	LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY POLISHING SPECIFICATION			E080512- Drawing No	V5 Rev.
				Sheet 1	of 6
Advanced LIGO End Test Mass (ETM) A+ version					
AUTHOR:	CHECKED:	DATE	APPROVALS		
			DCN NO.	REV	DATE
G. Billingsley		2-01-20	E2000127	V1	2-01-20

Applicable Documents and Revisions

LIGO-D080658-v5 aLIGO COC End Test Mass (ETM) Substrate
LIGO-D080055-v1 Fused Silica Blank End Test Mass
LIGO-E080047-v1 Fused Silica Blank End Test Mass
LIGO-D0902455-v3 aLIGO COC End Test Mass (ETM) Substrate Assembly

Requirements

Physical Configuration

According to LIGO-D080658 aLIGO COC End Test Mass (ETM) Substrate

Fabricate from

LIGO-D080658 aLIGO COC End Test Mass (ETM) Substrate
OR
LIGO-D080055 Fused Silica Blank End Test Mass
OR
LIGO-D0902455-v3 aLIGO, COC End Test Mass (ETM) Substrate Assembly

Registration Marks

Registration marks shall be etched, ground or sandblasted and located per LIGO-D080658

Polishing process

Ion Beam Figuring removal processes should be designed to minimize the probability of defects in the center 160 mm diameter. All Surfaces, Sides and Bevels shall be polished using a progression of smaller grit sizes. The last step before final polish shall be equal to or less than a five $\mu \mathrm{m}$ grit finish.

Surfaces, Sides and Bevel Polish

All surfaces shall appear transparent with no grey, checks or fractures visible to the naked eye when viewed in normal room light against a black background. Scuffs are limited to a total sum area of less than 8 square millimeters. Scratches are limited to a total sum area of less than 4 square millimeters. The cross hatched bonding area on S3 and S4 shall appear transparent with no grey, scuffs or scratches visible to the naked eye when viewed in normal room light against a black background.

Bevel Bevel for safety per LIGO-D080658

OBSERVATORY

Advanced LIGO End Test Mass (ETM) A+ version

Serial Number

Each optic will have a serial Number. "ETMXX" shall be shall be etched, ground or sandblasted on the barrel of the optic per D080658 where XX is incremental and the starting number is supplied with the contract.

Scratches, Sleeks and Point defects

Point defects of radius greater than 25 micrometers are treated like scratches for the purpose of this specification.

Scratches and Sleeks, Surface 1

The total area of scratches and sleeks within the central 120 mm diameter shall not exceed 20×10^{3} square micrometers (width times length.)

The total area of scratches and sleeks inside 300 mm and outside the central 120 mm diameter shall not exceed 500×10^{3} square micrometers (width times length.)

Scratches and Sleeks, Surface 2

The total area of scratches and sleeks within the central 120 mm diameter shall not exceed 1000×10^{3} square micrometers (width times length.)

Point Defects, Surface 1

There shall be no more than 10 point defects of radius greater than $2 \mu \mathrm{~m}$ within the central 120 mm diameter. There shall be no more than 100 point defects of radius greater than $2 \mu \mathrm{~m}$ on the entire surface, inspected out to 300 mm diameter. Average density of defects less than $2 \mu \mathrm{~m}$ radius must be less than or equal to 1 per $4 \mathrm{~mm}^{2}$

Point Defects, Surface 2

There shall be no more than 100 point defects of radius greater than $2 \mu \mathrm{~m}$ within the central 120 mm diameter

Scratch and Point Defect Inspection Method

1. The surface is examined visually by two observers independently. The examination is done in a dark room, against a dark background using an illumination system of at least 150 W total power. A 100% inspection of the surface is carried out. Pits and scratches down to 2 micrometers in width can be detected using this method of inspection. Any scratches or sleeks that are detected will be measured using a calibrated eyepiece.
2. Further inspection will be done with a minimum 6 X eyeglass using the same illumination conditions, again with two observers. Sleeks down to 0.5 micrometers wide can be detected using this method. The surface will be scanned along one or two chords from centre to edge, then at ten positions around the edge, and ten to fifteen positions near the centre.

Surface Figure, measured over the central 160 mm diameter

Surface 1: Spherical, concave. Radius of curvature: $2245 \mathrm{~m}-5,+15 \mathrm{~m}$ absolute accuracy ROC precision: $\mathrm{R} \pm 3 \mathrm{~m}$ where $2240 \mathrm{~m} \leq \mathrm{R} \leq 2260 \mathrm{~m}$ for all ETM optics

Surface 2: Nominally flat. $\mathrm{ROC}>|7000| \mathrm{m}$

Surface Error, Low Spatial Frequency: measurement aperture to $\mathbf{1} \mathbf{m m}^{-1}$

The following root mean square standard deviation $\left(\sigma_{\mathrm{rms}}\right)$ values are calculated from the phase maps which are to be provided with each optic. For this calculation the amplitudes for the best fit piston, tilt and power, or the corresponding Zernike coefficients, are subtracted from the phase map. Known bad pixels may be excluded from this calculation.

