass, i.e.
“enabled.” If any of the signals exceed threshold, the watchdog moves to state 2 and immediately
blocks the isolation path. To be clear, a single sample of any signal that exceeds threshold will trip
the watchdog and block the isolation path (as opposed to the typical suspension watchdogs which
trigger on the the exponentially averaged RMS values of the watched signals). State 2 is simply
a “cooling period,” where a pre-determined amount of time passes (we’ve chosen three seconds,
but the period is somewhat arbitrary). The isolation loops are blocked, but the damping loops
are still enabled. One hopes, that while in state 2, whatever external drive that caused the initial
saturation, has been squelched by the robust damping loops. Regardless, after the time period
has passed, the watchdog moves to state 3.

In state 3, the watchdog resumes checking for saturations, with the isolation loops blocked and
the damping loops enabled. If there are no saturations, the watchdog remains in this state until
the user manually resets the watchdog. If there are any further saturations once in state 3, then
the damping loops are blocked and the watchdog transitions to state 4. Again, the saturation need
only be a single sample above threshold for any signal for the watchdog to move into state 4 and
block the damping path. Once entered, the only way to leave state 4 is a user reset. Indeed, state
4 still checks for saturations, so if the user asks for a reset and any saturations are still present
then the watchdog will not exit state 4.

HAM ISI Watchdog

Jeff Kissel January 14, 2009

AATIVNT yred Surdwe(-
qITIVSIA Yed Uone[osy -

Sey 1989 10§ YAy -

AATIVSIA Yred Sutdwe(-
AITVSIA Yyed uorjelosy -

Seyy 19801 10J oY) -

SUOT)RIN}ES 10§ I3Y)) -

NIdINVA HLIM DNIJOLINO
‘Addd 4L
€ HLVLS

(0=1) 1owr} 3089y -
998 =L Al

AITIVNT yyed Surdure(-

JHTIVSIA Y¥ed uonelosy -
JOUIT) JUSWAIIU] -

298 g=, JIYPAYD -

dOI¥dd DNIdINVA OIS €
‘Addd14.L
¢ ULVLS

SUOT)RINYES 10§ I3 -

NMOALNHS WALSAS TINA
‘Addd14L
¥ HLVLS

uorjeanjes Aue [

193311y 9811 J989Y -
jesal A[renuew JI JSTH

193311} 981y 1089y -
19821 A[[enueu %
SUOI}BIN)ES OU T

*019Z -UOU ST
AITIVNT yred Surdure(-

JHTIVNY Yred uone[osy -

193311} 9841 J1 pue] so1da Ul S10)[Y [BIL31p
JJo suIn) pue ‘puodss A19Ad 103311} I8y
7B SY00] , I19)091]2,, }dLIOS [BUINXD :H{ LON

«

(PeolAed pue ‘SLOV SOTD SdSIA)
suorjeIN)es I10J Yoy -

INgV
I HLVLS

(0 = 1) oW ae3s -
1933113 981y 21098 -

uorjeanjes Aue]

Figure 1: State diagram for HAM ISI watchdog.

Jeff Kissel January 14, 2009 HAM ISI Watchdog

3 Implementation

3.1 Simulink Model

Figures 2 - 9 show screen shots of the Simulink model for the entire ISI front end system. Both
the OMC suspensions and the HAM ISI are on the same front end. The digital signals flow from
left to right across the model.

Figure 2 shows the overall flow of data; there are two 32-channel ADCs, and one 16 channel
DAC. The only connection relevant to the scope of this document is the connection between the
ISI-SUS (OMC suspension) and ISI-OMC (HAM ISI): the last output of the SUS block is the
binary flag indicating status of the SUS watchdog. This is connected into the HAM ISI’s block,
for use with the watchdog. The SUS watchdog flag is 1 if not tripped, and 0 if tripped. The HAM
IST watchdog has been written such that “not-tripped” is 0, so the logic is inverted between the
SUS and OMC blocks at this level.

Figure 3 shows the ISIFOMC (HAM ISI) subsystem. The watchdog elements of this subsystem
run along the bottom of the screen. After the inputs from the ADC, the first block encountered
(WD) converts the raw displacement sensor, geophone, and STS-2 signals into saturation flags.
This is done by comparing the absolute value of each signal with the user threshold using a logical
greater-than operation (with the ADC signal as the first operand). The result of each logical
comparison is added to form a single flag: 0 if there no saturations, non-zero if a saturation has
occurred. These two flags, in addition to the payload flag, are then input into the HAMISI-
WATCHDOG block, which represents the C-code OMC_HAMISIWATCHDOG.c (described in
detail in section 3.2).

