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This is a working document for figuring out how best to use Einstein@Home to search for gravi-
tational waves from unknown isolated pulsars. This study formed the basis of the workunit setup
implemented in the E@H run ’S4R2’.

I. NUMBER OF TEMPLATES USED BY LALAPPS COMPUTEFSTATISTIC

In order to optimze an E@H search using the current lalapps ComputeFStatistic code (CFS), we need an ex-
pression for the actual number of templates as a function of the search parameters. We will base our numbers on the
case where a metric-grid is used (--gridType=2).

The method employed by the current CFS is not covering the full parameter-space by a metric grid, but instead it
only covers the sky by a metric grid (using TwoDMesh()) with the metric projected on the surface f = fmax. In the
spin-directions f, ḟ , f̈ , .., on the other hand, only the (constant) metric-spacing in this coordinate-direction is used to
determine a constant step-size.

This allows us to obtain an analytic expression for the number of templates in all directions except for the sky-grid,
for which an empirical fit to the number of sky-points will be determined.

The (constant) stepsizes df and dḟ at a given mismatch argument m (--metricMismatch=m, Note: this is different
from µmax!) in CFS are determined as follows. First, the frequency-axis is scanned at a constant stepsize of

df = 2
√

m

gff
, (1)

in terms of the parameter-space metric gab.
Because no correlations with the remaining parameters have been taken into account in this scan, we search the

remaining subspace {α, δ, ḟ} using the projected metric γab onto the subspace of constant f , i.e.

γab = gab −
gafgbf
gff

. (2)

This metric is used in the sky-covering (using TwoDMesh()), and also in the independently covered spindown-direction,
i.e.

dḟ = 2

√
m

γḟ ḟ
. (3)

The spin-components of the metric can be obtained as

gss′ = (2π)2
T s+s

′+2

s!s′!(s+ 2)(s′ + 2)(s+ s′ + 3)
, (4)

and so the relevant diagonal elements are

gff = (2π)2
T 2

12
γḟ ḟ = (2π)2

T 4

16× 45
. (5)

The resulting spacings are found as

df =
2
√

3m
π

1
T
, dḟ =

12
√

5m
π

1
T 2

. (6)

We are using constant upper and lower boundaries for the frequency- and spindown ranges, i.e. f ∈ [fmin, fmin + ∆f ]
and ḟ ∈ [ḟmin, ḟmin + ∆ḟ ], and so the total number of spin-templates Nspin is

Nspin =
π2∆f ∆ḟ
24
√

15m
T 3 . (7)
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FIG. 1: Comparison between theoretically predicted and measured number of spin-templates.

In order to check this analytic relation, we compare it to the actual number of spin-templates produced by the
grid-code using in CFS, the result of which is shown in Fig. 1.

The remaining unknown is the number of sky-templates Nsky(T ; f,m) (for the whole sky) at a fixed f, ḟ . The
dependencies of Nsky on f , m and can be made explicit based on the theoretical scalings, namely

Nsky(T ; f,m) =
(
f

f0

)2 (m0

m

)
Nsky(T ; f0,m0) , (8)

so we only need to determine an empirical fit to Nsky at fixed frequency f0 and mismatch-parameter m0 for an all-sky
search.

We checked these theoretical scaling against the actual numbers, as shown in Fig. 2.

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

 100  200  300  400  500  600  700  800  900  1000

N
sk

y

Frequency f [Hz]

Nsky at T=30hours, m=0.5, LHO for different frequencies

CFS
fit

0.0e+00

2.0e+03

4.0e+03

6.0e+03

8.0e+03

1.0e+04

1.2e+04

1.4e+04

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

N
sk

y

mismatch m

Nsky at T=30hours, f=100Hz, LHO

CFS
fit

FIG. 2: Scaling of Nsky with frequency f and with mismatch m.

Unfortunately, the corresponding number of sky-templates produced by TwoDMesh() turns out to depend signifi-
cantly on the start-time of the observation, see Fig. 3.
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FIG. 3: Number of sky-templates Nsky as a function of observation-time (in hours) for startTime at the beginning of S4
(t0 = 792576013) and at the end (t0 = 795830413). The green line shows a common fit of the data by a power law.