Surface 1, Frequency Band: $<1 \mathbf{~ m m}$
Measured over the central 300 mm diameter aperture: $\sigma_{\text {rms }}<2.5$ nanometers
Measured over the central 160 mm diameter aperture: $\sigma_{\mathrm{rms}}<0.3$ nanometers
Surface 2 - Frequency Band: $<1 \mathrm{~mm}^{-1}$
Measured over the central 300 mm diameter aperture: $\sigma_{\mathrm{rms}}<40$ nanometers

Error, High Spatial Frequency: 1-750 mm ${ }^{\mathbf{- 1}}$

Surface 1 HSF error $\sigma_{\mathrm{rms}} \leq 0.16$ nanometers measured at the following locations:

1. Within 2 mm of the center of the surface.
2. Four positions equally spaced along the circumference of a centered, 60 mm diameter circle.
3. Three positions equally spaced along the circumference of a centered, 120 mm diameter circle.

Surface 2 HSF error $\sigma_{\mathrm{rms}} \leq 2$ nanometer measured at the following location:

1. Within 2 mm of the center of the surface.

Mounting Flat Figure, measured over the Bond Area per D080658, 2 places
Flatness: Peak to valley maximum deviation over the bond area, with tilt subtracted: $<60 \mathrm{~nm}$ In the frequency band $<0.5 \mathrm{~mm}^{-1}: \sigma_{\mathrm{rms}}<20 \mathrm{~nm}$

Advanced LIGO End Test Mass (ETM) A+ version

Inspection

Table 1: Inspections

Specification	Test Method and frequency	Data Delivered
Dimensions	Measurement 100%	Measurement Results
Scratches and Point defects methods 1 and 2	Visual Inspection 100%	Hand sketch including scratch/pit dimensions
Figure	Interferometry 100%	Surface phase maps
Errors - Low Spatial Frequency	Interferometry 100%	Surface phase maps
Errors - High Spatial Frequency	Interferometry 100%	Surface maps for 3 central locations. Numerical values included with certification
Mounting Flat figure, S3 and S4	Interferometry 100%	Surface phase map

Orientation: For the purpose of full surface phase maps the data are oriented such that the substrate registration mark is at the top center of the data.

Format: All Data are delivered according to Table 1 in electronic form. In addition to the report, an electronic data set of the phase maps are delivered in either ASCII or Metropro.dat format.

Advanced LIGO End Test Mass (ETM) A+ version

Inspection

The following change in E080512 is acceptable:

1) Replace defect inspection method \#2 with use of a Phase Measuring Microscope (PMM) with 2.5 x magnification to aid in quantifying defects.

Sleeks

Sleeks may be allocated to the HIGH SPATIAL FREQUENCY ERROR requirement rather than the "Scratches, Sleeks and Point Defects" requirement per LIGO-C1000393 "ASML proposal on allocating surface defects to RMS roughness on LIGO ITM surfaces" as follows.

Allocating surface defects to RMS roughness on LIGO Test Mass surfaces

In order for a defect to be counted as part of the surface roughness specification allocation, it must be measurable by PMM, have an amplitude of less than 100 nm , and its contribution to the local surface RMS roughness be quantifiable. It is expected that sleeks may qualify for this but not scratches. Scratches will be counted as part of the area exclusion allocation.

To properly add the contribution of a single defect to the total accumulated RMS surface roughness the RMS of local defect area must be statistically added to the total surface area roughness.
The following equation is believed to accurately make this calculation. The RMS is assumed to be the RMS deviation, relative to a best fit plane.

$$
R M S_{\text {Total }}=\sqrt{\frac{A R E A_{\text {Full }} * R M S_{\text {Full }}^{2}+A R E A_{\text {Local }} * R M S_{\text {Local }}^{2}}{A R E A_{\text {Full }}+A R E A_{\text {Local }}}}
$$

$\mathrm{RMS}_{\text {Local }} \quad=$ RMS of local area containing the sleek
$\mathrm{AREA}_{\text {Local }}=$ Area of local RMS
$\mathrm{RMS}_{\text {Full }}=$ RMS surface roughness of total area, excluding the effect of the defect $\mathrm{AREA}_{\text {Full }}=$ Total Area of 120 mm diameter circle, excluding the area of the sleek
$\mathrm{RMS}_{\text {Total }}=\mathrm{RMS}$ surface roughness of total area, including the effect of the defect

Advanced LIGO End Test Mass (ETM) A+ version

Example 1:
RMS of 1 PMM image containing $1 / 20^{\text {th }}$ of the defect $=3 \mathrm{~nm}$. The defect is 5 mm , and extends over 20 PMM images

Size of PMM image $=0.25 \mathrm{~mm} \times 0.25 \mathrm{~mm}$
$\mathrm{RMS}_{\text {Local }}=3.0 \mathrm{~nm}$
AREA $_{\text {Local }}=0.25 \times 0.25 \times 20=1.25 \mathrm{~mm}^{2}$. This is the total estimated area of the affected zone, represented by the 3.0 nm RMS.
$\operatorname{RMS}_{\text {Full }}=0.12 \mathrm{~nm}$
$\operatorname{AREA}_{\text {Full }}=11309.7 \mathrm{~mm}^{2}-1.25 \mathrm{~mm}^{2}$
$\mathrm{RMS}_{\text {Total }}$, RMS surface roughness of total area plus defect $=0.124 \mathrm{~nm}$

Example 2:

The system also works using only the 3D diminutions of only the defect itself. Sleek 20 mm long, 1 micron wide, 10 nm deep
In center 120 mm Aperture of ITM R1

```
RMS
AREA
RMS
AREA Full }=11309.7\mp@subsup{\textrm{mm}}{}{2}-0.02\mp@subsup{\textrm{mm}}{}{2
\(\mathrm{RMS}_{\text {Total }}, \mathrm{RMS}\) surface roughness of total area plus defect \(=0.121 \mathrm{~nm}\)
```