The five outputs of the watchdog are also integer flags. The outputs are monitored in the
ISI-WDMON block (shown in Figure 6) From top to bottom, these outputs are “DAMP, CONT,
STATE, FIRSTTRIG, and CURRENTTRIG.” DAMP is a binary flag (0 or 1) that determines
whether the damping loops should be blocked. CONT is a similar flag that determines whether
the isolation is should be blocked. STATE is an integer from 1 to 4, indicating in what state
the watchdog is. FIRSTTRIG is a integer whose bits indicate which sensor was the first to trip
the watchdog. CURRENTTRIG is a similar integer whose bits indicate which sensor is currently
saturating. STATE, FIRSTTRIG, and CURRENTTRIG are only used for monitoring purposes.
However, DAMP and CONT are picked off and fed into ISIFOMC-MUXS, where the flags are used
to block or enable the damping loop path and isolation loop path.

Figure 7 shows the innards of ISIF-OMC-MUX5. Inputs 1 - 12 are the damping loop and
isolation loop signals over which the watchdog has control. Inputs 13 and 14 are the control
flags from the watchdog for damping and isolation loops, respectively. The choice blocks with
constants as their first and third input multiply the control and damping loop signals by 0 or 1.
If the watchdog flags are tripped, the choice clock outputs a 0, multiplying the drive signals by
zero, effectively blocking the signals. If the watchdog flags are not tripped, then the choice block
sends out a 1, effectively enabling the signals. Figure 8 shows the configuration of the choice block
which achieves this behavior.

Finally, the blocked or enabled signals are added together in a colocated fashion and sent out to
the DAC. Just before the DAC outputs, however, is a pick-off to watch the actuator drive levels.
It is here where the actuator flag of the watchdog system is set, via the HAMISIDRIVEMON
block, which represents the C-code described in section 3.2.

HAM ISI Watchdog

Jeff Kissel January 14, 2009

UINUWIG U WeISerp WesAs [S] [[eIoA() :g 9InSIg

sowering
ne zogestes amw
ava Fergpmens
TpunoTg
s
aon
un
ELTES
HONSSYHSIS QM0 .
- s0goeles amy
3o
s ST
Zus Low ST PR am os TR
‘33Tsodde W3 SHWEM 900HODYNIS IR -
THa IT § A0 IT T ST Oo Sns Tl b
zoyeasdo
Jwegamos caETEE
-
ZIHs Lok
an s

ITHETSO MO

R]

2z e [

zegeates 2w
sz
e
e
cazooeer @ _
ops
e
CET0TEREY
xegeeres amr
HET0TERE
HOR 9H0 zogsstes qav pITpTERe
CTETHTINR S
TR
P andyugsotdasps omEEEe
| SAINIS 00 £00d 9H0 T e ey
T=oBTT TeTATUT Feduas
£=PT Tpov 3ph
E andynpsatdaspa OTHEpa fhikivels
[e]| sOI¥ls 07 sTand om0 OId fraess
M HILIAS0E9 WO
e | T05u%g £158
TadeT surTruts doy suy us ag jemu pue
sa0Tasp 01 AeTal 3Tq g ayy a1e QI
_ digq s00l lewdD4 uopelnwis malp Wpg Bl

&

HAM ISI Watchdog

Jeff Kissel January 14, 2009

MUIMUWIG Ul WeISeIp wejsAsqns DNO-IST ¢ 2Insig

ITTaEp2
nopesy (GUIEISEL poumozg
o«
ATTIEpD
lanoTasey PLTLAISEL punasg

o (&

wresrdaeys
XHAATIT

Spunozg

ITTaEpd
NORZATHOON

mfqngsordesys UIUTAE0TdIspa
oHsR BOLIASYIISYH rpunors

HATIMS

£aTqno TT0D

[

Za qno TT09
TE
TaTqno 109
[
gy o 03
T«
Zy ane o9
T«
Ty ane o9

O

wTTyemRag=p
HI¥OLIY

T mE Tz A%
zapa0 wayshs ayeuTpIoOn

£4 T8 TA £H ZH TH
Tapae Jndur

TT 423 fons JOBTTARE /5P0/STO3RE00 AW/ TSTIT (0TT 30F
JTETf33/033 fOBTIARE [FD0F3AS/ TPROTNERS 0

‘woTyTo0T (PTTAQ AT} STTIAYeM auy

ur quasaxd 3q Wpeq 950w SaTT] Isau}

9 MOWIATMOTSTRAC OHO PUe 9 0DMOJMATSIHMM WO S3TT3-D 0%
23333 YoTU EX20TY WeTAIWMF S0 3TF

HOMIATICISIAVH e QOMHIIMATSIRAL 13300

andgnozordaeps

[rogeUTIIZL

e

e g m g
20 DI IHATS T

HORTA

sreudTs

BrraoTq FoyEUTIIZL

=

HORTHO0TANE

fre13 pu"sns]