However, in the following we will work with a rough power-law fit to provide a representative description of the
overall behaviour of Nsky(T ), but obviously the exact number will depend on the start-time of the observation, so
this fit should be considered only as an approximation to within some 10% errors or so up to T ≤ 55 hours. Thus,
we try a fit of the form Nsky = ATλ. The best least-squares fit is shown in figure 3, and is found as:

Nsky(T ; f0 = 100 Hz,m = 0.5) = ATλ = 0.1
(

T

Thour

)2.41

, (9)

where Thour = 1 hour, and so

Nsky(T ; f,m) =
f2

m

m0A

f2
0

Tλ , (10)

with f0 = 100 Hz, m0 = 0.5 and λ ≈ 2.41, A ≈ 0.1/(Thour)λ.
Putting the pieces together, and using the fact that the sky-grid is to be evaluated at the highest frequency fmax

in the frequency-interval ∆f , we obtain the total number of templates Np as

Np = NspinNsky(fmax) =
π2

24
√

15
m0A

f2
0

∆ḟ ∆f f2
maxm

−2 T 3+λ . (11)

Note that in the case of orthogonal search-axes we would expect the maximal mismatch µmax occuring to
be roughly given by µmax ≈ D × m, where D is the number of dimensions and m is the maximal mis-
match along each axis. Due to the practical implementation of the search-grid, however, it turns out that (see
http://www.aei.mpg.de/∼repr/EnoteEntries/MetricGrids Report/Report CFS4D.pdf) the maximal mismatch
seems roughly given by

µmax ≈ 1.25m, (12)

where m corresponds to the parameter specified to CFS as --metricMismatch=m.

II. THE LARGEST POSSIBLE COHERENT INTEGRATION

To run a pulsar search on Einstein@home, we need to break up the parameter space suitably. Let us first consider
the simplest way of doing this, i.e. only divide the frequency range into sub-bands. Thus, each work-unit gets the
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entire sky, and the entire range of spin-down parameters ∆ḟ , but gets frequency bands of possibly different size. We
want to check whether such a procedure is practical in the sense that the following constraints must be satisfied:

• Each work unit must take roughly the same time to finish.

• The amount of data to be transferred with each work unit must not be too large.

• Each work unit must analyse at least 100 frequency and spindown values for every sky-location – this is when
ComputeFStatistic is computationally efficient.

• The break up of the parameter space should be as simple as possible!

Let NCPU be the effective number of CPUs available, i.e. the average equivalent number of CPU’s running E@H all
the time. τtot denotes the total amount of time the project can run, and τWU the time for each work unit to finish on
a CPU. Then, the number of work units is given by

NWU =
NCPU τtot
τWU

. (13)

Let ∆fi (i = 1 . . . NWU) be the frequency bands given to each work-unit and let fi be the highest frequency value
of the ith work unit. Thus, the ith work unit gets the frequency band (fi − ∆fi, fi). Let fmin be the smallest
frequency considered in the whole search and fmax the largest. Let ∆ḟi be the range of first spindown parameter
values considered in the ith work unit. We are considering spindowns in the range (−∆ḟi,∆ḟi). We shall consider
two cases:

i. ∆ḟi is independent of i and equal to 2fmax/τmin for a given minimum spindown age τmin.

ii. ∆ḟi = 2fi/τmin.

Let us first focus on case i. Let T be the total amount of data available. We are assuming that the duration
spanned by the data Tspan and the actual amount of data Tdata are the same. This requirement can be relaxed but
for simplicity, let us work with this for now.

From the template counting formulae (11) shown earlier, we have that the number of templates analysed by a single
work unit is

Np = k1T
3+λf2

i ∆fi ∆ḟ m−2 (14)

where

k1 =
π2

24
√

15
m0A

f2
0

. (15)

We would like to keep the time spent on each work unit to be the same. Thus, we must require that

f2
i ∆fi = C for i = 1 . . . NWU , (16)

where C is a constant independent of i. If the frequency bands are small enough, this can be rewritten as

∆
(
f3
i

3

)
= C . (17)

Summing over i = 1 . . . NWU, we get

f3
max − f3

min = 3CNWU . (18)

In the limit where Nspin & 100, the time taken to complete one template asymptotes to the approximate expression

τp = k2 T , (19)

where k2 is a constant. Since τp is proportional to the number of SFTs M , we must have

k2 =
τp0

M0TSFT
(20)
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where τp0 and M0 are reference values for τp and M . The time τWU to complete one workunit is therefore τWU = τpNp,
and substituting into equation (13) using (14) we get