uTuTgdTegueuaREaTdaspa
LA

pomnezs

b A AAAS

dd0Fa

@D

o
>
o
@
&

B

a
B
o
o
&

B

o
£
o
»
=

hacek Eihiag

8

o
=
o
@

o

¢

o
=
|
o
»
in

g

-
=
o
@

o

HTIFRIROREDA

NAIZ0ID

HTIJEIREOHEPD
LIYEINOD

JWO/1s1

XTIFEIRONEPD
pctikt g

HTIFRIPORSPa

NOITEASIO 3das1d

6

@
)
a
3
o

<

()

o
?
2
i
=l

=

g

o
B
a
G
o

B}

)

o

i
a
3
o

<

()

o

il
2
i
=l

=

o

sl
el
i
5

<

£)

HODSNES

Jeff Kissel January 14, 2009 HAM ISI Watchdog

File Edit Miew Simulation Format Tools Help
Diso sensors
{1 ——M1n1
disp-hl
é—b In2
disp-hZ
6—# In3
disp-h3 DISP_FLAG
(_E:)—D Ind DISP_FLAG
disp-vl
CE———b{ms
disp-w2
(__PE)—PIHE
disp-v3
DISP
Geo sensors
(7 ——™Inl
geo-hl
({8 ———™In2
geo-hi
(8)——»{n3
geo-h3 GE0_FLAG
Ind GE0_FLAG
geo-vl
Ing
geo-vi
Iné
gqeo-v3 GEQ
Ground STS-2
Inl
sts-x
In? STS FLAG
sts-v STS_FLAG
Ind
sts-=2
STS

Figure 4: ISIFOMC-WD subsystem diagram in Simulink.

HAM ISI Watchdog

Jeff Kissel January 14, 2009

UG ut wrerderp wejsAsqns QD Pue JSIA-AM-DINO-TST G 93t

uarsztdgsps
il

sxojeTadn

ELy -

digq §00L JeudDd uogEiwis aala WP a4

X |a= S1S/am/ " f1s1
ursatdasps ursatiasps
XHH o iu)

g30%e3ado gzogexado

AHTL 0Fa a¥Td d5T0

diaH s001 Jewsod uogeinwis Maly HES alg digH s00L JewdDd uogEINWIS Malh IRS ald

xXa= o3In/am/ " Nsl w |1X I8 ds1a/am/ - nsi

Jeff Kissel January 14, 2009 HAM ISI Watchdog

isi/fOMC/WDMON =0 X

File Edit Wiewr Simulation Format Tools Help ‘

Inl T
DAMP
cdsFilt

DAMFPHOH
cdsEpicsiutput

ﬁ

erminator

InZ Teminatorl

cdsFilt

COHTMOH
dsEpicsoubput

ﬁ

é

In3 Terminator?

STATE
cdsFilt

Inl outl N

STATEMOH
cdsEpicsoubput

é

T T
FIRSTTRIG
cdsFilt

FIRSTTRIGMON
cdsEpicsoubput

eminatord

E

Tab Teminatord

CURRENTTEIG
cdsFilt

CURRERTTRIGMONR
cdsEpicsoubput

Figure 6: ISFOMC-WDMON subsystem diagram in Simulink.

Jeff Kissel January 14, 2009

& O —|8fX

File Edit “iew Simulaion Format Tools Help

DAMPING LOOF FATH

(3 -
o Froductl out?
o v
o Froduct? outd
(2] I

Tnd Produoctd outd
iy productd outll
Intl Productld outil
::IE > 12
Ini2 Froductll outl2

Constantd

choicel
blockDampingLoopsF lag

Constant?

ISOLATION LOOF PATH

E
Product outl
Froducti outd
b x
Productd outd
s<IEN)
Productd outd
> s
Products outs
3] »C5)
Froductf outé

blockIsolationLoopsFlag

Constantl

Figure 7: ISI-OMC-MUXS subsystem diagram in Simulink.
10

HAM ISI Watchdog

Jeff Kissel January 14, 2009 HAM ISI Watchdog

I‘ Function Block Parameters: Choice X
Switch
Pass through input 1 when input 2 satisfies the selected criterion; otherwise, pass through input
3. The inputs are numbered top to bottom (or left to right). The input 1 pass-through criteria are
input 2 greater than or equal, greater than, or not equal to the threshold. The first and third input
ports are data ports, and the second input port is the control port.
Main | Signal Attributes
Criteria for passing first input;Ju2 ~= 0 !
Threshold:
Il'_'l.5
¥ Enable zero crossing detection
Sample time (-1 for inherited):
E
oK | Cancel | Help| Ay

Figure 8: ISIF-OMC-MUXS-CHOICE block menu under MUXS subsystem in Simulink.

11

HAM ISI Watchdog

UG ut wreISerp wosAsqns DINO-SAS-ISI 16 0mSL]

ndingsoidgsp
Q37T 3qais

5P
qopuus; ATI00 30IS 105g
= {2
HHERD
ANDT LHOIY

Jeff Kissel January 14, 2009

IndingEaIgsps
37T LHOIY
a3y Wizps
Il|a AT0T 1431 051
Q37 1431 j— =
I -
IA|. zioeus) A 102 £401 no3eL
ndjngsarasps !
as] =dot 031l %
T -
(L Lmeua) A 1102 2400 o
= &)
a37 2d0L J—— [E] —
anEynysarlgss {FL) opuiag A 110D 1401
EIOENNETY D0IHI L ey sadyepa
el a3 o mA|IA|e
B
(EL) Tle
Rl
1o HN
Al
I it
Udspa W4spa
noapls ianpoid i Tdsp 3ais
9404 gul
- - - =
spe spo
oy R e - P fies
+ -+ {53
@ el In @ aul
Inqual MeuaLe #Hanpold P A s anm ki y
.- sinceu ® g - Qo gu — @ gu - i
LINCEM] d d Rl ¥
+ o s sy
nogdoL M Rl 1AL w0 e yase w0 b
T M _|_A‘ £400 cul
R Zina Rl Zina ZUl
Z4npoid e 130 o ke Jidspa
109 ZL Hd = i
nozdoL . Z400 2d0L u
. [==
Lanpold 4Epa
1357 1L ldepa
noLdaL 1404 fua
_ digH 5100l jeuwlod uogelnwis malp ups &g
X /g~ JWOo/sns ;

12

Jeff Kissel January 14, 2009 HAM ISI Watchdog

3.2 C Code

This section describes the front-end code (written in C) that is responsible for the HAMISI-
WATCHDOG and HAMISIDRIVEMON blocks in the simulink diagram. This code gets folded
into the overall isi.c front end code during the “make” process.

As described in section 2, the watchdog is a finite state machine. OMC_HAMISIWATCHDOG.c
is the C code on the front end which runs the state machine. The basic structure starts with the
persistent variable “state,” and the flags that determine whether the isolation and damping loop
paths are blocked, “blockIsolationLoopsFlag,” and “blockDampingLoopsFlag,” respectively.
state is initialized in state 4, and both block*LoopsFlags are initialized as blocked (i.e. = 1).
This way, anytime the code is started or restarted, the watchdog begins in state 4 with both paths
are blocked until the user resets the watchdog.

After the initialization of a few more variables, the code sets “triggers” by creating a five
digit bit-field based on the five input flags for displacement sensor, geophone, STS-2, actuator,
and payload. triggers is a bit-field instead of simply a flag in case more than one input flag has
tripped. Also, a bit-field is easily stored and read by MEDM for the user interfaces described in
section 3.4.

Once triggers has been set, the watchdog code determines any state transitions needed by
using a switch on state. The transitions include changing state, starting and stopping the
arbitrary counter for use in state 2, storing the triggers that first cause the watchdog to trip, etc.
Finally, the actions are performed in the last switch over state. Here, blockIsolationLoopFlag
and blockDampingloopFlag are set according to the value of triggers and state

/%
OMC_HAMISIWATCHDOG.c

HAMISIWATCHDOG is a state machine that watches the displacement
sensor, geophone, actuator, and payload watchdog flags, and blocks
the isolation loop path and/or damping loop path according to the
flags.