∆ḟ
f3
max − f3

min

3
=
NCPUτtot
k1k2 T 4+λ

m2 =⇒ T =
(

3NCPUτtotτminm
2

2k1k2fmax(f3
max − f3

min)

)1/(4+λ)

. (21)

We need to check if this solution is consistent with the constraints listed at the start of this section. To do this,
assume that τWU is some reasonable number, say 12 h. Then, from (13), we can calculate NWU, and thus

C = (f3
max − f3

min)/3NWU (22)

Thus, the smallest and largest frequency bands are respectively

∆fNWU = C/f2
max and ∆f1 = C/f2

min . (23)

Thus, the maximum number of bins is TC/f2
min and the minimum is TC/f2

max. Both of these must satisfy the
constraints listed earlied.

Let us now consider case ii. when the spindown range corresponds to a fixed τmin and thus changes with frequency.
In this case, ∆ḟi = 2fi/τmin so that N i

p ∝ f3
i ∆fi. To require each work unit to analyse the same amount of templates,

we would require:

f3
i ∆f1 = C ′ =⇒ f4

max − f4
min = 4C ′NWU . (24)

Follwing the same steps as before, we arrive at the solution for T :

T =
(

2NCPUτtotτminm
2

k1k2(f4
max − f4

min)

)1/(4+λ)

. (25)

The frequency bands decrease as 1/f3 in this case:

∆fNWU = C ′/f3
max and ∆f1 = C ′/f3

min . (26)

These results are made concrete below.

A. Illustrative example

As an illustrative example, we consider an all-sky search and we take

• NCPU = 50, 000

• fmin = 100 Hz, fmax = 600Hz

• τmin = 1000yr (so that at 600 Hz, ḟmax = f/τmin = 1.9×10−8 Hz/s and we search over the range (−ḟmax, ḟmax))

• m = 0.3

• τtot = 3 months

• τWU = 12 h.

• τp0 = 2.5× 10−5 sec (k2 = τp0/(20 ∗ 1800))

With these parameters, solving eq. (21), we see that Einstein@Home can search over T ≈ 56.9 hours of data. Each
work unit analyses ∼ 3× 108 templates. The other features of this search are the following.

As mentioned earlier, we only break up the parameter space in frequency with the frequency spacing decreasing
quadratically with increasing frequency. This ensures that all work-units take appriximately the same time to finish.
The total number of work units is 9×106 (thus the frequency band from 100-600 Hz has been broken up into 9 million
bands). The smallest frequency band is at 600 Hz and it has a width of 2.2 × 10−5 Hz corresponding to ∼ 5 bins
at the frequency resolution of 1/T . The largest frequency band is at 100 Hz and it has a width of 7.96 × 10−4 Hz
coresponding to ∼ 163 bins.
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Are the constraints satisfied in this solution? First, we want that the frequency and spindown bands are large
enough so that we do at least ∼ 100 frequency/spindown values for each sky position. This means that Nspin defined
in 7 must be at least 100. It is easy to calculate that at 600 Hz, we get Nspin = 3571, which is comfortably larger
than 100. The other constraint is that the data which must be sent with each work unit is not too large. In this case,
the largest work units are at 100 Hz. The frequency band, as we saw, is ∆f1 = 7.96 × 10−4 Hz. This correspinds to
1800∆f1 = 1.43, i.e. 2 frequency bins in every SFT. Assuming each SFT bin is 8 bytes, the amount of data which
must be sent in the form of SFTs is 8× 2×NSFT ∼ 16T/TSFT ∼ 1800 bytes. Each SFT must also contain “wings”
corresponding to the doppler width, i.e. 2fiv/c. This is ∼ 0.12 Hz at 600 Hz, and 0.02 Hz at 100 Hz.

If we perform the same search as above, except that we search over a fixed τmin = 1000 y instead of a constant ḟ
range, the answers do not change qualitatively. We get T = 59.6 hours, each work unit analysing 2.9× 108 templates.
Also, we have ∆f1 = 3.6 × 10−3 Hz (Nspin ∼ 8 × 104), and at the maximum frequency: ∆fNW U

= 1.67 × 10−5 Hz
(Nspin = 2218). The constraints are still satisfied.

As discussed in scetion III below, it is possible to choose an optimal value for the mismatch m based on optimizing
the sensitivity of the search. This leads to a range of values and 0.3, as chosen above, is on the conservative side. If
we were to choose instead m = 0.7, then we would get T = 74.7 h with the constraints still satisfied. More generally,
T ∝ m2/(4+λ).