INPUTS:

argin[0] = displacement sensor saturation flag

argin[1] = geophone sensor saturation flag

argin[2] = Ground STS-2 sensor saturation flag

argin[3] = payload saturation flag

global variables
actLevel = actuator saturation flag (from OMC_HAMISIDRIVEMON.c)
plocalEpics = variable in control of CDS_EPICS (from EPICS database)

OUTPUTS:

argout [0] = flag to block damping loop path
argout[1] = flag to block isolation loop path
argout [2] = state of watchdog

*
*
*
*
*
*
*
*
*
*x
*
*
*
*
X
*
*
*
*
*
*
*x argout[3] = 4 character bit-field state after the first trigger

13

Jeff Kissel January 14, 2009 HAM ISI Watchdog

* (1 = displacement sensors; 2 = geophones;

* 4 = actuators; 8 = payload;)

*x argout[4] = triggers;

*

* Written by Jeff Kissel and Tobin Fricke

* Nov 26 2008

* $Id: OMC_HAMISIWATCHDOG.c 318 2009-01-14 22:23:06Z seismic $
*/

void OMC_HAMISIWATCHDOG(double *argin, int nargin, double *argout, int nargout) {

static int state = 4; // Start in STATE 4 (FULL SYSTEM SHUTDOWN)
static int firstTrigger = 0; // Start with no indication of triggers
static int cycleClock = 0; // Used to count cycles when in state 2.
const int state2HoldCycles = 3 * 2048; // Wait for [seconds] X (cycles/second)

int blockIsolationLoopsFlag = 1; // Start script with isolation path BLOCKED
int blockDampingloopsFlag = 1; // Start script with damping path BLOCKED
// Read inputs

int dispTriggered = argin[0]; // Displacement Sensor Flag

int geoTriggered = argin[1]; // Geophone flag

int stsTriggered = argin[2]; // Ground STS-2 flag

int payloadTriggered = argin[3]; // Payload flag

int actTriggered = actFlag; // Actuator flag, defined in OMC_HAMISIDRIVEMON

// Check and record the RESET button value
int resetFlag = pLocalEpics->isi.0MC_RSET; // Epics variable for reset button
pLocalEpics->isi.OMC_RSET = 0; // Set reset button epics variable to 0

// Check for triggers - make a 5 character bitfield so we can tell which triggers triggered
// The !'! (double inverse) syntax guarantees that the given value is O or 1.
// The << is a bitwise shift left, i.e. 1 << 2 == 4 and 1 << 3 == 8.
// So, if the displacement sensors and actuators trigger, triggers = 01001;
int triggers =
(!'dispTriggered) | (!l!geoTriggered << 1) | (!!stsTriggered << 2) | (!lactTriggered << 3) | (!!p:e

// State transitions
switch (state) {
case 1: // To STATE 1 (ARMED)
if (triggers) {
firstTrigger = triggers; // Record the bit-field state after the first trigger
cycleClock = 0;
state = 2;
}

break;

14

Jeff Kissel January 14, 2009 HAM ISI Watchdog

case 2: // To STATE 2 (TRIGGERED; HOLDING 3 SECONDS WITH DAMPING ENABLED)
if (cycleClock >= state2HoldCycles) {
cycleClock = 0;
state = 3;
// If three seconds haven’t passed yet, we just stay here in state 2.
I

break;

case 3: // To STATE 3 (TRIGGERED; MONITORING WITH DAMPING ENABLED)
if (triggers)
state = 4;
else if (resetFlag) {
firstTrigger = 0; // Reset first trigger
state = 1;
}

break;

default:
case 4: // To STATE 4 (TRIGGERED; FULL SHUTDOWN)
if ('triggers && resetFlag) {
firstTrigger = 0; // Reset first trigger
state = 1;
}
break;

}

// State actions

switch (state) {

case 1: // STATE 1 (ARMED)
blockIsolationLoopsFlag = 0; // Leave isolation loop path open
blockDampingLoopsFlag = 0; // Leave damping loop path open

break;

case 2: // STATE 2 (TRIGGERED; HOLDING 3 SECONDS WITH DAMPING ENABLED)

blockIsolationLoopsFlag = 1; // Block isolation loops path
blockDampingLoopsFlag = 0; // Leave damping loops path open

cycleClock = cycleClock + 1; // Keep counting, it hasn’t been long enough yet
break;

case 3: // STATE 3 (TRIGGERED; MONITORING WITH DAMPING ENABLED)

blockIsolationLoopsFlag = 1; // Block isolation loops path
blockDampingLoopsFlag = 0; // Leave damping loops path open
break;

default:

15

Jeff Kissel January 14, 2009 HAM ISI Watchdog

case 4: // STATE 4 (TRIGGERED; FULL SHUTDOWN)

blockIsolationLoopsFlag = 1; // Block isolation loops path
blockDampingloopsFlag = 1; // Block damping loop path
break;

}

// Output

argout [0] = blockDampingloopsFlag;

argout[1] = blockIsolationLoopsFlag;

argout[2] = state;

argout[3] = firstTrigger;

argout [4] = triggers;

return;

The only other piece of C code for the watchdog is OMC_HAMISIDRIVEMON.c, which rep-
resents the block where actuator drive levels are monitored. Similar to the “WD” block described
in section 3.1, the code monitors the digital signal sent out to the DAC, and sets a flag (the global
variable “actFlag”) accordingly based on the user-defined actuator drive threshold.

~
*

OMC_HAMISIDRIVEMON.c

INPUTS

mux3[0] = digital output to Hl1 actuator
mux3[1] = digital output to H2 actuator
mux3[2] = digital output to H3 actuator
mux3[3] = digital output to V1 actuator
mux3[4] = digital output to V2 actuator
mux3[5] = digital output to V3 actuator
mux3[6] = user defined threshold (DRIVEMAX)

OUTPUTS:
demux4[0] = saturation flag

actFlag (nominally 0) is set to 1 if any digital
signal exceeds user defined threshold. actFlag is used
for a flag read by OMC_HAMISIWATCHDOG.c.

Written by Jeff Kissel
Nov 17 2008
$Id: OMC_HAMISIDRIVEMON.c 265 2008-12-01 18:16:05Z seismic $

¥ X X X X X X X X X X X X X X X X X X X *

*
~

static int actFlag = 0; // must be static to persist between cycles,

16

Jeff Kissel January 14, 2009 HAM ISI Watchdog

//in case WATCHDOG is called before DRIVEMON
void OMC_HAMISIDRIVEMON(double *argin, int nargin, double *argout, int nargout) {

int numActuators = 6; // all but the last input
int userThreshold = argin[6]; // the last input

actFlag = 0; // no saturations yet

// look for saturations

int ii;

for (ii = 0; ii < numActuators; ii++)
// Set actuator flag to either O or 1, using the |= (or-equals) bitwise
// OR assignment operator. The statement below is equivalent to
// actFlag = actFlag | (argin[ii] >= userThreshold);

// such that the flag is sit if ANY actuators have tripped.
actFlag |= (argin[ii] >= userThreshold);

argout [0] = actFlag; //Send flag value to output

3.3 Scripts

There are several auxiliary scripts that must be running at all times. They include “ctrliDOW N,”
“checker,” “‘chk_daemon.” These scripts serve to prevent further digital requests to drive the
HAML-ISI after the watchdog has been tripped, more specifically isolation loop signals.

The digital portion of the isolation loops run independently after a watchdog trip; the watchdog
simply denies any of that control signal to reach the actuators. Because the isolation loops are
only conditionally stable, when the input control signal sudden vanishes after a watchdog trip,
the loops saturate (if they have not saturated already). The auxiliary scripts serve to turn off
the independent isolation loop control system. If it were not in place, the user could mistakenly
reset the watchdog while the isolation loops are still requesting huge actuation signals, and slam
the HAM ISI around. They control higher level epics variables, and do not don’t need to cycle as
quickly as the front end code, so they are run on a separate Linux machine.

The functionality is as follows: checker is a bash script that must be run continually. It
checks every second whether the channel L1:IS-OMC_WDMON_FIRSTTRIGMON is non-zero
(as described in section 3.1, FIRSTTRIGMON is an integer representing the bit-field triggers
of the first saturation that cause the watchdog to trip). If FIRSTTRIGMON is non-zero, checker
calls ctrlDOW N. When the bash script ctrlDOW N is called, it immediately does the following
to every isolation loop degree of freedom:

1. Sets the gain ramp time to ZERO.

2. Turns the output OFF.

3. Turns the input OFF.

4. Turns the isolation loop boost filter OFF.

17

Jeff Kissel January 14, 2009 HAM ISI Watchdog

5. Turns the isolation loop gain to ZERO.
6. Clears the filter bank history.
7. Sets to the gain ramp time to five seconds.

which totally turns off the digital isolation loop system, as desired.

The final script, chk_daemon are merely in place to make sure checker is running. This check
is done once a minute, placed under the Linux machine’s crontab.

The following are copies of the scripts currently running at the Livingston observatory.

checker:

#!/bin/bash

CHECKER checks the status of ISI watchdog every second. If tripped, calls

the "ctrlDOWN" script. This function will read status of output lines of
HAMISIWATCHDOG cdsFunction in the isi.mdl simLink diagram. If the output

of the function is less than one, this function will call the "ctrlDOWN" script
that goes through proper sequences to safely bring down the LLO HAM6 ISI
isolation loops.