III. THE OPTIMAL THRESHOLD Fth AND MAXIMAL MISMATCH µ

A. False alarm and mimimal threshold Fth

Another practical constraint limiting the sensitivity of our search is the maximum number of candidates we can
allow to be sent back from each node/CPU. This is limited on one hand by the maximum reasonable data upload-rate
Γup, either determined by the rate a user can send back via a standard DSL-connection, and on the other hand by
the maximum data-flow our servers can handle. A related secondary question might also be how many candidates in
total we want/can deal with after this whole coherent step of the first stage.

This maximum number of candidates per WU (giving the false-alarm rate) determines the mimimum threshold
on F we can set, which in turn limits the loudest possible signal which can pass this first stage, and thereby the
maximum sensitivity of the whole pipeline.

The maximum average number of candidates Nc per WU is therefore given by

Nc ∼
Γup

mc
τWU , (27)

where mc is the amount of memory needed for one candidate. On the other hand, this maximum numberNc determines
the lowest false-alarm probability α we can allow, namely

α =
Nc

Np
. (28)

This upper limit on α is an important difference from the analysis of [1]. There it was assumed that one would set
the threshold based on the false dismissal rate β(Fth, h0), such we don’t lose more than, say, 10% of signals with a
certain amplitude h0. The threshold was then determined by inverting the equation β(Fth, h0) = 0.1. This was used
to determine the false alarm rate α(Fth). Now it is different: we have to accept a false alarm rate based on the above
constraint and this determines the sensitivity of the search.

On the other hand, for Gaussian noise the false alarm α is related to the threshold Fth by

α = (1 + Fth) e−Fth . (29)

Using Eqs. (27) and (28) together with the relation Np = τWU/τp(T ), we obtain

τp(T )
Γup

mc
= (1 + Fth) e−Fth , (30)

which determines the lowest feasable threshold in terms of the maximal upload-rate and the time per template τp(T ).
It is interesting to note that this threshold does not depend on any other details of the search.

Taking the above example, and requiring the maximum upload-rate Γup = 300 kB/24hours, assuming the memory
per candidate mc = 30 Bytes, then we get from the above: α = 1.65× 10−5 and Fth = 11.0.
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B. Optimal mismatch µmax

In the next step we want to optimze the sensitivity of the search in terms of the maximal mismatch µmax of the
search-grid. First we fix a false-dismissal rate β for our search. For gaussian noise the pdf for F in the presence of
a signal-to-noise ratio (squared) η = (h|h) is given by p1(F ; η) = 2χ2

(4)(2F ; η), which determines the false-dismissal
rate

β(Fth, η) =
∫ Fth

0

p1(F ; η) dF . (31)

One can show generally that for χ2
(n)(z; η)-distributions the corresponding false-dismissal rate β is a monotonically

decreasing function of the signal-to-noise ratio η, i.e. ∂ηβ < 0, and therefore fixing a maximal β implies a smallest η
which can be detected with the required confidence. On the other other hand, using the expression derived in JKS
for the averaged SNR, we can write η in terms of the signal-amplitude h0 as

η = (1− µmax)
4
25
h2

0 T (µmax)
Sn

, (32)

where the prefactor 1 − µmax accounts for the signal-to-noise ratio loss at the “worst” parameter-space points with
maximal distance from the grid-points. Note that we could also (consistently with the rest of the SNR-expression)
chose an “average” mismatch-loss (which for a cubic lattice would be (1 − µmax/3)), and ideally we should evaluate
the false-dismissal rate over the search-grid.

Using Eq. (21), which determines the longest-possible observation time T , and using m ∼ µmax, we see that

T ∝ µ2/(4+λ)
max , (33)

and so we can express the smallest signal-amplitude h0, i.e. the sensitivity, as

h−2
0 ∝ (1− µmax)µ2/(4+λ)

max , (34)

which has its maximum at

µmax = (3 + λ/2)−1 ≈ 0.24 . (35)

Note that if we had used the approximate average loss in signal-to-noise η due to template-mismatch (1 − µmax/3),
we would find µmax = (1 + λ/6)−1 ≈ 0.71.

[1] C. Cutler, I. Gholami, and B. Krishnan. Improved stack-slide searches for gravitational-wave pulsars. Phys. Rev. D., 72(4):
042004, Aug. 2005. doi: 10.1103/PhysRevD.72.042004.