H OH H H HH

$Id: checker 269 2008-12-01 23:18:35Z seismic $

SITE="L1’;
SCRIPTSPATH="/cvs/cds/1lo/scripts/11/ISI/’;
SYSTEM="’:ISI-0OMC_’;
LOG=${SCRIPTSPATH}checker_status.log;

while true
do
sleep 1 # run this checker every one second
echo $0 >> ${L0OG}
echo "Checking watchdog status ...
echo "Checking watchdog status ..." >> ${LOG}
STATUS=‘caget -t ${SITE}${SYSTEM}WDMON_FIRSTTRIGMON®;

check if ${STATUS} is empty string
while [-z ${STATUS} 1; #
do
echo "Check of status failed!"
echo "Rechecking status!"
echo "Check of status failed!" >> ${LOG}
echo "Rechecking status!" >> ${L0OG}
STATUS=‘caget -t ${SITE}${SYSTEM}WDMON_FIRSTTRIGMON‘;
done

18

Jeff Kissel January 14, 2009

HAM ISI Watchdog

echo

echo
echo

echo

done

exit

Report status of check to log
DATE=‘date

echo "${DATE} STATUS
echo "${DATE} STATUS

${STATUS} PID
${STATUS} PID

$PPID HOST
$PPID HOST

If status is non-zero
if ["${STATUS}" -ne "0"]; then
"Watchdog tripped! Calling ctrlDOWN ..."
echo "Watchdog tripped! Calling ctrlDOWN ..."
cd ${SCRIPTSPATH}
./ctrlDOWN >> ${L0G}
"ctr1DOWN done."
"ctrlDOWN done." >> ${LOG}
else
"Status 0K ..."
echo "Status OK ..." >> ${LOG}
fi

0

ctrIDOWN

#!'/b

in/bash

${HOST} SITE
${HOST} SITE

>> ${L0G}

ctrlDOWN is designed as an automatic, quick methods to turn off
the isolation loops in case of saturations.

#
#

SITE
SYST
boos

scri

for

done

='L17;
EM=’:ISI-0OMC_’;
tButton="FM10°’;
ptsPath=’/cvs/cds/1lo/scripts/11/ISI/’;

iCoordDOFs in X Y Z RX RY RZ
do

caput ${SITE}${SYSTEM}CONT_${iCoordDOFs}_TRAMP 0.0
ezcaswitch ${SITE}${SYSTEM}CONT_${iCoordDOFs} OUTPUT OFF
ezcaswitch ${SITE}${SYSTEM}CONT_${iCoordDOFs} INPUT OFF

ezcaswitch ${SITE}${SYSTEM}CONT_${iCoordDOFs} ${boostButton} OFF

caput ${SITE}${SYSTEM}CONT_${iCoordDOFs}_GAIN 0.0
caput ${SITE}${SYSTEM}CONT_${iCoordDOFs}_RSET 2

caput ${SITE}${SYSTEM}CONT_${iCoordDOFs}_TRAMP 5.0

19

H OH H H H R

${SITE}"
${SITE}" >> ${LOG}

Set gain ramp to zero seconds
Turn off output

Turn off input

Turn off boost filter

Set gain to zero

Clear history on filter bank
Set gain ramp back to five sc

Jeff Kissel January 14, 2009 HAM ISI Watchdog

chk_daemon

#!/bin/bash

CHK_DAEMON

Purpose: This daemon script is to be linked to cron daemon running every
minute. This script checks if checker script is running, and if
not, then runs the script.
#
#

$Id: chk_daemon 299 2009-01-13 01:05:17Z seismic $
scriptsPath=’/cvs/cds/1lo/scripts/11/ISI/’;

Report the current processes (ps), all of them (-e),
and search for the checker process (| grep checker),
but remove the search from that list (| grep -v grep).
ps -ef | grep -v grep | grep checker

The variable $7 is the return

value of the last executed program.
It is zero if a match was found, and
1 if no match was found.

if ["$7" -eq 1]
then
echo "Watchdog function checker not running - restarting ..."
${scriptsPath}checker &
echo "Sleeping for 60 seconds..."

else
echo "Watchdog function checker running - waiting until next check ..."
echo "Sleeping for 60 seconds..."

fi

return

3.4 Medm Screens

Considerable effort has been made to make the MEDM control screens look and feel very much like
the simulink model. Figure 10 shows the overview screen for control of the HAM ISI. A detailed
explanation of the the overview screen is not in the scope of this document, but the flow of data
is from left to right (or bottom to top since the figure is rotated). Just after the blue “isolation
filters” and tan “damp” block, there is a tan dotted line connected to a box titled “watchdog.”
This box is actually a link to a sub-screen shown in figure 12. The green inner box inside the
watchdog box on the overview screen indicates that watchdog is armed and in state 1. In any
other state, this inner box shows red.

The overview’s progression through states shown in figure 11. Notice, that in state 1 (TOP

20

HAM IST Watchdog

Jeff Kissel January 14, 2009

w0108 AN SOPUPYe IS INVH (0T 9mSLg

X==

IPE"MIIAYIAO WO ISIT

T
[szoums®.
=
==

21

Jeff Kissel January 14, 2009 HAM ISI Watchdog

panel), the inner box in the watchdog block shows green, indicating the watchdog is in state 1, or
armed. In states 2 and 3 (MIDDEL panel), the inner box is red, and only the isolation path has
a red blocker in on top of the tan dash line. In state 3 (BOTTOM), the inner box is again red,
but now both the isolation and the damping paths are blocked.

LLISI_OMC_OVERVIEW.adl =0

Wed Jan 7 10:34:05 2009

Ground Seiswometer ER0) 30 135 (e HASTER SWITCH

Displacement. Sensors Isolation Path

TispZCen

[HPRE-FILTERS = ActCain
=1}
=EkE 1SOLATION |
o E e FIEERS
[HPReE-FILTERS ! Eali =

@csu SUITCHES
Danping Path

mll

L1ISI_OMC_OVERVIEW.ad| = 0OX
Mon Jan 12 13:46:20 2009

DAkF
Chens e .

Ground Seiswometer H L35 1: ey HRSTER SWITCH

Displacement Sensors Isolation Path
Tisp2Cen i
[HPRE-FILTERS T =
=11}
= FILTERS .IsngTmM
Geaphanes FILTERS
GeaZlen =
%PRE FILTERS =

Cont2fct ActGain

| IAC

 CHGED_SUITCHES |
Dawping Path

TAMP
Chens TP

- L1ISI_OMC_OVERVIEW.adI = |O|X
Hon Jan 12 18:45:31 2003

LLO HAME ST Overwiew HASTER SWITCH

Ground Seismometer

Displacenent Sensors Isolatian Path

ChPRE-FILTERS = : T
=T\
E= FiLTERs 1SOLATION | e
Geophones =] FILTERS
CHPRE-FILTERS | beszten = 5

@GEU SUITCHES
Tanping Fath

TAMP
CheIs TP

Figure 11: HAM ISI Watchdog MEDM screen. The top, middle, and bottom panels show the
overview screen in state 1, 2&3, and 4, respectively.

Figure 12 shows the watchdog MEDM screen. In tan on the left are where the user can define
the thresholds for displacement sensors (DISP limit:), geophones (GEO limit:), and actuators

22

Jeff Kissel January 14, 2009 HAM ISI Watchdog

(ACT limit). Note that the fourth threshold, the PAYLOAD limit, is a read-only display of the
payload threshold which is set by another, intentionally independent, MEDM screen. Surrounding
these limits are bars indicating the status of the triggers. These bars are green if their respective
flags are not triggered, and red if they are. There are two columns of bars, the left column shows
the flags that saturated causing the initial trip of the watchdog, and the right coumn shows what
is currently being flagged for saturation.

In the top right corner right, under “watchdog state,” the current state of the watchdog is
shown. When the watchdog is in state 1, a green box appears near “state 1: armed.” For state
2, a yellow box appears near “state 2: tripped, counting.” For state 3, a bright red box appears
near “state 3: tripped, damping enabled.” Finally, when in state 4, a dark red box appears near
“tripped; full system shutdown.” This progression is show in figure 13.

In the bottom left corner are a field which reports the value of CURRENT TRIG (corresponding
to triggers in the front end code) with explanation of the bit field below and the reset button,
which will reset the watchdog from state 3 or 4 into 1, as long as there are no current trigger flags.

23

Jeff Kissel January 14, 2009 HAM ISI Watchdog

LLISI_CUST_OMC_CTRLSWITCH_BUTTONS.ad| M =]p4

|

Figure 12: HAM ISI Watchdog MEDM screen.

24

Jeff Kissel January 14, 2009 HAM ISI Watchdog

LLISI_CUST_OMC_CTRLSWITCH_BUTTONS.adl H=E LLISI_CUST_OMC_CTRLSWITCH_BUTTONS. adl H=
0000,0 0000,0

500,00 [F000.00

LLISI_CUST_OMC_CTRLSWITCH_BUTTONS.adI M= L1ISI_CUST_OMC_CTRLSWITCH_BUTTONS.adl =]

Figure 13: HAM ISI Watchdog MEDM screen. The four panels, starting in the bottom left and
continuing clockwise (as in figure 1) show the screen in state 1, 2, 3, and 4.

25

